The Influence of Gum Arabic Admixture on the Mechanical Properties of Lime-Metakaolin Paste Used as Binder in Hemp Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mix Design
2.2. Research Scope and Program
- composites cured under natural conditions for 90 days (marked as HL-GA),
- composites cured under natural conditions for 90 days, and then immersed in water for 48 h (marked as HL-GA soaked),
- composite cured under natural conditions for 90 days, then immersed in water for a period of 48 h, and subsequently naturally dried for 10 days (marked as HL-GA dried).
2.3. Preparation of Specimens
2.3.1. Binder
2.3.2. Hemp-Lime Concrete
2.4. Binder Testing
2.4.1. Pore Size Distribution
2.4.2. Flexural and Compressive Strengths
2.5. Hemp-Lime Concrete Testing
2.5.1. Mass Absorptivity
2.5.2. Compressive Strength and Young’s Modulus
- -
- 4 samples from each mixture, not subjected to water treatment,
- -
- 3 samples of each mixture, soaked in water for 48 h,
- -
- 3 samples of each mixture, removed from water after soaking for 48 h and then dried under natural conditions for 10 days.
3. Results
3.1. Binder
3.1.1. Pore Size Distribution
3.1.2. Flexural and Compressive Strengths
3.2. Hemp-Lime Composites
3.2.1. Mass Absorptivity
3.2.2. Compressive Strength and Young’s Modulus
4. Discussion
4.1. Binder
4.1.1. Pore Size Distribution
4.1.2. Flexural and Compressive Strength
4.2. Hemp-Lime Concrete
4.2.1. Mass Absorptivity
4.2.2. Compressive Strength and Young’s Modulus
5. Conclusions
- Total porosity as well as average pore diameter increase along with the gum arabic content. Hence, the specific pore surface was substantially reduced.
- Regardless of the applied amount, the admixture significantly raised the number of pores with a diameter greater than 0.7 µm, in comparison with the reference paste.
- The 3% and 5% admixtures increased the flexural strength roughly by a factor of 3.
- The gum arabic addition to the lime-metakaolin mixture amounting to 3% and 5% enhanced the compressive strength of the paste by roughly 25% and 60%, respectively.
- The admixture of gum arabic increased the porosity of the paste without compromising the strength properties. The pastes characterized by the greatest porosity also exhibited the greatest compressive strength.
- The admixture of gum arabic decreased the water absorption of hemp-lime concrete. As the content increases, the water absorption decreases.
- The admixture of gum arabic in the amount of 3% and 5% improved the compressive strength of the hemp-lime composite by 53% and 92%, respectively.
- After immersing the hemp-lime composite samples in water, their compressive strength decreased by 45–63%. The re-dried samples have a compressive strength 26–36% lower in relation to the original samples. The higher the gum arabic content, the greater the decrease.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Matias, G.; Faria, P.; Torres, I. Lime mortars with heat treated clays and ceramic waste: A review. Constr. Build. Mater. 2014, 73, 125–136. [Google Scholar] [CrossRef]
- Dheilly, R.M.; Tudo, J.; Sebaibi, Y.; Quéneudec, M. Influence of storage conditions on the carbonation of powdered Ca(OH)2. Constr. Build. Mater. 2002, 16, 155–161. [Google Scholar] [CrossRef]
- de Buergo Ballester, M.A.; González Limón, T. Restauración de edificios monumentales. In Monografías del Ministerio de Obras Públicas; Transportes y Medio Ambiente: Madrid, Spain, 1994. [Google Scholar]
- Ince, C.; Derogar, S.; Tiryakioğlu, N.Y.; Toklu, Y.C. The influence of zeolite and powdered Bayburt stones on the water transport kinetics and mechanical properties of hydrated lime mortars. Constr. Build. Mater. 2015, 98, 345–352. [Google Scholar] [CrossRef]
- Pavlik, V.; Užáková, M. Effect of curing conditions on the properties of lime, lime-metakaolin and lime-zeolite mortars. Constr. Build. Mater. 2016, 102, 14–25. [Google Scholar] [CrossRef]
- Ghaffari, A.; Ghaffari, A. The Effect of Fly Ash on Lime Mortar on Elevated Temperature. Adv. Mater. Res. 2013, 684, 172–176. [Google Scholar] [CrossRef]
- Fusade, L.; Viles, H.; Wood, C.; Burn, C. The effect of wood ash on the properties and durability of lime mortar for repointing damp historic buildings. Constr. Build. Mater. 2019, 212, 500–513. [Google Scholar] [CrossRef]
- Sung-Hoon, K.; Yang-Hee, K.; Juhyuk, M. Quantitative Analysis of CO2 Uptake and Mechanical Properties of Air Lime-Based Materials. Energies 2019, 12, 2903. [Google Scholar] [CrossRef] [Green Version]
- Andrejkovicôvá, S. Fine sepiolite addition to air lime-metakaolin mortars. Clay Miner. 2011, 46, 621–635. [Google Scholar] [CrossRef]
- Brzyski, P.; Gleń, P.; Gładecki, M.; Rumińska, M.; Suchorab, Z.; Łagód, G. Influence of the direction of mixture compaction on the selected properties of a hemp-lime composite. Materials 2021, 14, 4629. [Google Scholar] [CrossRef] [PubMed]
- Sepulcre-Aguilar, A.; Hernández-Olivares, F. Assessment of phase formation in lime-based mortars with added metakaolin, Portland cement and sepiolite, for grouting of historic masonry. Cem. Concr. Res. 2010, 40, 66–76. [Google Scholar] [CrossRef] [Green Version]
- Gameiro, A.; Santos Silva, A.; Faria, P.; Grilo, J.; Branco, T.; Veiga, R.; Velosa, A. Physical and chemical assessment of lime-metakaolin mortars: Influence of binder:aggregate ratio. Cem. Concr. Compos. 2014, 45, 264–271. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Jackson, M.D.; Zhang, Y.; Li, G.; Monteiro, P.J.M.; Yang, L. Material characteristics of ancient chinese lime binder and experimental reproductions with organic admixtures. Constr. Build. Mater. 2015, 84, 477–488. [Google Scholar] [CrossRef]
- Ventolà, L.; Vendrell, M.; Giraldez, P.; Merino, L. Traditional organic additives improve lime mortars: New old materials for restoration and building natural stone fabrics. Constr. Build. Mater. 2011, 25, 3313–3318. [Google Scholar] [CrossRef]
- Fang, S.Q.; Zhang, H.; Zhang, B.J.; Zheng, Y. The identification of organic additives in traditional lime mortar. J. Cult. Herit. 2014, 15, 144–150. [Google Scholar] [CrossRef]
- Lopez-Arce, P.; Zornoza-Indart, A. Carbonation acceleration of calcium hydroxide nanoparticles: Induced by yeast fermentation. Appl. Phys. A 2015, 120, 1475–1495. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.W.; Zhang, B.J.; Zeng, Y.; Pan, C.C.; He, X. Exploratory research on the scientific nature and application of traditional sticky rice mortar. J. Palace Mus. 2008, 5, 105–114. [Google Scholar] [CrossRef]
- Vyšvařil, M.; Hegrová, M.; Žižlavský, T. Rheological Properties of Lime Mortars with Guar Gum Derivatives, Key Engineering. Materials 2018, 760, 257–265. [Google Scholar] [CrossRef]
- Izaguirre, A.; Lanas, J.; Álvarez, J.I. Ageing of lime mortars with admixtures: Durability and strength assessment. Cem. Concr. Res. 2010, 40, 1081–1095. [Google Scholar] [CrossRef] [Green Version]
- Mbugua, R.; Salim, R.; Ndambuki, J. Effect of Gum Arabic Karroo as a water-reducing admixture in cement mortar. Case Stud. Constr. Mater. 2016, 5, 100–111. [Google Scholar] [CrossRef] [Green Version]
- Mbugua, R.; Salim, R.; Ndambuki, J. Effect of Gum Arabic karroo as a Water-Reducing Admixture in Concrete. Materials 2016, 9, 80. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Q.; Liu, C.; Zhou, M. Properties comparison of mortars with welan gum or cellulose ether. Constr. Build. Mater. 2016, 102, 648–653. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, B.; Ma, Q. Study of sticky rice-lime mortar technology for the restoration of historical masonry construction. Acc. Chem. Res. 2010, 43, 936–944. [Google Scholar] [CrossRef]
- Yang, T.; Ma, X.; Zhang, B.; Zhang, H. Investigations into the function of sticky rice on the microstructures of hydrated lime putties. Constr. Build. Mater. 2016, 102, 105–112. [Google Scholar] [CrossRef]
- Wei, G.; Zhang, H.; Wang, H.; Fang, S.; Zhang, B.; Yang, F. An experimental study on application of sticky rice-lime mortar in conservation. Constr. Build. Mater. 2012, 28, 624–632. [Google Scholar] [CrossRef]
- Yang, R.; Li, K.; Wang, L.; Bornert, M.; Zhang, Z.; Hu, T. A micro-experimental insight into the mechanical behaviour of sticky rice slurry-lime mortar subject to wetting-drying cycles. J. Mater. Sci. 2016, 51, 8422–8433. [Google Scholar] [CrossRef]
- Pradeep, S.; Selvaraj, T. Production of Organic Lime Mortar to Adapt CO2 for Construction of Scared Groves @ Auroville, Puducherry, India. In Structural Analysis of Historical Constructions; Aguilar, R., Torrealva, D., Moreira, S., Pando, M.A., Ramos, L.F., Eds.; RILEM Book Series; Springer: Cham, Switzerland, 2019; Volume 18. [Google Scholar] [CrossRef]
- Brzyski, P.; Suchorab, Z. Capillary uptake monitoring in lime-hemp-perlite composite using the time domain reflectometry sensing technique for moisture detection in building composites. Materials 2020, 13, 1677. [Google Scholar] [CrossRef] [Green Version]
- Arnaud, L.; Gourlay, E. Experimental study of parameters influencing mechanical properties of hemp concretes. Constr. Build. Mater. 2012, 28, 50–56. [Google Scholar] [CrossRef]
- Walker, R.; Pavía, S.; Mitchell, R. Mechanical properties and durability of hemp-lime concretes. Constr. Build. Mater. 2014, 61, 340–348. [Google Scholar] [CrossRef]
- de Bruijn, P.B.; Jeppsson, K.H.; Sandin, K.; Nilsson, C. Mechanical properties of lime–hemp concrete containing shives and fibres. Biosyst. Eng. 2009, 103, 474–479. [Google Scholar] [CrossRef]
- Benfratello, S.; Capitano, C.; Peri, G.; Rizzo, G.; Scaccianoce, G.; Sorrentino, G. Thermal and structural properties of a hemp-lime biocomposite. Constr. Build. Mater. 2013, 48, 745–754. [Google Scholar] [CrossRef]
- Stevulova, N.; Kidalova, L.; Cigasova, J.; Junak, J.; Sicakova, A.; Terpakova, E. Lightweight Composites Containing Hemp Hurds. Procedia Eng. 2013, 65, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Sinka, M.; Sahmenko, G. Sustainable thermal insulation biocomposites from locally available hemp and lime. Vide Tehnol. Resur.-Environ. Technol. Resour. 2013, 1, 73–77. [Google Scholar] [CrossRef] [Green Version]
- Natur-Sklep. Available online: www.natur-sklep.pl (accessed on 6 October 2021).
- Biomus. Available online: www.biomus.eu (accessed on 6 October 2021).
- Walker, R.; Pavía, S. Moisture transfer and thermal properties of hemp-lime concretes. Constr. Build. Mater. 2014, 64, 270–276. [Google Scholar] [CrossRef]
- Collet, F.; Pretot, S. Thermal conductivity of hemp concretes: Variation with formulation, density and water content. Constr. Build. Mater. 2014, 65, 612–619. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, J.; Silva, V.; Faria, P. Effect of Type of Curing and Metakaolin Replacement on Air Lime Mortars for the Durability of Masonries. Infrastructures 2021, 6, 143. [Google Scholar] [CrossRef]
- Sassoni, E.; Manzi, S.; Motori, A.; Montecchi, M.; Canti, M. Novel sustainable hemp-based composites for application in the building industry: Physical, thermal and mechanical characterization. Energy Build. 2014, 77, 219–226. [Google Scholar] [CrossRef]
- Williams, J.; Lawrence, M.; Walker, P. The influence of constituents on the properties of the bio-aggregate composite hemp-lime. Constr. Build. Mater. 2018, 159, 9–17. [Google Scholar] [CrossRef]
- Lagouin, M.; Magniont, C.; Sénéchal, P.; Moonen, P.; Aubert, J.E.; Laborel-Préneron, A. Influence of types of binder and plant aggregates on hygrothermal and mechanical properties of vegetal concretes. Constr. Build. Mater. 2019, 222, 852–871. [Google Scholar] [CrossRef]
- Brzyski, P.; Gładecki, M.; Rumińska, M.; Pietrak, K.; Kubiś, M.; Łapka, P. Influence of hemp shives size on hygro-thermal and mechanical properties of a hemp-lime composite. Materials 2020, 13, 5383. [Google Scholar] [CrossRef]
- Santos, A.R.; do Rosário Veiga, M.; Silva, A.S.; de Brito, J.; Álvarez, J.I. Evolution of the microstructure of lime based mortars and influence on the mechanical behaviour: The role of the aggregates. Constr. Build. Mater. 2018, 187, 907–922. [Google Scholar] [CrossRef]
- Otero, J.; Charola, A.E.; Starinieri, V. Sticky rice-nanolime as a consolidation treatment for lime mortars. J. Mater. Sci. 2019, 54, 10217–10234. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, M.; Mays, T.; Rigby, S.; Walker, P.; D’Ayala, D. Effects of carbonation on the pore structure of non-hydraulic lime mortars. Cem. Concr. Res. 2007, 37, 1059–1069. [Google Scholar] [CrossRef]
- Pipilikaki, P.; Beazi-Katsioti, M. The assessment of porosity and pore size distribution of limestone Portland cement pastes. Constr. Build. Mater. 2009, 23, 1966–1970. [Google Scholar] [CrossRef]
- Khayat, K.H. Effects of antiwashout admixtures on fresh concrete properties. ACI Mater. J. 1995, 92, 164–171. [Google Scholar]
- Ma, L.; Zhao, Q.; Yao, C.; Zhou, M. Impact of welan gum on tricalcium aluminate—Gypsum hydration. Mater. Charact. 2012, 64, 88–95. [Google Scholar] [CrossRef]
- Khan, B.; Baradan, B. The effect of sugar on setting-time of various types of cements. Sci. Vis. 2002, 8, 71–78. [Google Scholar]
- Uchechukwu Elinwa, A.; Abdulbasir, G.; Abdulkadir, G. Gum Arabic as an admixture for cement concrete production. Constr. Build. Mater. 2018, 176, 201–212. [Google Scholar] [CrossRef]
- Mai, Y.W.; Cotterell, B. Porosity and mechanical properties of cement mortar. Cem. Concr. Res. 1985, 15, 995–1002. [Google Scholar] [CrossRef]
- Lian, C.; Zhuge, Y.; Beecham, S. The relationship between porosity and strength for porous concrete. Constr. Build. Mater. 2011, 25, 4294–4298. [Google Scholar] [CrossRef]
- Chen, X.; Wu, S.; Zhou, J. Influence of porosity on compressive and tensile strength of cement mortar. Constr. Build. Mater. 2013, 40, 869–874. [Google Scholar] [CrossRef]
- Barnat-Hunek, D.; Widomski, M.; Szafraniec, M.; Łagód, G. Impact of Different Binders on the Roughness, Adhesion Strength, and Other Properties of Mortars with Expanded Cork. Materials 2018, 11, 364. [Google Scholar] [CrossRef] [Green Version]
- Barnat-Hunek, D.; Siddique, R.; Łagód, G. Properties of hydrophobised lightweight mortars with expanded cork. Constr. Build. Mater. 2017, 155, 15–25. [Google Scholar] [CrossRef]
- Brzyski, P.; Łagód, G. Physical and mechanical properties of composites based on hemp shives and lime. E3S Web Conf. 2018, 49, 00010. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Xiao, Q.; Huang, D.; Zhang, S. Influence of Pore Structure on Compressive Strength of Cement Mortar. Sci. World J. 2014, 5, 247058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odler, I.; Rößler, M. Investigations on the relationship between porosity, structure and strength of hydrated Portland cement pastes. II. Effect of pore structure and of degree of hydration. Cem. Concr. Res. 1985, 15, 401–410. [Google Scholar] [CrossRef]
- Winslow, D.; Liu, D. The pore structure of paste in concrete. Cem. Concr. Res. 1990, 20, 227–235. [Google Scholar] [CrossRef]
- Lanas, J.; Alvarez, J.I. Masonry repair lime-based mortars: Factors affecting the mechanical behavior. Cem. Concr. Res. 2003, 33, 1867–1876. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.A.; Azenha, M.; Lourenço, P.B.; Meneghini, A.; Guimarães, E.T.; Castro, F.; Soares, D. Experimental analysis of the carbonation and humidity diffusion processes in aerial lime mortar. Constr. Build. Mater. 2017, 148, 38–48. [Google Scholar] [CrossRef]
- Lawrence, R.M.H. A Study of Carbonation in Non-Hydraulic Lime Mortars. Ph.D. Thesis, University of Bath, Bath, UK, 2006. [Google Scholar]
- Yates, T.; Walker, P.; Hirst, E.A.J.; Paine, K. Characteristics of low-density hemp-lime building materials. Constr. Mater. 2012, 165, 15–23. [Google Scholar] [CrossRef]
- Elfordy, S.; Lucas, F. Mechanical and thermal properties of lime and hemp concrete (“hempcrete”) manufactured by a projection process. Constr. Build. Mater. 2008, 22, 2116–2123. [Google Scholar] [CrossRef]
- Bevan, R.; Wooley, T. Hemp Lime Construction—A Guide to Building with Hemp Lime Composites; IHS BRE: Bracknell, UK, 2008. [Google Scholar]
Recipe Symbol | Components | ||
---|---|---|---|
Binder | Gum Arabic/Binder Ratio | Water/Binder Ratio | |
LM-0GA | Hydrated lime 90% Metakaolin 10% | 0 | 0.65 |
LM-1GA | 0.01 | ||
LM-3GA | 0.03 | ||
LM-5GA | 0.05 |
Constituents | LM-0GA | LM-1GA | LM-3GA | LM-5GA |
---|---|---|---|---|
Composition (g per 100 g) | ||||
MgO | 0.34 | 0.27 | 0.30 | 0.27 |
Al2O3 | 3.00 | 2.73 | 2.97 | 2.76 |
SiO2 | 5.42 | 5.37 | 5.14 | 4.86 |
SO3 | 0.19 | 0.20 | 0.20 | 0.21 |
K2O | - | 0.06 | 0.11 | 0.07 |
CaO | 90.33 | 89.61 | 87.52 | 86.10 |
TiO2 | 0.21 | 0.24 | 0.24 | 0.22 |
MnO | 0.02 | 0.02 | 0.02 | 0.02 |
Fe2O3 | 0.49 | 0.50 | 0.50 | 0.48 |
ZnO | 0.01 | 0.01 | 0.01 | 0.01 |
Recipe Symbol | Components | ||
---|---|---|---|
Binder | Hemp Shives/Binder Ratio (by Weight) | Water/Binder Ratio (by Weight) | |
HL-0GA | LM-0GA | 1:2 | 1.35 |
HL-1GA | LM-1GA | 1.375 | |
HL-3GA | LM-3GA | 1.29 | |
HL-5GA | LM-5GA | 1.24 |
Parameter | Unit | LM-0GA | LM-1GA | LM-3GA | LM-5GA |
---|---|---|---|---|---|
Total pore surface | m2/g | 13.70 | 11.36 | 11.21 | 11.28 |
Average pore diameter | nm | 120.90 | 149.99 | 161.86 | 168.43 |
Total pore volume | ml/g | 0.41 | 0.43 | 0.45 | 0.47 |
Total porosity | % | 49.50 | 52.23 | 53.36 | 53.94 |
Density | g/mL | 2.37 | 2.31 | 2.27 | 2.23 |
Bulk density | g/mL | 1.20 | 1.17 | 1.12 | 1.10 |
Parameter | HL-0GA | HL-1GA | HL-3GA | HL-5GA |
---|---|---|---|---|
Bulk density [kg/m3] | 445.4 | 442.4 | 446.7 | 451.1 |
SD [kg/m3] | ±10.9 | ±9.6 | ±11.0 | ±6.6 |
Type of the Samples | Percentage of Gum Arabic/Average Compressive Strength [MPa] | |||
---|---|---|---|---|
0 GA | 1 GA | 3 GA | 5 GA | |
HL | 0.38 | 0.39 | 0.58 | 0.73 |
HL soaked | 0.21 | 0.17 | 0.23 | 0.27 |
HL dried | 0.41 | 0.25 | 0.43 | 0.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brzyski, P. The Influence of Gum Arabic Admixture on the Mechanical Properties of Lime-Metakaolin Paste Used as Binder in Hemp Concrete. Materials 2021, 14, 6775. https://doi.org/10.3390/ma14226775
Brzyski P. The Influence of Gum Arabic Admixture on the Mechanical Properties of Lime-Metakaolin Paste Used as Binder in Hemp Concrete. Materials. 2021; 14(22):6775. https://doi.org/10.3390/ma14226775
Chicago/Turabian StyleBrzyski, Przemysław. 2021. "The Influence of Gum Arabic Admixture on the Mechanical Properties of Lime-Metakaolin Paste Used as Binder in Hemp Concrete" Materials 14, no. 22: 6775. https://doi.org/10.3390/ma14226775
APA StyleBrzyski, P. (2021). The Influence of Gum Arabic Admixture on the Mechanical Properties of Lime-Metakaolin Paste Used as Binder in Hemp Concrete. Materials, 14(22), 6775. https://doi.org/10.3390/ma14226775