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Abstract: To investigate the brittle creep failure process of rock material, the time-dependent prop-
erties of brittle rocks under the impact of homogeneity are analyzed by the numerical simulation
method, RFPA-Creep (2D). Deformation is more palpable for more homogeneous rock material
under the uniaxial creep loading condition. At a low stress level, diffusion creep may occur and
transition to dislocation creep with increasing applied stress. The law for increasing creep strain
with the homogeneity index under a constant confined condition is similar to the uniaxial case, and
dislocation creep tends to happen with increasing confining pressure for the same homogeneity index.
The dilatancy index reaches its maximum at a high stress level when rock approaches failure, and
the evolution of the dilatancy index with the homogeneity index under the same confining pressure
is similar to the uniaxial case and is more marked than that under the unconfined condition. Both
uniaxial and triaxial creep failure originate from the ductile damage accumulation inside rock. The
dominant shear-type failure is exhibited by uniaxial creep and the conventional compression case
presents the splitting-based failure mode. Under confining pressure, the creep failure pattern is prone
to shear, which is more notable for the rock with higher homogeneity.

Keywords: creep; homogeneity; stress level; steady creep rate; dilatancy; failure pattern

1. Introduction

Excavations of rock mass at great depth for mining, tunneling, etc. could be accom-
panied by server dynamic disasters such as rockbursts, which commonly take place in a
sudden manner during excavations [1-3]. In most cases, the rheology of surrounding rock
mass manifests as obvious creep for the delayed rockburst under the action of a strong
time effect [4], especially when a deep rock mass is subjected to high in situ stresses, and
the delayed duration of the rockburst events ranges from several hours to days, even
months [5-7]. With the evolution of time-dependency, the creep failure of hard and brittle
surrounding rock easily triggers the time-delayed rockburst, threatening the safety and
stability during construction of deep rock engineering.

It is known that creep of brittle rocks can be defined as the time-dependent irreversible
deformation which occurs during the action of a constant applied stress lower than short-
term strength [8,9]. Currently, the various research approaches for time-dependent behavior
of brittle rocks are mainly divided into three aspects: theory, experiment and numerical
simulation [10-14]. Brantut et al., 2012 and Li et al., 2019 explored the relationship between
brittle creep behavior and crack growth on a microscopic scale by extending the same
micromechanical theoretical model [15-17]. Shi et al., 2018 analyzed the damage evolution
inside a cuboid-shaped sandstone specimen reflected by the real-time recorded spacial
development of AE activities during the creep loading test [18]. Tang, 2013 obtained the
surface creep deformation of rock specimen based on strain fields that are measured using
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DIC (digital image correlation) technology [19]. Although the initiation of the numerical
method in measuring the mechanical behavior of rock material is relatively recent, it
has been widely adopted and constantly developed by numerous scholars and engineers
including the finite difference methods (FDM)), finite element methods (FEM), boundary
element methods (BEM) and meshless methods [20-25], etc., and a few numerical studies
which have focused on the creep property of rock. Lockner and Madden, 1991b managed to
depict the characteristics of accelerating creep phase and predict the proper stress sensitivity
of creep rate by the developed numerical multiple-crack interaction model [26]. According
to the precious progressive damage model [27], Amitrano and Helmstetter, 2006 further
established the time-independent model and gained the spacial distribution of damage
of rock at different stress levels by numerical analysis [8]. As a valid numerical analysis
tool, RFPA (realistic failure process analysis) comprehensively considers the nonlinearity
of the failure process and the heterogeneity of rock material, and it introduces the multiple
critical factors such as temperature, moisture, etc., and a few applications on the study
of rock time-dependency have been achieved [28-31]. Li et al., 2008 observed the creep
failure process of rock during unconfined loading by introducing the constitutive model
for microscopic elements under the time effect [32].

Therefore, in order to investigate the mechanism of brittle creep failure of rock ma-
terial, with the aid of the numerical simulation method, RFPA-Creep (2D), the effect of
homogeneity (the homogeneity indexes m of 1.5, 2, 2.5, 3 and 5) on time-dependent proper-
ties of brittle rock under uniaxial and triaxial creep loading is analyzed in this paper. The
relationship between stress level and steady creep rate, the characteristics of dilatancy, the
damage evolution and failure pattern of rock are discussed.

2. Model Descriptions and Setup
2.1. Brief Description of RFPA 2D (Creep)

The two-dimensional finite mode, RFPA 2D, is a numerical simulation tool introduc-
ing the homogeneity index, which can be used to analyze progressive internal damage
evolution until the macroscopic failure of brittle rock material, and the time effect is fur-
ther considered by RFPA-Creep. From a microscopic angle, it is assumed that the model
medium is composed of rectangular elements on the same scale and that the statistical
distribution of elemental mechanical properties obeys a Weibull distribution [33]:

m—1 m
o= 2(2) e (2)

where « is a mechanical property where strength and elastic modulus are set as the same
distribution; ag is a mean value of the corresponding parameter and m refers to the
homogeneity index of rock. The rock material becomes more homogeneous with a larger m
(Figure 1) [28].

The mechanical behavior of microscopic elements is modeled by the approach on
damage mechanics. The initiation of micro-scale failure occurs after the stress state of an
element meets a strength criterion such as the Coulomb criterion. The elastic modulus
of an element is assumed to degrade gradually during damage evolution and can be
described by:

E=(1-D)E 2
where D is the damage variable; E and E are the elastic modulus of the degraded and
original element, respectively.

In this model, the compressive stress is set as the positive and the tensile stress is
negative (Figure 2). Both shear and tensile failure patterns are considered where the former
mode appears when the compressive stress of an element satisfies the Mohr—Coulomb
failure criterion: ,
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where 01 and o3 represent the major and minor principal stress, respectively; o is the
compressive strength and ¢ is the internal friction angle. An element fails in tensile pattern
when the minor principal stress reaches and exceeds the tensile strength ¢y, which is
expressed as follows:

03 < —0¢ (4)
o) 1 | — m=11
: --------- m:l.s
4 i m=12
{r -—= m=3
a m-=3
K == 8

/ -
I
8

Figure 1. Mechanical property distribution for five various homogeneous specimens (both strength
and elastic modulus follow the same distribution).
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Figure 2. Elastic-brittle damage constitutive law of the micro element.

The damage variable of an element with a compressive and tensile state can be,
respectively, described as [29]:

0 (e<ee,)
D= ° 5
{1—12’;; (e < 1) ©)

0 (e<ey,)
D=¢ 1-£5 (e,<e<ey) (6)

1 (e <e,)
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where 0 and oy are the residual compressive and tensile strengths, respectively; .o and
gyo are the threshold compressive and tensile strains, respectively; ey, is the ultimate tensile
strain and ¢, represents the residual strain.

It should be noted that the tensile criterion is given priority over the Mohr-Coulomb
failure criterion for elements in this model, owing to the short compressive strength
generally far outweighing the tensile one for brittle rock material. The Mohr-Coulomb
criterion is adopted when the tensile criterion is not met for an element.

In RFPA-Creep, the long-term strength of rock is introduced, representing that as time
goes by, the strength of rock material degrades under a constant stress level. The creep
constitutive relationship for microscopic elements is described as follows (Figure 3) [32]:

0 = 0o + (09 — 0c0) exp(—Bt) (7)

where ¢ and ¢« separately represent the short-term and long-term strength of an element
and B is the related attenuation coefficient.

agp

[

t

(0] Lat)
Figure 3. Constitutive law for strength degradation of the micro element.

It has been found that the degradation mechanism of elastic modulus is similar to that
of strength [34]. Thus, it is assumed that the elastic modulus of rock obeys the same law:

E = Ew + (Eg — Exo) exp(—B't) 8)

where Ey and E., represent the short-term and long-term elastic modulus of an element,
respectively, and B’ is the related attenuation coefficient. Both B and B’ are assumed to be
the same in this model.

Figure 4 exhibits the result of a uniaxial creep test for deep quartz sandstone taken from
the Laobishan Tunnel at a low stress level set as 70.2 MPa and the corresponding numerical
simulation. The specimen did not rupture and the evolution curve of axial strain with time
nearly matched the numerical result. It can be observed that the homogeneity index m
is 1, indicating that the rock specimen model is relatively heterogeneous. The significant
difference between quartz sandstone specimens in mineral firmness and distribution and
the particle size also gives rise to the heterogeneity of rock material on a microscopic scale.
In addition, the mean value is used for the mechanical property of the micro element, and
the size and shape, such as rectangle or triangle, of the element in model is invariable
and regular, which is in contrast to the rock entity material whose micro-particle form
and internal structure are uncertain. This may explain the slight difference in deformation
between experimental and numerical results. Hence, RFPA-Creep (2D) can be applied to
the simulation of time-dependent behavior concerning the homogeneity of rock material.
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Figure 4. Comparison between experimental and numerical results.

2.2. Specimen model setup

In this study (Table 1 and Figure 5), the creep model dimension was 120 mm x 50 mm
and the mesh was discretized into 240 x 100 = 24,000 elements. The specimen geometry
was 100 mm x 50 mm (200 x 100 = 20,000 elements), and the loading plates with extremely
high stiffness and homogeneity were set on the top and bottom of the specimen during
the uniaxial creep loading, respectively. The plane stress compression was performed on
all specimen models. The homogeneity indexes m of 1.5, 2, 2.5, 3 and 5 were selected
for unconfined simulation conditions, and for triaxial cases with m = 2, 5, the confining
pressure P. (03) was set as 1.5 and 5 MPa. Based on the simulation results of the uniaxial
compression process (Figure 6), the applied stress levels were set as 0.550, 0.65¢., 0.750¢
and 0.850 before failure at the last constant loading stage, which was also used for the
triaxial creep simulation.

Table 1. Rock material parameters of the numerical model.

1.5, 2, 2.5, 3, 5 (Uniaxial)

Homogeneity Index (im)

2, 5 (Triaxial)
Mean compressive strength (co/MPa) 500
Mean elastic modulus (Ey/MPa) 65,000

Poisson’s ratio (i) 0.28

Friction angle (1p/°) 30

Ratio of compression and tension strength (o /c%) 10
Coefficient of residual strength 0.1
Attenuation coefficient of strength 0.1
Attenuation coefficient of elastic modulus 0.1

Ratio of long-term strength and short-term strength (00 /0¢) 0.7
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Figure 5. Stress—strain response and stages of rock during progressive fracture and classical creep behavior corresponding

to the numerical model.
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Figure 6. Uniaxial compressive simulation results for various homogeneity indexes.

Furthermore, in order to calibrate the numerical specimen model, the partially input
parameters of critical mechanical properties were set the same as those in the laboratory
test or the setup in the model of RFPA 2D [28,32,35].

3. Numerical Results

During the uniaxial loading phase, the creep failure emerged when the last stress
level reached 0.920. for m = 1.5 (74 MPa), 2 (90 MPa) and 5 (166 MPa), and the applied
loads when m was both both 2.5 (105 MPa) and 3 (124 MPa) were 0.950.. In the triaxial
creep condition, when the confining pressure was 1.5 MPa, the specimen entered into the
fracturing stage at applied stresses that were 96 MPa and 178 MPa (both o, = 0.910,) for
m =2 and 5, respectively, and when P, = 5 MPa, the last load levels were 109 MPa (m = 2)
and 206 MPa (m = 5), and both exceeded 0.9c. In addition, the duration for all specimens
during the unchanging high stress level which led to the failure was within 2 d, except for
the unconfined condition, with m = 3 lasting 2.4 d.

Under the unconfined creep loading condition, the time-dependent evolution of
axial and lateral strains for various m is shown in Figure 7. All the specimens exhibited
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instantaneous elastic deformation after initial loading and then entered into the phase of
primary (transient or attenuated) creep, whose duration was extremely short. The strain
rate declined rapidly and stayed almost constant at the steady-state (secondary) creep
stage. In the end, all the specimens ruptured with the prominent strain accompanied by
the increasing strain rate within quite a short period, marking the tertiary (accelerating)
creep stage. It can be seen that the transition from the secondary to tertiary creep is not
distinct when a sudden failure commenced with dramatic deformation. At the same time,
the lateral strain of the specimen was more prominent than the axial strain during the
fracturing process.

0.5

e m=1.5 (Axial)
. e m=1.5 (Lateral)
== = m=2 (Axial)
04 B ¢ == = m=2 (Lateral)
m=5 '03:166 MPa - = m=2.5 (Axial)
- & e © ©® & - - m=25 (Lateral)
03[~ =t m=25 00,=105MPa J — = m=3 (Axial)
.—.—._.—.—.—- == = m=3 (Lateral)
e ®© ®» & ®© a e o o ¢ m=3 == +m=5 (Axial)
= 02} Twm = wm == Im2 o oppiMPa = oo (Latera)
é m=15 0a=90MPa
(=
T 0.1
—
=
@ 0.0 1 )
- o
70 ,2.5 3.0
* Time (d
-0.1 ] m=3 l ( )
-0.2 | .me
-0.3 -

Figure 7. Behavior of creep strain at the last stress level for various homogeneity indexes during
uniaxial creep loading.

The last constant applied stress that triggers the creep failure increased with homo-
geneity index m, suggesting that a higher failure strength of rock is enhanced by a higher
homogeneity of structural composition. The corresponding axial strain also presented an
increasing mode with m, which was more notable for the secondary creep, and the lateral
deformation displayed the same law as the axial one.

With the condition where m is equal to 2, the variation for axial and lateral creep
strains with time under the effect of confining pressure showed a similar tendency to the
unconfined case (Figure 8). When the confining pressure increased, both the axial and
lateral deformation increased with the deviatoric stress level, and the continuous duration
for the last deviatoric stress stage was the longest (P. = 5 MPa).

0.5 )
e Pc=0 MPa (Axial)
e Pc=0 MPa (Lateral)
04| == «Pc=1.5 MPa (Axial)
== «Pc=1.5 MPa (Lateral)
= = Pc=5 MPa (Axial)
0.3 [ . a"_: lOiMP.a - ® - - Pc=5MPa (Lateral)
~ 02} g = - = = oa= 96 MPa
= 75=90 MPa
=
‘= 0.1
S
=1
(V2] 0.0 ! 1 L )
* == c=pb e==c wm={oQm=— —‘-1-5 L] 2.0 25
-0.1 | [ Time (d)
-0.2 |
-03 %

Figure 8. Behavior of creep strain at the last stress level for the constant homogeneity index (m = 2).
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4. Discussions
4.1. Evolution Laws of Stress Level vs. Strain Rate

The strain rate during the secondary creep phase is a critical index for the evaluation
of long-term stability and creep amount of rock mass. The relationship between applied
load level and steady creep rate can be quantitatively represented by:

¢ = Aoy, )

where A and # are constants, n = 3-8 for dislocation creep and 7 is approximately equivalent
to 1 for diffusion creep. The parameter # is the slope of linear fitting curve (the Logo—Loge
plot) converted from the original expression and is also used for the creep of rocks under
compression, sometimes being called the stress corrosion index.

As presented in Figures 9 and 10, the obtained magnitude order of strain rate reaches
1078/s. All the correlation coefficients R?> under the unconfined condition are greater
than 0.8, which reflects that the corresponding relationships can be well depicted by the
model. The fitting relation between the last stress level and axial steady creep rate shows
an increasing trend with homogeneity index m, indicating that the deformation is more
significant for more homogeneous rock material, which further impacts the formation of a
damage zone at the accelerating creep stage. For all the specimens, n ranges from 1 to 2 and
the maximum is 1.7336 for m = 5, suggesting that diffusion creep may occur at a low stress
level and gradually transition to dislocation creep with the increase in failure strength that
is caused by a higher homogeneity of rock. Moreover, for the constant homogeneity index,
the steady creep rate increases with stress level and reaches the maximum at the last fixed
load that induces failure, which shows that the deformation of rock during the steady-state
creep phase depends heavily on the applied stress level.

-6.90
¢ (Axial)
——— Fitting result
-6.95 [
)
®
S-7.00}
o
@
o
o
o 051 : n=0.5912
B / R2=0.9311
3 ,
@-710}
o
o
-
-745 |
_7'20 1 1 L 1 1 1 1 1 L

1.80 1.85 1.90 1.95 200 205 210 215 220 225 2.30
Log (stress level)

Figure 9. Relationship between the last stress level and steady creep rate for various homogeneity
indexes during uniaxial creep loading.
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Figure 10. Relationship between stress level and steady creep rate for various homogeneity indexes
during uniaxial creep loading.

The relationship between deviatoric stress level and axial steady creep rate exhibits a
similar increasing law with m to the uniaxial case under the same confining condition. n
increases with P for the same m (Figure 11), which indicates that the dislocation creep of
rock may be more inclined to occur with the increasing confining pressure.

-6.6
-6.7 | n=1.7982 ©
R2=0.883 A
~ 68 | n=11621 .
3 /] woss ’
;-—6.9 - J e n=19103
a \ © R2=0.9219
o-70F
1) n=1.4992 m=2, Pc=0 MPa
%_7.1 | ) B m=2, Pc=0 MPa
S R2=0.9375 o0 m=2, Pc=1.5 MPa
2 m=2, Pc=1.5 MPa
»-72 F \ © m=2, Pc=5 MPa
—~— —— m=2, Pc=5 MPa
g, L)) \ © m=5, Pc=0 MPa
S -73 | ——m=5, Pc=0 MPa
/ n=1.7336 m=5, Pc=1.5 MPa
- B R2=10.9023 m=5, Pc=1.5 MPa
T4 T n=14613 © m=5, Pc=5 MPa
R2=0.9203 m=5, Pc=5 MPa
-75 I 1 1 1 L .
1.7 1.8 1 2.0 21 2.2 2.3 24

Log (stress level)

Figure 11. Relationship between stress level and steady creep rate for various homogeneity indexes
during triaxial creep loading.

The stress level basically moves right by the confining pressure for the invariable
homogeneity index, apparently indicating the increase in rock strength under the confining
condition. This phenomenon can be further explained by the following model [36], where
an inclined crack of the length 24 with wing cracks can be approximated by a straight crack
of the length 2] with a concentrated force F at the center (Figure 12). The stress intensity
factor at the crack tips can be described as follows:

F
K = 7= o3Vl (10)

where
F = 2ag(07 — 03) sin2a cos w (11)
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Figure 12. Approximation of an inclined crack with wing cracks by a straight crack with a concen-
trated force at the center.

For simplicity, it is assumed that there is no friction between the inclined crack sur-
faces. Equations (10) and (11) suggest that the stress intensity factor at the wing crack tip
decreased by the confining pressure P, (03) for the same axial-applied stress ¢y.

4.2. Characteristics of Dilatancy

The evolution law of dilatancy is an effective indicator of the instability and failure
of brittle rocks. Time-dependent deformation comprises the elastic and inelastic stages
where the dilatancy can be reflected by the inelastic volumetric deformation resulting from
the development of microcracks in the interior of the rock under different load levels. It is
assumed that both elastic modulus E and Poisson’s ratio v are the same in all specimen
models; the inelastic shear strain ¢l and the inelastic volumetric strain !¢ can be separately

q
expressed as follows:
; 2v21+v

€q = €q— 3 I (01 —03) (12)

; 1-2v
C =y — E (01 + 203) (13)

22

€q = —5—(e1+¢3) (14)
ey = €1 + 2¢e3 (15)

and for the uniaxial case (03 = 0 MPa):

e 2v21+4v
fa TfaT T3 g

o1 (16)

_ 1-2v
v =& — E
where &q and &y represent the final shear strain and final volumetric strain, respectively.
The relationship between inelastic shear strain and inelastic volumetric strain can be
further illustrated by the dilatancy index which is the slope of strain path defining the flow
law of rocks during the creep process [11,35]:

(%] (17)

ie
de.q
dete

1

DI

(18)
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where dehe and de'® are the increment of inelastic shear strain and inelastic volumetric
strain, and it should be noted that the former is always positive and, due to the expansion
of rock, the latter is always negative. Thus, the absolute value of 1/DI is more concise for
interpretation.

At the last fixed stress, the relationship between inelastic shear strain and inelastic
volumetric strain with various m is presented in Figure 13. The strain path displays
an almost linear form, suggesting that both the slipping along inclined cracks and the
propagation of axial cracks may commence from the initiation of rupture. This is similar to
the previously observed experimental phenomena [11,35].

0.32
0.30 | g / g
- =
5 0.28 - i £ /;; B 1/DI=1.2263
.E o o W e = < = - - = S
= 026} et ey 2
S b €
% / /i f=
= 024 i - A 1,'91:1,1305§:::
o = /’ 454 a,~ 166 MPa
'E, 022 i ,= 90 MPa s
o) Sl ‘ /DI= 111371
"g’ 0.20 _ D_ m=1.5
o ’ 1/DI'=1.0982 2 0 m=2
0.18 | 2 i =
£ ¥ 1 L m=2.5
/| 1DI=1.0494 ¢ m=3
0.16 |- %
m=5

0.14 1 1 1 1 1 1 L 1
014 016 018 020 022 024 026 0.28 030 032
Inelastic volumetric strain (%)

Figure 13. Strain path in inelastic shear strain vs. volumetric strain space for various homogeneity
indexes during uniaxial creep loading.

As shown in Figure 13, the dilatancy index 1/DI increases with the homogeneity index
m. The reason for this phenomenon is that larger increments of applied stress with higher
m lead to larger increments of inelastic shear strain, and DI declines. For the constant
homogeneity index (m = 2) (Figure 14), a similar slight decreasing tendency of DI is also
attributed to the increase in inelastic shear strain increments when the increment-of-stress
level ranges from a low to high degree, which indicates that when the rock material
approaches failure, DI reaches the minimum at a certain high stress level.

Figure 15 presents the variation of 1/DI with m under the impact of confining pressure.
For the same m, 1/DI gradually increases with P.. The inelastic volumetric strain in the
uniaxial case is smaller than that with P. = 5 MPa and larger than that with P. = 1.5 MPa,
which may result from the close applied load level caused by quite a low confined condition
for hard and brittle rock specimen. Furthermore, the evolution law of 1/DI with increasing
m under unchanging confining pressure is similar to the uniaxial case and is more marked
than that under the unconfined condition.

4.3. Failure Pattern

When the homogeneity index m is equal to 2, the evolution of creep strain at different
stress levels according to a similar increment of 10% o is displayed in Figure 16. The
accelerating creep is not observed until the last stress level surpasses 90% o (¢a = 0.920),
resulting in the ultimate rupture of the rock specimen, which basically agrees with the
experimental result by Ma, 2004 [37].
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Figure 14. Strain path in inelastic shear strain vs. volumetric strain space for the constant homogene-
ity index (m = 2) during uniaxial creep loading.
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Figure 15. Strain path in inelastic shear strain vs. volumetric strain space for various homogeneity
indexes during triaxial creep loading.

With the generation of new cracks and the growth of original cracks inside rock
specimens, internal damage continuously accumulates, which dominates progressive
deformation, leading to a sudden failure. Corresponding to Figure 16, Figure 17 exhibits
the damage accumulation process in the interior of rock material with an increasing
applied load for m = 2. When ¢, reaches 0.550 (54 MPa), a few new cracks appear and
almost no new damage is generated, showing that the compaction on the microcracks
and the specimen stays in a stable state after the self-adjustment of internal stress. At
74 MPa (0.750 ), the microcracks tend to aggregate and some local damage zones appear,
which indicates that the specimen is starting to enter the unsteady stage. With the further
accumulation of damage until o, = 0.920 (90 MPa), the intensity of microcracks exceeds a
critical density, triggering the accelerating creep, during which the microcracks extensively
propagate and swiftly coalesce until the macroscopic failure region emerges. It can be found
that at low loading stages, the local failure area first appears after reaching the yield strength
of the specimen owing to the low homogeneity of internal structure, inducing internal
damage accumulation, which further results in the increase in anisotropy of the specimen,
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and the main fracture zone gradually appears and extends with elapsed time. At the same
time, as the applied stress increases, the tensional stress along the axial direction after stress
redistribution reaches the tensile strength, producing local axial splitting failure areas.
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Figure 16. Behavior of creep strain with various stress levels for the constant homogeneity index
(m = 2) during uniaxial creep loading.
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Figure 17. Damage accumulation for the constant homogeneity index (m = 2) during uniaxial
creep loading.

The creep failure pattern for various homogeneity indexes under the unconfined
conditions is shown in Figure 18a. Most rock specimens present the nearly penetrated
shear-type planes such as the case that m =2, 3, and for m = 1.5, 3 and 5, the dominated shear
mode is accompanied by partial splitting. The effect of homogeneity on failure pattern
after uniaxial creep loading is not conspicuous in this simulation due to the difference
in the internal heterogeneity of specimens on the microscopic scale. However, based on
the statistical homogeneity from the macroscopic angle, the specimen under conventional
compression shows the splitting-based mode compared to the creep condition (Figure 18b),
and both cases are similar to the failure pattern of marble described by Zhao et al., 2012 [5],
which suggests that the creep failure of rock is a progressive process during which the
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circulation is between internal damage accumulation and the expansion of weak yield
areas, with the continuous evolution of microcracks until eventual rupture.

‘a

(b) Conventional uniaxial condition

Figure 18. Damage accumulation for various homogeneity indexes under uniaxial creep (a) and
conventional compression conditions (b).

Under the impact of confining pressure, the creep failure type with m = 2 and 5 is
shown in Figure 19. Both specimens under the confining pressure of 1.5 and 5 MPa present
several macroscopic shear failure regions when m = 2. For the higher homogeneity index
that is 5, the shear-based form appears in the case where P. = 1.5 and 5 MPa, and the
rupture is mainly located in the upper region of the specimen, connected with the local
heterogeneity of rock under the time effect to some extent. The fracture of the specimen is
prone to shear pattern under the confined condition, which is more evident for a higher
homogeneity of rock material.
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Figure 19. Damage accumulation at the last stress level for various homogeneity indexes during
triaxial creep loading.

5. Concluding Remarks

In order to clarify the effect of homogeneity on the creep properties of brittle rock, the
numerical simulation approach, RFPA-Creep (2D), is applied to the comparative analysis
on the corresponding time-dependent behavior and failure mode for homogeneity indexes
m=15,2,2.5,3 and 5. The main conclusions of this study are as follows:

1. During uniaxial creep loading, the deformation is more significant for more homoge-
neous rock material. Diffusion creep may occur at low stress levels and transition to
dislocation creep with increasing applied loads. The increasing law for creep strain
with the homogeneity index under an unaltered triaxial condition is similar to the uni-
axial case and the dislocation creep may be more inclined to emerge with increasing
confining pressure for rock with the same homogeneity.

2. The dilatancy index reaches the maximum at a certain high load level when creep
failure happens, and the evolution of dilatancy index with homogeneity index under
the same confining pressure is similar to the uniaxial case and is more prominent than
that under the unconfined condition.

3. Both the uniaxial and triaxial creep failure are based on the ductile damage accumu-
lation inside rock. The dominant shear-type failure is shown by the uniaxial creep
loading manner and the conventional compression case presents the splitting-based
failure form. Under the confining pressure, the creep failure mode tends more towards
the shear, which is more obvious with a higher homogeneity of rock.
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