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Abstract: In high-rise buildings earthquake ground motions induce bending deformation of the
host structure. Large dynamic displacements at the top of the building can be observed which in
turn lead to the excitation of the cables/ropes within lift installations. In this paper, the stochastic
dynamics of a cable with a spring-damper and a mass system deployed in a tall cantilever structure
under earthquake excitation is considered. The non-linear system is developed to describe lateral
displacements of a vertical cable with a concentrated mass attached at its lower end. The system
is moving slowly in the vertical direction. The horizontal displacements of the main mass are
constrained by a spring-viscous damping element. The earthquake ground motions are modelled
as a filtered Gaussian white noise stochastic process. The equivalent linearization technique is then
used to replace the original non-linear system with a linear one with the coefficients determined by
utilising the minimization of the mean-square error between both systems. Mean values, variances
and covariances of particular random state variables have been obtained by using the numerical
calculation. The received results were compared with the deterministic response of the system to the
harmonic process and were verified against results obtained by Monte Carlo simulation.

Keywords: stochastic dynamics; seismic vibrations; non-linear system; equivalent linearization
technique; Gaussian white noise process

1. Introduction

High-rise buildings are very sensitive to dynamic loads because of their slenderness.
The time-dependent types of loading that have a significant influence on this type of
the structures are wind and earthquakes. Due to their nature they should be treated as
non-deterministic forces. Dynamic wind loads or earthquakes lead to large sway motions
of high-rise buildings. If the displacements at the top of the structure are significant,
it may lead to damage of structural elements and, in extreme cases, to the building being
destroyed. Therefore, in the design process we need to satisfy all requirements to make
sure that the structure is safe. Designers are constantly trying to increase the load-bearing
capacity of such systems and the comfort of people staying inside through the use of
innovative solutions and materials or methods of monitoring. Some examples can be found
in [1,2].

In high-rise buildings, an efficient system for transporting people and equipment
should also be provided due to the significant height of the object. The sway of the structure
caused by dynamic loads leads to the excitation of the cables inside the lift installation. As
a result, the transverse and longitudinal vibration of the cable together with the horizontal
and vertical displacements of the lift car can be observed. Lift cables are made of high-
strength steel wires that are twisted together to form a strand structure. In the resonance
region the significant vibrations may disrupt operation of the lift system, result in fatigue of
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the material or even damage of the rope. In high-rise buildings, special structural elements,
such as spring-viscous damping elements or tuned-mass dampers, are used to limit the
negative effects in the lift’s systems caused by vibrations. However, their correct design
depends on a careful examination of the structural system behavior and an estimation of the
risk of resonance. If we wish to verify the fatigue resistance of cables or their load-bearing
capacity we need to be able to define the response of the lift installation to the dynamic
excitation. Very often, external influences are changeable and in the design process the
worst-case scenario has to be found. This is why the methods of computation that can
quickly give results for structures under stochastic loads are so important.

Various models describing the behavior of the lift installation under deterministic and
stochastic dynamic loads can be found for example in [3,4]. Earthquakes can bring similar
problems in high-rise building that can cause the damage inside the lift installation [5–7].
Even if the source of the long-period ground motion is in great distance from the building
it can lead to significant displacements of its base in the resonance region [8]. In [9,10]
the problem of the cable-mass system dynamic response to the earthquake excitation
idealized as deterministic harmonic process was considered. However due to the nature of
the phenomenon the ground motion should be dealt with by stochastic methods. In the
presented paper, the proposed non-linear model of cable-mass-spring system is assumed
in the form of a cable with a concentrated mass attached to its lower end. The system
is moving slowly in the vertical direction. The horizontal displacements of the mass are
constrained by the viscous-damping element. The transverse vibrations of the cable are
coupled with the longitudinal displacements. The earthquake excitation of the building
base is modelled as a filtered Gaussian white noise stochastic process.

Analytical solution of non-stationary and non-linear problems is usually difficult [11].
Therefore, approximate methods and numerical techniques are often applied. One of the
techniques that is commonly used to determine the stochastic response of nonlinear systems
in different problems is the Monte Carlo direct simulation technique [12–15]. However, to
obtain reliable results, this technique requires usually the generation of a large ensemble
of excitation and response sample functions, hence the computational cost may be very
high. Therefore, in this paper, the approximate analytical technique is developed, where
the nonlinear model is replaced by the approximate linear one by using the equivalent
(statistical) linearization technique. The particular coefficients of an equivalent linear
system expressed in terms of expectations of non-linear functions of random state variables
are obtained from the condition of mean-square minimization of the error between both
systems. An implementation of equivalent linearization technique to obtain the response
of a simplified model of lift installation under stochastic wind load can be found in [16].

The equivalent statistical linearization technique was first used to consider the non-
linear random vibrations by Caughey [17]. Since that time, the technique has been imple-
mented in many problems of stochastic dynamics, for example, [18–21]. The statistical
linearization technique has been applied to solving various problems in systems under dif-
ferent random excitations, not only Gaussian, for example, [22]. It has also been combined
with other advanced methods and techniques to conduct analysis in various domains of
stochastic dynamics and more. Some examples can be found, for example, in [23–28].

The equivalent linearization technique is relatively easy to apply and allows us to
obtain sufficiently accurate estimates of the mean values, variances and covariances of
particular random response state variables. The advantages of this approach and its
effectiveness are discussed in the present paper on the basis of a comparison with the
results of the solution of an original set of nonlinear differential equations governing the
behavior of the system under an idealized deterministic harmonic excitation. Also, the
obtained approximate results are verified against Monte Carlo simulation for the filtered
Gaussian white noise process excitation.
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2. Materials and Methods
2.1. Schematic Cable-Mass-Spring Model

Consider a simplified model of a lift system represented by a cable-mass-spring
system presented in Figure 1b is considered. The cantilever host structure of the total
height Z0 is exposed to the ground motion s0(t). The system is moving downward with
the transport speed and acceleration defined as V and a, respectively. The length of
the cable L is changing during the motion. The main mass M attached to the bottom
end of the cable is constrained in the horizontal direction by a spring-viscous damping
element with the coefficients of stiffness and damping denoted as k and c, respectively.
The lateral displacements of the main mass M are defined as vM(t) while the longitudinal
as uM(t). The ground motion leads to a sway of the structure, as a result the elastic bending
deformations w̄(z, t) can be observed. The displacements at the top of the structure, where
the z = Z0, are denoted as w̄0(t) = w̄(Z0, t) and lead to the excitation of the rope inside the
lift installation. The lateral vibrations of the cable v(x, t) are coupled with the longitudinal
dynamic displacements u(x, t), where x is defined as the Eulerian spatial coordinate.
The cable inside the lift installation is made from the high-strength steel wires that are
twisted together automatically (see Figure 1c). Its mass per unit length, cross-sectional area
and modulus of elasticity are assumed as m, A and E, respectively. The mean quasi-static
tension inside the cable is defined by Ti = [M + m(L− x)](g− a).

Figure 1. (a) High-rise building with lift installation; (b) Schematic model of cable-mass-spring
system [9]; (c) Lift cable structure.

2.2. Non-Linear System

First, let us consider the dynamic response of the system to a base motion s0(t). The
overall (absolute) displacements w(z, t) of the structure are governed by the equation
of motion:

ms(z)wtt + Cwt + Lw = 0, (1)

where ms(z), C, L are the linear mass density of the structure, damping operator and spatial
operator related to the elastic potential energy, respectively. The symbol ()t denotes the
partial derivative with respect to time.
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The overall displacements of the structure presented in Figure 1b can be given
by the formula:

w(z, t) = w̄(z, t) + s0(t), (2)

The first and second partial derivatives with respect to time are obtained as:

wt = w̄t + ṡ0(t)

wtt = w̄tt + s̈0(t).
(3)

Using Equations (2) and (3) in Equation (1) brings:

ms(z)w̄tt + Cw̄t + Lw̄ = −ms(z)s̈0(t)− C ṡ0(t)−Ls0(t). (4)

Since s0(t) is not a function of geometric co-ordinates, Ls0(t) = 0. If damping only depends
on the relative motion and it does not depend on the absolute motion, then C ṡ0(t) = 0.
Therefore, Equation (4) can be rewritten to the following form:

ms(z)w̄tt + Cw̄t + Lw̄ = −ms(z)s̈0(t), (5)

whose solution can be assumed in the form of modal expansion:

w̄ =
∞

∑
n=1

Wn(z)pn(t). (6)

Wn(z) and pn(t) are the eigenfunctions of the structure and natural (modal) coordinates,
respectively. The first and second partial derivatives of Equation (6) with respect to time
are given by:

w̄t =
∞

∑
n=1

Wn(z) ṗn(t),

w̄tt =
∞

∑
n=1

Wn(z) p̈n(t).
(7)

Using Equations (6) and (7) in Equation (5) results in:

ms(z)
∞

∑
n=1

Wn(z) p̈n(t) + C
∞

∑
n=1

Wn(z) ṗn(t) + L
∞

∑
n=1

Wn(z)pn(t) = −ms(z)s̈0(t). (8)

Multiplying Equation (8) by the Wr brings:

ms(z)
∞

∑
n=1

Wn(z)Wr(z) p̈n(t) + C
∞

∑
n=1

Wn(z)Wr(z) ṗn(t) + L
∞

∑
n=1

Wn(z)Wr(z)pn(t) = −ms(z)s̈0(t)Wr(z). (9)

By integrating the result over the domain 0 ≤ z ≤ Z0 and using the eigenfunction orthogo-
nality conditions: ∫ Z0

0
WnWrdx =

{
6= 0 n = r

0 n 6= r
, (10)
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Equation (9) is transformed to the following form:

p̈n(t)
∫ Z0

0
ms(z)W2

r (z)dz + C ṗn(t)
∫ Z0

0
W2

r (z)dz + Lpn(t)
∫ Z0

0
W2

r (z)dz = −s̈0(t)
∫ Z0

0
ms(z)Wr(z)dz. (11)

Dividing all terms of Equation (11) by the modal mass defined by the expression:

mr =
∫ Z0

0
ms(z)W2

r (z)dz, (12)

the modal equations are obtained as:

p̈r(t) + 2ζrωr ṗr(t) + ω2
r pr(t) = −

s̈0(t)
mr

∫ Z0

0
ms(z)Wr(z)dz = Pr(t), (13)

where ωr and ζr denote the natural frequencies and modal damping ratios, respectively [9].
Pr(t) are the modal excitation terms. If the natural frequencies of damped vibrations are
determined as ωdr = ωr

√
1− ζ2

r , the steady-state response of the structure is defined by:

Pr(t) =
1

ωdr

∫ t

0
Pr(t− τ)e−ζrωrτsin(ωdrτ)dτ. (14)

If we are looking for an approximate solution of the Equation (5), we can assume
that: [29]

w̄(z, t) =
N

∑
n=1

Ψn(z)pn(t), (15)

where Ψn are the approximating functions and pn(t) denote the general coordinates that
correspond to the lateral motions of the structure. The first and second partial derivatives
of Equation (15) with respect to time are given by:

w̄t =
N

∑
n=1

Ψn(z) ṗn(t),

w̄tt =
N

∑
n=1

Ψn(z) p̈n(t).

(16)

Using Equation (16) in Equation (5) leads to:

ms(z)
N

∑
n=1

Ψn(z) p̈n(t) + C
N

∑
n=1

Ψn(z) ṗn(t) + L
N

∑
n=1

Ψn(z)pn(t) = −ms(z)s̈0(t). (17)

Multiplying both sides of Equation (17) by Ψr and integrating the result over the domain
0 ≤ z ≤ Z0 brings∫ Z0

0 Ψr(z)ms(z)Ψn(z)dzp̈n(t) +
∫ Z0

0 Ψr(z)CΨn(z)dzṗn(t) +
∫ Z0

0 Ψr(z)LΨn(z)dzpn(t)

= −s̈0(t)
∫ Z0

0 ms(z)Ψr(z)dz.
(18)

Assuming M, C, K and F(t) as the mass, damping and stiffness matrices and the
vector of generalized excitation forces, respectively, expressed by the following equations:
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M = [mrn], mrn =
∫ Z0

0 Ψr(z)ms(z)Ψn(z)dz,

C = [crn], crn =
∫ Z0

0 Ψr(z)CΨn(z)dz,

K = [krn], krn =
∫ Z0

0 Ψr(z)LΨn(z)dz,

F(t) = [Fr(t)], Fr(t) = −s̈0(t)
∫ Z0

0 ms(z)Ψr(z)d,

(19)

Equation (18) is rewritten to equation of motion in the matrix form:

Mp̈(t) + Cṗ(t) + Kp(t) = F(t). (20)

As is well known, the sway of the structure leads to the excitation of the rope inside

the lift installation. The cable axial strain is assumed to be ε = ux +
1
2

v2
x and the quasi-static

tension of the cable is given by the expression T = (M + mL)(g− a). From the Hamilton’s
Principle for external work of non-conservative forces, kinetic and potential energies of the
system, the following partial differential equations of motion are obtained:

m
D2u
Dt2 − EAεx = 0,

m
D2v
Dt2 − Tvxx + m(g− a)(xvxx + vx)− EA(εvx)x = 0, (21)

Mv̈M + Ti(L)vx|x=L + c4̇+ k4+ EAε|x=Lvx|x=L = 0,

MüM + EAε|x=L = 0,

where ∆ denotes the deformation of the spring expressed by ∆ = vM − wM,
with wM = w(Z0 − L, t) being the bending deformation of the host structure at the level
of the main mass. The derivation of Equation (21) in detail can be found in [9]. The total
derivatives with respect to time are given by the equations:

D( )

Dt
= ( )t + V( )x,

D2( )

Dt2 = ( )tt + 2V( )xt + V2( )xx + a( )x.

(22)

Because the lateral frequencies of tensioned metallic cables are much lower than the
fundamental longitudinal frequencies and in the case of long-period ground motions, the
excitation frequencies are much lower than the fundamental longitudinal frequencies,
and the longitudinal inertia of the cable in the first equation of (21) can be neglected [30].
Integrating this equation using boundary conditions u(0, t) = 0 and u(L, t) = uM(t) leads
to the following expression [9]:

ux(x, t) = e(t; τ)− v2
x(x, t)

2
, (23)

where e(t; τ) represents the averaged over the length quasi-static axial strain in the rope
expressed by:

e(t; τ) =
uM(t)
L(τ)

+
1

2L(τ)

∫ L

0
v2

x(x, t)dx. (24)

This results in reducing the dynamic model described by Equation (21) to three equations of
motion. The change of L(t) over a period T0 corresponding to the fundamental frequency
of the system f0 is small in comparison to the total length of the cable [31,32], therefore
the slow time scale is defined as τ = εt. The small parameter ε << 1 is expressed by the
equation ε = L̇(t0)/ f0L0 [33], where t0 denotes a given time instant corresponding to f0
and L0 = L(t0).
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2.3. Base Excitation and the Nonlinear Response of the Cable-Mass-Spring System

The earthquake leads to the base motion excitation. As a result, the sway of the
structure can be observed that causes the bending deformations of the host structure,
which is treated as a cantilever beam. In the resonance region, they can be described

approximately by the polynomial shape function Ψ(η) = 3η2 − 2η3, where η =
z

Z0
. In this

consideration, it is assumed that the impact of the cable system vibrations on the structural
response can be neglected.

The time dependent overall lateral displacements of the cable-mass system can be
expressed by the equation:

v(x, t) = v̄(x, t) + s0(t) +
(

1 +
ΨL − 1

L(τ)
x
)

w̄0(t), (25)

where ΨL and w̄0(t) are adopted in the form:

ΨL = Ψ
(

Z0 − L(τ)
Z0

)
and w̄0(t) = w̄(Z0, t). (26)

The relative lateral displacements can be described by the finite series as:

v̄(x, t; τ) =
N

∑
n=1

Φn[x; L(τ)]qn(t), (27)

with orthogonal trial functions expressed by the formula Φn[x, L(τ)] = sin[σn(L(τ))x],
n = 1, 2, . . . , N where N denotes the number of considered modes. The qn describes the
generalized coordinates that correspond to the lateral motions of the cable system. The
eigenvalues σn(τ) are slow varying and can be defined by the equations:(
k− M

m
TMσ2

n

)
sin(σnL) + TMσncos(σnL) = 0, TM ≡ Ti(L) = (M + mL)(g− a). (28)

Using Equations (25) and (27) in the reduced system of Equation (21) leads to the differential
equations in the form [9]:

q̈r + 2ζ̃rω̃r q̇r +
N

∑
n=1

Crn q̇n + ω̃2
r qr +

N

∑
i=1

[
Krn +

EA
m̃r

(
ΨL − 1

L
w̄0

)2( 1
L

Arn −
1
2

Γrn

)]
qn +

EA
m̃rL

ΨL − 1
L

αrw̄0uM

=
EA
m̃rL

[ N

∑
n=1

ΓrnqnuM +
1
2

ΨL − 1
L

w̄0

N

∑
i=1

N

∑
j=1

(2αiΓrj − αrκij)qiqj +
1
2

N

∑
i=1

N

∑
j=1

N

∑
k=1

Γrkκijqiqjqk

]
+ Q̃r(t; τ), (29)

üM + 2ζMωMu̇M + ω2
MuM +

EA
ML

ΨL − 1
L

w̄0

N

∑
n=1

αnqn = −1
2

EA
ML

N

∑
i=1

N

∑
j=1

κijqiqj −
EA
2M

(
ΨL − 1

L
w̄0

)2

,

where the symbols ζ̃r and ζM denote the damping ratios for the cable lateral mode and
for the mass longitudinal mode, respectively. The particular expressions included in
Equation (29) are defined by:
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ω̃2
r = σ2

r
T
m ; αr = Φr(L); m̃r = m

∫ L
0 Φ2

r dx + Mα2
r ; Arn = αrαn;

Krn = m
m̃r

[
gΨrn + [V2 − L(g− a)]γrn + (g− a)Θrn

]
; Crn = 2 m

m̃r
VΨrn +

1
m̃r

cArn;

Θrn =
∫ L

0 xΦ”
nΦrdx; Ψrn =

∫ L
0 Φ

′
nΦrdx; Υrn =

∫ L
0 Φ”

nΦrdx; κij =
∫ L

0 Φ
′
iΦ
′
jdx; Γrn = Υrn − αrΦ

′
n(L);

Q̃r(t; τ) = 1
m̃r

{
− (mχr + Mαr)s̈0 −

[
m
(

χr +
ΨL−1

L Πr

)
+ MΨLαr

]
¨̄w0 − 2mV ΨL−1

L(τ) χr ˙̄w0+

−ΨL−1
L(τ) (mgχr + TMαr)w̄0 − EA

2 αr

(
ΨL−1
L(τ) w̄0

)3}
;

χr =
∫ L

0 Φrdx; Πr =
∫ L

0 xΦrdx.

(30)

To describe the system’s behavior in the resonance region, a single-mode approxima-
tion for r-th mode with displacements assumed in the form presented by Equation (27) can
be considered. Then, the equations of motion are obtained as:

q̈r + c̃r q̇r + ω̃2
r qr + k̃rqr −

EA
m̃r

ē
[

Γrrqn −
ΨL − 1

L
αrw̄0

]
= − 1

m̃r

{
(mχr + Mαr)s̈0

+

[
m
(

χr +
ΨL − 1

L
Πr

)
+ MΨLαr

]
¨̄w0 + 2mV

ΨL − 1
L(τ)

χr ˙̄w0 +
ΨL − 1

L(τ)
(mgχr + TMαr)w̄0

}
, (31)

üM + 2ζMωMu̇M +
EA
M

ē = 0,

where

c̃r = 2ζ̃rω̃r + 2
m
m̃r

VΨrr +
1

m̃r
cα2

r ;

k̃r =
m
m̃r

[
gΨrr + [V2 − L(g− a)]γrr + (g− a)Θrr

]
; (32)

ē =
uM(t)
L(τ)

+
1

2L
κrr(τ)q2

r (t) +
ΨL − 1
L2(τ)

w̄0αr(τ)qr(t) +
1
2

(
ΨL − 1

L(τ)

)2

w̄2
0(t);

ωM =

√
EA
ML

.

2.4. Stochastic Modelling of the Ground Motion Due to an Earthquake

The structure, due to an earthquake, is subjected to a base motion so(t), which is
represented as (see Figure 2):

so(t) = G(t) + R(t), (33)

where G(t) is the ground motion relative to the bedrock and R(t) is the absolute motion
of the bedrock. Between the bedrock and the ground surface there is a layer of soil. The
properties of the soil layer are idealized as a single-degree-of-freedom system with the mass
msoil , stiffness coefficient ksoil = ω2

s msoil and the damping coefficient csoil = 2ζsωsmsoil .
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Figure 2. An idealized model of building with stochastic ground motion.

In the model presented in Figure 2 subscript r and corresponding modal mass mr,
given as:

mr =
∫ Z0

0
ms(z)W2

r (z)dz, (34)

refer to the fundamental mode of the structure, where ms denotes the linear mass density
of the structure. Using the approximations given by the equation:

ms(z) ≈ m̃s = const, (35)

and considering the response of the structure in the fundamental resonance, the fundamen-
tal modal shape function is expressed by the polynomial shape function Wr(z) ≈ Ψ(η).
The modal mode approach leads to the formula (see Equation (13)):

p̈r(t) + 2ζrωr ṗr(t) + ω2
r pr(t) = −s̈0(t)

m̃s

mr

∫ Z0

0
Ψ(η)dz, (36)

therefore, the displacements at the top end of the structure are defined as w̄(Z0, t) =
w̄0(t) = pr(t) and consequently ˙̄w0(t) = ṗr(t), ¨̄w0(t) = p̈r(t). The model shown in
Figure 2 represents a 2DOF system, where the ground motion is coupled with motion of
the building structure and is as follows:

msoil s̈0 + csoil(ṡ0 − Ṙ)− cr(ẇ0 − ṡ0) + ksoil(s0 − R)− kr(w0 − s0) = 0. (37)

Noting that w0 = w̄0(t) + s0 = pr + s0 and s0 = R + G we obtain:

msoil(R̈ + G̈) + csoilĠ− cr ṗr + ksoilG− kr pr = 0. (38)

Dividing both sides of the Equation (37) by msoil leads to the following formula:

G̈ +
csoil
msoil

Ġ− cr

msoil
ṗr +

ksoil
msoil

G− kr

msoil
pr = −R̈. (39)



Materials 2021, 14, 6858 10 of 24

If we assume that the ground motion is not influenced by the building structure we get:

G̈ +
csoil
msoil

Ġ +
ksoil
msoil

G = −R̈. (40)

Noting that csoil
msoil

= 2ζsωs and ksoil
msoil

= ω2
s the Equation (40) is transformed to the follow-

ing form:

G̈(t) + 2ζsωsĠ(t) + ω2
s G(t) = −R̈(t). (41)

The negative acceleration −R̈(t) of the bedrock is assumed as a Gaussian white noise
ξ(t), hence:

G̈(t) + 2ζsωsĠ(t) + ω2
s G(t) =

√
2πPξ(t). (42)

Stochastic differential equations governing the state vector G = [G1, G2]
T are:

dG1(t) = G2(t)dt,

dG2(t) = −2ζsωsG2dt−ω2
s G1dt +

√
2πPdW(t), (43)

where W(t) is a Wiener process and P is the constant spectral density of the white noise
process ξ(t). The state vector G must be appended to the state vector of the dynamic
system and in the equations of motion the following replacement must be done:

− s̈0(t) = ω2
s G1 + 2ζsωsG2. (44)

Using Equation (36) together with the Equation (44) in Equation (31) leads to a set of
equations of motion given by:

q̈r + c̃r q̇r + ω̃2
r qr + k̃rqr −

EA
m̃r

ē
[

Γrrqn −
ΨL − 1

L
αr pr

]
= − 1

m̃r

{
− (mχr + Mαr)(ω

2
s G1 + 2ζsωsG2)

+

[
m
(

χr +
ΨL − 1

L
Πr

)
+ MΨLαr

](
− 2ζrωr ṗr(t)−ω2

r pr(t) + (ω2
s G1 + 2ζsωsG2)

m̃s

mr

∫ Z0

0
Ψ(η)dz

)
(45)

+2mV
ΨL − 1

L(τ)
χr ṗr +

ΨL − 1
L(τ)

(mgχr + TMαr)pr

}
;

üM + 2ζMωMu̇M +
EA
M

ē = 0.

2.5. Equivalent Linearization Technique Implementation

Converting the second-order differential equations to the first order differential ones
is performed by using the following expression:

dY(t) = c(Y(t), t)dt + d(t)dW(t), (46)

where W(t) denotes the standard Wiener process, c(Y(t), t) is the drift vector and d(t)
means the diffusion vector. The augmented state vector Y(t) is defined by:

Y(t) = [ qr(t) q̇r(t) pr(t) ṗr(t) uM(t) u̇M(t) G1(t) G2(t) ]T. (47)

The particular elements of drift vector are expressed as:
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c1(Y(t)) = q̇r(t);

c2(Y(t)) = −c̃r q̇r(t)− ω̃2
r qr(t)− k̃rqr(t) +

EA
m̃r

ē(τ; t)
[

Γrrqn(t)−
ΨL − 1

L(τ)
αr(τ)pr(t)

]
− 1

m̃r

{
− (mχr + Mαr(τ))(ω

2
s G1(t) + 2ζsωsG2(t)) +

[
m
(

χr +
ΨL − 1

L(τ)
Πr

)
+ MΨLαr(τ)

]
×
(
− 2ζrωr ṗr(t)−ω2

r pr(t) + (ω2
s G1(t) + 2ζsωsG2(t))

m̃s

mr

∫ Z0

0
Ψ(η)dz

)
+2mV

ΨL − 1
L(τ)

χr ṗr(t) +
ΨL − 1

L(τ)
(mgχr + TMαr(τ))pr(t)

}
;

c3(Y(t)) = ṗr(t); (48)

c4(Y(t)) = −2ζrωr ṗr(t)−ω2
r pr(t) + (ω2

s G1(t) + 2ζsωsG2(t))
m̃s

mr

∫ Z0

0
Ψ(η)dz;

c5(Y(t)) = u̇M(t);

c6(Y(t)) = −2ζMωMu̇M(t)− EA
M

ē(τ; t);

c7(Y(t)) = G2(t);

c8(Y(t)) = −2ζsωsG2(t)−ω2
s G1(t).

The augmented state vector transformation to the centralized state vector is required
to convert the original nonlinear set of differential equation into the linear one by using the
equivalent linearization technique. The centralized state vector is defined as:

Y0(t) = [ Y0
1 (t) Y0

2 (t) Y0
3 (t) Y0

4 (t) Y0
5 (t) Y0

6 (t) Y0
7 (t) Y0

8 (t) ]T, (49)

where

Y0
1 (t) = qr(t)− µqr (t); Y0

2 (t) = q̇r(t)− µq̇r (t); Y0
3 (t) = pr(t)− µpr (t); Y0

4 (t) = ṗr(t)− µ ṗr (t);

Y0
5 (t) = uM(t)− µuM (t); Y0

6 (t) = u̇M(t)− µu̇M (t); Y0
7 (t) = G1(t)− µG1 (t); Y0

8 (t) = G2(t)− µG2 (t).

The differential equations for the mean values are given by:

d
dt

µ(t) = E[c(Y0(t)], where µ(t) = E[Y(t)]. (50)

Using the centralized state vector leads to the stochastic equation in the following form:

dY0(t) = c0(Y0(t), t)dt + d(t)dW(t), (51)

where the centralized drift vector c0(Y0(t), t) is expressed by:

c0(Y0(t), t) = c(Y0(t), t)− E[c(Y0(t), t)] (52)

and diffusion vector, independent of the state vector, is defined as:

d(t) = [ 0 0 0 0 0 0 0
√

2πP ]T. (53)

The particular elements of vector c0(Y0(t), t) are given by the following formulae:
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c0
1(Y

0(t)) = Y0
2 (t),

c0
2(Y

0(t)) = −c̃rY0
2 (t)− ω̃2

r Y0
1 (t)− k̃rY0

1 (t)

+
EA
m̃r

Γrr

L(τ)

(
Y0

1 (t)Y
0
5 (t) + Y0

1 (t)E[uM] + Y0
5 (t)E[qr]− E[Y0

1 (t)Y
0
5 (t)]

)
+

3EA
2m̃rL(τ)

Γrrκrr(τ)

(
1
3
(Y0

1 (t))
3 + Y0

1 (t)
2E[qr] + Y0

1 (t)E[qr]
2 − E[Y0

1 (t)
2]E[qr]− E[Y0

1 (t)]E[qr]
2
)

+
EA
m̃r

ΨL − 1
L2(τ)

αr(τ)(Γrr −
1
2

κrr(τ))

(
(Y0

1 (t))
2Y0

3 (t) + 2Y0
1 (t)Y

0
3 (t)E[qr] + Y0

3 (t)(E[qr])
2

+(Y0
1 (t))

2E[pr(t)] + 2Y0
1 (t)E[qr]E[pr(t)]− 2E[Y0

1 (t)Y
0
3 (t)]E[qr]− E[(Y0

1 (t))
2]E[pr(t)]

)
+

EA
m̃r

(
ΨL − 1

L(τ)

)2(1
2

Γrr −
α2

r (τ)

L

)(
(Y0

3 (t))
2Y0

1 (t) + (Y0
3 (t))

2E[qr] + 2Y0
3 (t)Y

0
1 (t)E[pr]

+2Y0
3 (t)E[pr]E[qr] + Y0

1 (t)(E[pr])
2 − E[(Y0

3 (t))
2]E[qr]− 2E[Y0

3 (t)Y
0
1 (t)]E[pr]

)
−EA

m̃r

ΨL − 1
L2(τ)

αr(τ)(Y0
3 (t)Y

0
5 (t) + Y0

3 (t)E[uM(t)] + Y0
5 (t)E[pr]− E[Y0

3 (t)Y
0
5 (t)])

−EA
m̃r

3
2

(
ΨL − 1

L(τ)

)3

αr(τ)(
1
3
(Y0

3 (t))
3 + (Y0

3 (t))
2E[pr] + Y0

3 (t)(E[pr])
2 − E[(Y0

3 (t))
2]E[pr])

− 1
m̃r

{
− (mχr + Mαr(τ))

[
ω2

s Y0
7 (t) + 2ζsωsY0

8 (t)
]
+

[
m
(

χr +
ΨL − 1

L(τ)
Πr

)
+ MΨLαr(τ)

]
(54)

×
(
− 2ζrωrY0

4 (t)−ω2
r Y0

3 (t) +
(

ω2
s Y0

7 (t) + 2ζsωsY0
8 (t)

)
m̃s

mr

∫ Z0

0
Ψ(η)dz

)
+2mV

ΨL − 1
L(τ)

χrY0
4 (t) +

ΨL − 1
L(τ)

(mgχr + TMαr(τ)Y0
3 (t)

}
,

c0
3(Y

0(t)) = Y0
4 (t),

c0
4(Y

0(t)) = −2ζrωrY0
4 (t)−ω2

r Y0
3 (t) + (ω2

s Y0
7 (t) + 2ζsωsY0

8 (t))
m̃s

mr

∫ Z0

0
Ψ(η)dz,

c0
5(Y

0(t)) = Y0
6 (t),

c0
6(Y

0(t)) = −2ζMωMY0
6 (t)−

EA
M

1
L(τ)

Y0
5 (t)−

EA
M

1
2L(τ)

κrr(τ)((Y0
1 (t))

2 + 2Y0
1 (t)E[qr]− E[(Y0

1 (t))
2])

−EA
M

ΨL − 1
L2(τ)

αr(τ)(Y0
1 (t)Y

0
3 (t) + Y0

3 (t)E[qr] + Y0
1 (t)E[pr]− E[Y0

1 (t)Y
0
3 (t)])

−EA
M

1
2

(
ΨL − 1

L(τ)

)2

((Y0
3 (t))

2 + 2Y0
3 (t)E[pr]− E[(Y0

3 (t))
2]),

c0
7(Y

0(t)) = Y0
8 (t),

c0
8(Y

0(t)) = −2ζsωsY0
8 (t)−ω2

s Y0
7 (t).

In further considerations, the original nonlinear system described by Equation (46) is
replaced by the linear one expressed by:

dY0(t) = BY0(t)dt + d(t)dW(t). (55)

The centralized drift terms are defined as a linear function of the state variables:

c0
i,eq(Y

0(t)) = BimY0
m, (56)
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and equivalent coefficients Bim, determined from the condition of mean-square minimiza-
tions the difference between the Equations (51) and (55), are obtained as:

Bimκmj = E[Y0
j c0

i (Y
0)], (57)

or in matrix form:

Bκ(t) = E[c0(Y0(t))Y0T
]. (58)

The centralized state variables Y0 are jointly Gaussian distributed, therefore in further
consideration, the relationship for zero-mean Gaussian random vector X, given by [34],
is used:

E[X f (X)] = E[XXT]E[∇ f (X)], (59)

where non-linear function is denoted by f (X) while∇ is given by the following expression

∇ =

[
∂

∂X1
, ∂

∂X2
, . . . , ∂

∂Xn

]T

. Using Equation (57) in transposed form of Equation (56) leads

to the formula:

κ(t)BT = κ(t)E[∇c0T
(Y0(t))]. (60)

Equation (60) describes the components of matrix B as:

BT = E[∇c0T
(Y0(t))]. (61)

The result of applying Equation (61) to the elements of the centralized drift vector defined
by the Equation (54) is matrix B obtained as:

B =



0 1 0 0 0 0 0 0

b(1)r −c̃r b(2)r b(3)r b(4)r 0 ω2
s

m̃r
b(5)r

2ζsωs
m̃r

b(5)r
0 0 0 1 0 0 0 0
0 0 −ω2

r −2ζrωr 0 0 ω2
s b(6)r 2ζsωsb(6)r

0 0 0 0 0 1 0 0
b(7)r 0 b(8)r 0 − EA

ML(τ) −2ζMωM 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −ω2

s −2ζsωs,


where the particular terms are given by:

b(1)r = −ω̃2
r − k̃r +

EA
m̃r

{
Γrr

L(τ)
E[uM] +

3
2L(τ)

Γrrκrr(τ)

(
E[(Y0

1 (t))
2] + E[qr]

2
)

+
ΨL − 1
L2(τ)

2αr(τ)(Γrr −
1
2

κrr(τ))

(
(E[Y0

1 (t))Y
0
3 (t)] + E[qr]E[pr(t)]

)
+

(
ΨL − 1

L(τ)

)2(1
2

Γrr −
α2

r (τ)

L

)(
(E[Y0

3 (t))
2] + (E[pr])

2
)}

,
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b(2)r =
EA
m̃r

{
ΨL − 1
L2(τ)

αr(τ)(Γrr −
1
2

κrr(τ))

(
(E[Y0

1 (t))
2] + (E[qr])

2
)

+2
(

ΨL − 1
L(τ)

)2(1
2

Γrr −
α2

r (τ)

L

)(
E[Y0

1 (t)Y
0
3 (t)] + E[qr]E[pr]

)
−ΨL − 1

L2(τ)
αr(τ)(E[uM(t)])− 3

2

(
ΨL − 1

L(τ)

)3

αr(τ)(E[(Y0
3 (t))

2] + (E[pr])
2)

}
+

1
m̃r

{[
m
(

χr +
ΨL − 1

L(τ)
Πr

)
+ MΨLαr(τ)

]
ω2

r −
ΨL − 1

L(τ)
(mgχr + TMαr(τ))

}
,

b(3)r =
2ζrωr

m̃r

[
m
(

χr +
ΨL − 1

L(τ)
Πr

)
+ MΨLαr(τ)

]
− 1

m̃r
2mV

ΨL − 1
L(τ)

χr,

b(4)r =
EA
m̃r

(
Γrr

L(τ)
E[qr]−

ΨL − 1
L2(τ)

αr(τ)E[pr]

)
,

b(5)r =

{
mχr + Mαr(τ)−

[
m
(

χr +
ΨL − 1

L(τ)
Πr

)
+ MΨLαr(τ)

]
m̃s

mr

∫ Z0

0
Ψ(η)dz

}
,

b(6)r =
m̃s

mr

∫ Z0

0
Ψ(η)dz,

b(7)r = −EA
M

(
1

L(τ)
κrr(τ)E[qr] +

ΨL − 1
L2(τ)

αr(τ)E[pr]

)
,

b(8)r = −EA
M

(
ΨL − 1
L2(τ)

αr(τ)E[qr] +

(
ΨL − 1

L(τ)

)2

E[pr]

)
.

To obtain variances and covariances of particular random state variables the following
set of differential equations for covariance matrix RY0Y0 = E[Y0Y0T

] should be solved.

d
dt

RY0Y0 = BRY0Y0 + RY0Y0 BT + ddT, (62)

together with the differential equations for mean values defined by the Equation (50). As a
result the set of 44 differential equations is obtained that can be solved numerically.

3. Numerical Results and Discussion
3.1. Main Assumption for Numerical Calculation

In the simulation study and analysis, the case of the lift moving downwards from
the building’s top to the base level is considered (see Figure 1a). The main mass of the lift
car is assumed to be M = 3600 kg and it is attached at the lower end of the cable system
comprising nr = 6 wire ropes (compare Figure 1c). For every rope, the mass per unit length
is equal to m = 0.872 kg/m, while the longitudinal stiffness is EA = 22.889 MN. The
values of the transport speed and acceleration taken into consideration are V = 2.5 m/s
and a = 1 m/s2, respectively. The total height of the host structure and the initial length
of the cable are adopted as Z0 = 258.66 m and L0 = 58.66 m. That brings the value of
the travel height H = 200 m. The horizontal displacement of main mass is constrained
by spring-viscous damping element with the stiffness k = 66.689 kN/m and damping
coefficient c = 9.297 kNs/m. The natural frequency of the main mass is estimated as
ω̄M =

√
k/M = 4.3043 rad/s, which brings to f̄M = 0.685 Hz, while the fundamental

longitudinal natural frequency is defined as ωM =
√

EA/ML. In this case study, the fun-
damental mode of the cable-mass system has been used in the single-mode approximation.
The damping ratio for the cable lateral mode, the structure damping ratio and damping
ratio for the mass lateral and longitudinal mode are assumed as ζ̃r = 0.003, ζr = 0.025 and
ζM = 0.3, respectively.
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3.2. Nonlinear Results under Harmonic Excitation via Equivalent Linearization Technique

In nonlinear computation, the ground motion s0(t) is assumed in the form of harmonic
motion defined by the equation s0(t) = Agsin(Ωgt) where the excitation frequency is
adopted as Ωg = 0.68 Hz, which is related to the main mass natural frequency. The
acceleration magnitude is equal s̈0 = 0.1 m/s2. Therefore, the amplitude of the ground
motion is obtained as Ag = s̈0/Ω2

g = 0.0055 m. Using Equation (13) and assuming that

ms(z) ≈ m̃s = const and mr = m̃s
∫ Z0

0 Ψ2(z)dz the building response can be described by
the formula:

pr(t) = pr(max)sin(Ωgt− ε), where ε = tan−1
(

2ζrr
1− r2

)
. (63)

For r = 1 the phase angle ε→ π
2 . The amplitude at the top of the building is given by:

pr(max) =
Ag
∫ Z0

0 Ψ(z)dz∫ Z0
0 Ψ2(z)dz

(R)2 1√
(1− R2)2 + 4ζ2

r R2
, (64)

where R =
Ωg
ωr

. In the resonance region, R→ 1, and then Equation (64) is reduced to the
following form:

pr(max) =
Ag
∫ Z0

0 Ψ(z)dz∫ Z0
0 Ψ2(z)dz

1
2ζr

. (65)

That gives a result of maximum displacement at the top of the structure with a value
of 0.15 m. The system of differential equations defined by Equation (31) is then solved
numerically by using the 4th–5th order Runge-Kutta algorithm. Time-average of the square
of s̈0 as the harmonic process is equal.

〈s̈0(t)〉 = A2
gΩ4

g/2. (66)

In the stochastic approach, the ground motion is given by the Equation (44) together
with Equation (43). To compare the results obtained from nonlinear solution under har-
monic excitation with the expected values obtained by equivalent linearization technique
the variance of the stochastic process s̈0(t), that is given by the following equation:

Var(s̈0) = ω2
s Var(G1) + (2ζsωs)

2Var(G2), (67)

should be compared with the time-average 〈s̈0(t)〉. The form of Equation (67) results
from the fact that G1 and G2 are uncorrelated. In the steady-state, the variance is written
as follows:

Var(s̈0) = ωs
πP
2ζs

+ 2ζsωsπP. (68)

A comparison of the right hand sides of Equations (66) and (68) leads to the quadratic
equation whose discriminant is given by the formula:

∆ =
A4

gΩ8
g

4
− 4ω2

s π2P2. (69)
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To satisfy the condition of positive values of quadratic discriminant, the constant spectral
density should fulfill the following expression:

P ≤
A2

gΩ4
g

4ωsπ
. (70)

For selected values of P the damping coefficients are defined by the formula:

ζs1,2 =
A2

gΩ4
g ±

√
A4

gΩ8
g − 16π2P2ω2

s

8πPωs
. (71)

Therefore, the highest value of P that was taken to the analysis, corresponding to the main
data and Equation (70), was 1.87 × 10−4 m2/s3, for which ζs1 = 0.54 and ζs2 = 0.45 were
obtained. The equivalent linearization technique was conducted for different values of
P and ζs, that satisfies the Equations (70) and (71), to observe the influence of adopted P
and ζs on the results of expected values (Figure 3) and variances (Figure 4) of particular
random state variables. However, for the clarity of presentation only some of them were
presented in the paper. Of course, in one process, the value P and one of the corresponding
damping coefficients ζs1 or ζs2 can be considered. The damping coefficient values greater
than 1 were omitted in the analysis in advance.

The comparison of the results obtained by non-linear solution under harmonic exci-
tation and by an equivalent linearization technique conducted for Gaussian white noise
excitation is presented in Figure 3. The total time that is needed for the lift car to travel from
the top of the building to the base floor level at the transport speed specified above is about
82 s. However, for the clarity of the presentation, some diagrams presented in Figures 3–7
show the selected parts of the motion. In Figure 3 it can be seen that the expected values
of the generalized coordinates E[qr] and vertical displacements of the main mass E[uM]
are the same for every case of values P and ζs that were taken into consideration during
the analysis. Additionally, the expected values obtained from the equivalent linearization
technique are comparable with the deterministic results received under harmonic excita-
tion. The diagrams of the variances for the particular random state variables presented
in Figure 4 show that the lower the value of the damping ζs is taken into the analysis the
higher value of the variance is obtained, which seems to be obvious. Some deviations from
this rule can be noticed in the initial phase of the motion.

3.3. Verification Using Monte Carlo Simulation

In this section, the results obtained by equivalent linearization technique are compared
with the values received from the Monte Carlo Simulation, which was conducted by using
1000 simulations for the different time steps ∆t. The set of differential equations that was
solved numerically in Monte Carlo simulation by using the 4th–5th Runge-Kutta algorithm
is defined by the Equation (45) together with Equations (42) and (36). The most important
part in these computation is the correct generation of the white noise process with the
zero mean values. Many programs for generating of random variables with the normal
distribution and assumed mean value can be found and used in the numerical analysis.
The question arises what value of the standard deviation of the white noise excitation
process should be assumed in the Monte Carlo simulation in order to be able to compare
the results with those obtained by equivalent linearization technique. In many papers
information can be found that the Monte Carlo Simulation results depend on the value of
the time step ∆t taken into the analysis in such a way that, the smaller the step value, the
lower the variance. In practice if the value of the standard deviation σ = 1 of the white
noise excitation process is assumed in the Monte Carlo Simulation the different results of
variances of the same variable for different time steps can be observed. It can be seen then
that the shape of the lines is similar but the order of magnitude is completely different. So
the incorrect assumption of the standard deviation value can lead to misinterpretation of
the final results.
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As is well known, the differential increment of the Wiener process W(t) may be
represented as:

dW(t) = Z
√

dt, (72)

where Z is the zero-mean Gaussian random variable. Hence, the Gaussian white noise
process ξ(t), which is the generalized derivative of the Wiener process, is represented as:

ξ(t) =
dW
dt

=
1√
dt

Z. (73)

It means that, to make the results of the Monte Carlo simulations independent of the value
of the time step ∆t, the generated value of the variable Z must be divided by

√
∆t.

(a)

(b)

Figure 3. Comparison of the nonlinear results under harmonic excitation with the expected values obtained by equivalent
linearization technique: (a) Generalized coordinates; (b) Vertical displacements of main mass.
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Figure 4. Variances of particular random state variables obtained by the equivalent linearization technique for different
values of P and ζs.
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Figure 5. Comparison of the expected values of selected random state variables obtained for P = 1.87 × 10−4 and ζs = 0.54.
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Figure 6. Comparison of the variances of selected random state variables obtained for P = 1.87 × 10−4 and ζs = 0.54.
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Figure 7. Selected details of the variances of particular random state variables obtained for P = 1.87 × 10−4 and ζs = 0.54.
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In the Monte Carlo simulation conducted in this work, the standard deviation of
the Gaussian white noise process is assumed according to Equation (73) with the value
σ = 1/

√
∆t. This leads to the variances that are comparable for every time step ∆t. During

the analysis, the Monte Carlo simulation was made for different values of P and ζs and
the behavior of the system is similar in each case. Therefore, in this article only results
for P = 1.87 × 10−4 m2/s3 and ζs = 0.54 that are presented in Figures 5–7 are discussed.
Figure 5 shows that the expected values of particular random state variables are almost
the same in both methods. The only differences can be seen in case of E[G(t)] where in
equivalent linearization technique a solid line with the value 0 is observed while in the
case of the Monte Carlo simulation, the results oscillate around zero, because they depend
on the Gaussian white noise process, which is generated as a sequence of random variables.
From Equations (42) and (43) governing the process G(t) it follows that the exact mean
value E[G(t)] = 0. Since these equations are just appended to the dynamic system and are
linear, the equivalent linearization technique yields exact mean value.

In Figure 6, good matches between the variances obtained from the simulations with
those obtained by the equivalent linearization technique can be seen. These results were
obtained for ∆t = 0.05 s and only in the transient part of the motion can some differences
between both methods be observed. Therefore, Figure 7 shows the variances obtained
for the first 10 s of the motion, to depict that if smaller ∆t is taken for the Monte Carlo
simulation then better matches between the diagrams from both methods can be observed.
Additionally, adopting ∆t = 0.01 s allows us to avoid disturbances in first second of
the motion that for the bigger values of time steps lead to incorrect results of Var[G(t)]
which are made by inaccuracies due to numerical analysis. On the other hand, the fivefold
reduction of ∆t brings multiple increase of the time that is needed to conduct the Monte
Carlo simulation. What is worth mentioning the equivalent linearization technique is not
so sensitive for time step variation because obtained results are very similar for different
∆t. Only a significant increase in the time step above quarter of fundamental period of
the motion causes disturbances in the obtained values. This remark is important from the
point of view of the time that is needed to conduct the computations.

It can be noticed that the values of the variances of particular random state variables
depend on the response of the system. As it can be seen in Figure 5 the results of expected
values in case of generalized coordinates of cable-mass system E[qr] reach the highest
values. On the second position are expected values of generalized coordinates of structure
E[pr]. Much lower values can be observed in the case of E[uM] and the lowest for E[G(t)].
The same regularity can be observed in the diagrams of the variances of particular random
state variables (compare Figure 6). In case of Var[qr] the obtained results reach the most
significant values, for Var[pr] the results are smaller in comparison to the first one, while
the smallest values can be observed in the case of Var[G(t)].

Figures 5–7 present good matches between the diagrams obtained by Monte Carlo
simulation and equivalent linearization technique, which show that the proposed linearized
model is adequate. It leads to the conclusion that the equivalent linearization technique can
be successfully used to obtain the mean values and variances of particular random state
variables. The most important advantage of this solution is the much lower time needed to
obtain results. For example, for small time steps like ∆t = 0.01 s, the total time to conduct
the Monte Carlo simulation is several hundred times longer in comparison to the equivalent
linearization technique. The application of the proposed method in the computer codes
leads to a procedure that can be easy adapted to objects with different parameters.

4. Conclusions

Earthquakes lead to motions of the building base that cause bending deformations
of the host structure. This results in vibrations of the top of the building, which cause the
excitation of the steel wire cables and ropes inside the lift installation. In the resonance
region, the amplitude of the vibration increases significantly. This can cause failure of the
lift, excessive fatigue of steel wires and damage of the rope. Lifts are pivotal components of
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the building infrastructure and to prevent damage/ failure to the installation their behavior
needs to be thoroughly investigated. Because the nature of earthquakes is nondeterministic
it should be considered by using the stochastic method.

The results presented in this paper show that the proposed model of earthquake
excitation represented as a filtered Gaussian stochastic process can be used to replace an
idealized deterministic harmonic one. The equivalent linearization technique leads to the
replacement of the original non-linear system governed by differential equations with an
equivalent linear one governed by differential equations whose coefficients are expressed
in terms of expectations of the non-linear functions of the response process. It allows us
to obtain mean values, variances and covariances of particular random state variables,
which gives a better view of an earthquake’s influence on the behavior of the entire system.
This information is very important for the design process. The presented procedure can
be easy implemented in computer codes by using numerical techniques. In this approach,
the important factor is that the time needed to obtain the results by using the equivalent
linearization technique is much lower compared to that for other statistical methods.

Author Contributions: Conceptualization, S.K. and R.I.; methodology, H.W., S.K. and R.I.; valida-
tion, H.W.; formal analysis, H.W.; investigation, H.W.; writing—original draft preparation, H.W.;
writing—review and editing, H.W., S.K. and R.I.; supervision, S.K. and R.I. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was carried out as a part of the project UPB- 503-12-088-05/4 (supported by
West Pomeranian University of Technology in Szczecin, Poland).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interests.

References
1. Hu, R.P.; Xu, Y.L. SHM-Based Seismic Performance Assessment of High-Rise Buildings under Long-Period Ground Motion.

J. Struct. Eng. 2019, 145, 04019038. [CrossRef]
2. Zhou, Y.; Xing, L.; Zhou, G. Spectrum Analysis-Based Model for the Optimal Outrigger Location of High-Rise Buildings. J. Earthq.

Eng. 2021, 25, 2406–2431. [CrossRef]
3. Strakosch, G.R. The Vertical Transportation Handbook; John Wiley: New York, NY, USA, 1998.
4. Kaczmarczyk, S.; Iwankiewicz, R.; Terumichi, Y. The dynamic behavior of nonstationary elevator compensating rope system

under harmonic and stochastic excitation J. Phys. Conf. Ser. 2009, 181, 12–47. [CrossRef]
5. Suarez, L.E.; Singh, M.P. Review of Earthquake Performance, Seismic Codes, and Dynamic Analysis of Elevators. Earthq. Spectra

2000 16, 853–878. [CrossRef]
6. Singh, M.P. Seismic protection of counterweight—Rail in elevators in buildings. Earthq. Eng. Struct. Dyn. 2006, 35, 385–394.
7. Segal, F.; Rutenberg, A.; Levy, R. Earthquake Response of Structure-Elevator System. J. Struct. Eng.1996, 122, 607–616. [CrossRef]
8. Hu, R.P.; Xu, Y.L.; Zhao, X. Long-period ground motion simulation and its impact on seismic response of high-rise buildings.

J. Earthq. Eng. 2017, 22, 1285–1315. [CrossRef]
9. Kaczmarczyk, S. The modeling and prediction of dynamic responses of slender continua deployed in tall structures under

long-period seismic excitations. J. Phys. Conf. Ser. 2018, 1048, 012005. [CrossRef]
10. Kaczmarczyk, S. The prediction and control of dynamic interactions between tall buildings and high-rise vertical transportation

systems subject to seismic excitations. In Proceedings of the 25th International Congress on Sound and Vibration (ICSV 25),
Hiroshima, Japan, 8–12 July 2018.

11. Terumichi, Y.; Ohtsuka, M.; Yoshizawa, M.; Fukawa, Y.; Tsujioka, Y. Nonstationary vibrations of a string with time-varying length
and a mass-spring system attached at the lower end. Nonlinear Dyn. 1997, 12, 39–55. [CrossRef]

12. Bremaud, P. Markov Chains, Gibbs Fields, Monte Carlo Simulation and Queues; Springer: New York, NY, USA, 1999.
13. Spanos, P.D.; Zeldin, B.A. Monte Carlo treatment of random fields: A broad perspective. Appl. Mech. Rev. 1998, 51, 219–237.

[CrossRef]
14. Hurtado, J.; Barbat, H. Monte Carlo techniques in computational stochastic mechanics. Archiv. Comput. Methods Eng. 1998 5, 3–30.

[CrossRef]
15. Spanos, P.D. Stochastic linearization in Structural Dynamics. Appl. Mech. Rev. 1981, 34, 1–8.

http://doi.org/10.1061/(ASCE)ST.1943-541X.0002323
http://dx.doi.org/10.1080/13632469.2019.1622610
http://dx.doi.org/10.1088/1742-6596/181/1/012047
http://dx.doi.org/10.1193/1.1586142
http://dx.doi.org/10.1061/(ASCE)0733-9445(1996)122:6(607)
http://dx.doi.org/10.1080/13632469.2017.1286617
http://dx.doi.org/10.1088/1742-6596/1048/1/012005
http://dx.doi.org/10.1023/A:1008224224462
http://dx.doi.org/10.1115/1.3098999
http://dx.doi.org/10.1007/BF02736747


Materials 2021, 14, 6858 24 of 24

16. Weber, H.; Kaczmarczyk, S.; Iwankiewicz, R. Non-linear dynamic response of a cable system with a tuned mass damper to
stochastic base excitation via equivalent linearization technique. Meccanica 2020 55, 2413–2422. [CrossRef]

17. Caughey, T.H. Equivalent linearization techniques. J. Acoust. Soc. Am. 1963, 35, 1706–1711. [CrossRef]
18. Roberts, J.B. Response of non-linear mechanical systems to random excitations: Part II Equivalent linearization and other methods.

Shock Vib. Dig. 1981, 13, 15–29. [CrossRef]
19. Roberts, J.B.; Spanos, P.D. Random Vibration and Statistical Linearization; John Wiley and Sons: New York, NY, USA, 1990.
20. Socha, L. Linearization Methods for Stochastic Dynamic Systems; Lecture Notes in Physics 730; Springer: Berlin/Heidelberg, Germany, 2008.
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