Parameters of Hemostasis in Sheep Implanted with Composite Scaffold Settled by Stimulated Mesenchymal Stem Cells—Evaluation of the Animal Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. BM-MSC Isolation and Stimulation with FGF-2 and BMP-2
2.3. Scaffold Fabrication and Preparation
2.4. Surgical Procedure for Scaffold Implantation (SIP)
2.5. Assessment of Hemostatic Parameters
2.6. Statistical Analysis
3. Results
Assay | 1 h before SIP (T 0) | 1 h after SIP (T 1) | 24 h after SIP (T 2) | 3 Days after SIP (T 3) | 7 Days after SIP (T 4) | Reference Range ‡ | |
---|---|---|---|---|---|---|---|
Leukocyte count (×109/L) | mean | 5.4 | 3.5 | 7.9 | 7.2 | 5.9 | 3.6–9.5 |
SD | ±1.2 | ±0.9 | ±1.1 | ±1.2 | ±1.3 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tollemar, V.; Collier, Z.J.; Mohammed, M.K.; Lee, M.J.; Ameer, G.A.; Reid, R.R. Stem cells, growth factors and scaffolds in craniofacial regenerative medicine. Genes Dis. 2016, 3, 56–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thrivikraman, G.; Athirasala, A.; Twohig, C.; Boda, S.K.; Bertassoni, L.E. Biomaterials for craniofacial bone regeneration. Dent. Clin. N. Am. 2017, 61, 835–856. [Google Scholar] [CrossRef] [PubMed]
- Gaihre, B.; Uswatta, S.; Jayasuriya, A.C. Reconstruction of craniomaxillofacial bone defects using tissue-engineering strategies with injectable and non-injectable scaffolds. J. Funct. Biomater. 2017, 8, 49. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Friis, T.; Glatt, V.; Crawford, R.; Xiao, Y. Structural properties of fracture haematoma: Current status and future clinical implications. J. Tissue Eng. Regen. Med. 2017, 11, 2864–2875. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today 2011, 14, 88–95. [Google Scholar]
- Poon, B.; Kha, T.; Tran, S.; Dass, C.R. Bone morphogenetic protein-2 and bone therapy: Successes and pitfalls. J. Pharm. Pharmacol. 2016, 68, 139–147. [Google Scholar] [CrossRef]
- Bose, S.; Roy, M.; Bandyopadhyay, A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012, 30, 546–554. [Google Scholar] [CrossRef] [Green Version]
- Ben, -S.S.; Landau, S.; Merdler, U.; Levenberg, S. Mature vessel networks in engineered tissue promote graft-host anastomosis and prevent graft thrombosis. Proc. Natl. Acad. Sci. USA 2019, 116, 2955–2960. [Google Scholar] [CrossRef] [Green Version]
- Pearce, A.I.; Richards, R.G.; Milz, S.; Schneider, E.; Pearce, S.G. Animal models for implant biomaterial research in bone: A review. Eur. Cells Mater. 2007, 13, 1–10. [Google Scholar] [CrossRef]
- Martini, L.; Fini, M.; Giavaresi, G.; Giardino, R. Sheep model in orthopedic research: A literature review. Comp. Med. 2001, 51, 292–299. [Google Scholar]
- Sartoretto, S.C.; Uzeda, M.J.; Miquel, F.B.; Nascimento, J.R. Sheep as an experimental model for biomaterial implant evaluation. Acta Ortop. Bras. 2016, 24, 262–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blair, P.; Flaumenhaft, R. Platelet α-granules: Basic biology and clinical correlates. Blood Rev. 2009, 23, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Einhorn, T.A.; Gerstenfeld, L.C. Fracture healing: Mechanisms and interventions. Nat. Rev. Rheumatol. 2015, 11, 45–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghiasi, M.S.; Chen, J.; Vaziri, A.; Rodriguez, E.K.; Nazarian, A. Bone fracture healing in mechanobiological modeling: A review of principles and methods. Bone Rep. 2017, 6, 87–100. [Google Scholar] [CrossRef]
- Opneja, A.; Kapoor, S.; Stavrou, E.X. Contribution of platelets, the coagulation and fibrinolytic systems to cutaneous wound healing. Thromb. Res. 2019, 179, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Schell, H.; Duda, G.N.; Peters, S.; Tsitsilonis, S.; Johnson, K.A.; Schmidt-Bleek, K. The haematoma and its role in bone healing. J. Exp. Orthop. 2017, 4, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiu, H.T.; Leung, P.C.; Ko, C.H. The roles of cellular and molecular components of a hematoma at early stage of bone healing. J. Tissue Eng. Regen. Med. 2018, 12, e1911–e1925. [Google Scholar] [CrossRef] [PubMed]
- Yuasa, M.; Mignemi, N.A.; Nyman, J.S.; Duvall, C.L.; Schwartz, H.S.; Okawa, A.; Yoshii, T.; Bhattacharjee, G.; Zhao, C.; Bible, J.E.; et al. Fibrinolysis is essential for fracture repair and prevention of heterotopic ossification. J. Clin. Investig. 2015, 125, 3117–3131. [Google Scholar] [CrossRef] [Green Version]
- Arimura, S.-I.; Kawahara, K.-I.; Biswas, K.K.; Abeyama, K.; Tabata, M.; Shimoda, T.; Ogomi, D.; Matsusaki, M.; Kato, S.; Ito, T.; et al. Hydroxyapatite formed on/in agarose gel induces activation of blood coagulation and platelets aggregation. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007, 81, 456–461. [Google Scholar] [CrossRef]
- Bujoli, B.; Scimeca, J.-C.; Verron, E. Fibrin as a multipurpose physiological platform for bone tissue engineering and targeted delivery of bioactive compounds. Pharmaceutics 2019, 11, 556. [Google Scholar] [CrossRef] [Green Version]
- Foley, S.R.; Solano, C.; Simonova, G.; Spanevello, M.M.; Bird, R.J.; Semple, J.W.; Jackson, D.E.; Schibler, A.; Fraser, J.F.; Fung, Y.L. A comprehensive study of ovine haemostasis to assess suitability to model human coagulation. Thromb. Res. 2014, 134, 468–473. [Google Scholar] [CrossRef]
- Siller, -M.J.M.; Plasenzotti, R.; Spiel, A.; Quehenberger, P.; Jilma, B. Interspecies differences in coagulation profile. Thromb. Haemost. 2008, 100, 397–404. [Google Scholar] [CrossRef]
- Wilhelmi, M.H.; Tiede, A.; Teebken, O.E.; Bisdas, T.; Haverich, A.; Mischke, R. Ovine blood: Establishment of a list of reference values relevant for blood coagulation in sheep. ASAIO J. 2012, 58, 79–82. [Google Scholar] [CrossRef]
- Gromolak, S.; Krawczenko, A.; Antończyk, A.; Buczak, K.; Kiełbowicz, Z.; Klimczak, A. Biological characteristics and osteogenic differentiation of ovine bone marrow derived mesenchymal stem cells stimulated wit FGF-2 and BMP-2. Int. J. Mol. Sci. 2020, 21, 9726. [Google Scholar] [CrossRef] [PubMed]
- Pliszczak-Król, A.; Gemra, M.; Kozdrowski, R.; Zalewski, D.; Iwaszko, A. Involvement of hemostasis in pathophysiology of RAO in horses. Vet. Immunol. Immunopathol. 2020, 230, 110128. [Google Scholar] [CrossRef] [PubMed]
- Monroe, D.M.; Hoffman, M. The clotting system—A major player in wound healing. Haemophilia 2012, 18, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Shiu, H.T.; Goss, B.; Lutton, C.; Crawford, R.; Xiao, Y. Formation of blood clot on biomaterial implants influences bone healing. Tissue Eng. Part B 2014, 20, 697–712. [Google Scholar] [CrossRef]
- Esmon, C.T. Inflammation and thrombosis. J. Thromb. Haemost. 2003, 1, 1343–1348. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.H.; Conway, E.M. Cross talk pathways between coagulation and inflammation. Circ. Res. 2016, 118, 1392–1408. [Google Scholar] [CrossRef]
- Long, A.T.; Kenne, E.; Jung, R.; Fuchs, T.A.; Renne, T. Contact system revisited: An interface between inflammation, coagulation, and innate immunity. J. Tromb. Haemost. 2016, 14, 427–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoover-Plow, J. Does plasmin have anticoagulant activity? Vasc. Health Risk Manag. 2010, 6, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.; Turiel, S.; Gomes, P.S.; Costa, E.; Santos-Silva, A.; Quadros, P.; Duarte, J.; Battistuzzo, S.; Fernandes, M.H. Vascular biosafety of commercial hydroxyapatite particles: Discrepancy between blood compatibility assays and endothelial cell behavior. J. Nanobiotechnol. 2018, 16, 27. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhou, H.; Ni, X.; Yang, M.; Hou, S.; Bi, Y.; Deng, L. Hydroxyapatite: A promising hemostatic component in orthopaedic applications. Biol. Eng. Med. 2017, 2, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Kang, B.-C.; Kang, K.-S.; Lee, Y.-S. Biocompatibility and long-term toxicity of InnoPol® implant, a biodegradable polymer scaffold. Exp. Anim. 2005, 54, 37–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Assay | 1 h before SIP (T 0) | 1 h after SIP (T 1) | 24 h after SIP (T 2) | 3 Days after SIP (T 3) | 7 Days after SIP (T 4) | Reference Range ‡ | |
---|---|---|---|---|---|---|---|
PT (s) | mean | 12.4 | 13.3 * | 14.8 ** | 13.0 | 13.4 * | 9.7–14.5 |
SD | ±1.2 | ±0.9 | ±1.1 | ±1.2 | ±1.3 | ||
aPTT (s) | mean | 26.5 | 27.1 | 33.9 ** | 27.0 | 30.2 * | 21.7–32.5 |
SD | ±5.1 | ±3.9 | ±3.3 | ±6.5 | ±4.3 |
Assay | 1 h before SIP (T 0) | 1 h after SIP (T 1) | 24 h after SIP (T 2) | 3 Days after SIP (T 3) | 7 Days after SIP (T 4) | Reference Range ‡ | |
---|---|---|---|---|---|---|---|
Factor II (% activity) | mean | 27.6 | 21.1 a | 23.8 | 35.1 a | 36.0 a | 27.0–40.6 |
SD | ±2.8 | ±2.4 | ±3.3 | ±4.3 | ±4.9 | ||
Factor V (% activity) | mean | 294.2 | 255.7 | 310.3 | 515.3 a | 443.6 a | 234.6–352.0 |
SD | ±43.1 | ±43.7 | ±50.8 | ±132.4 | ±109.1 | ||
Factor VII (% activity) | mean | 36.4 | 26.6 | 24.6 | 53.5 | 49.2 | 36.9–55.3 |
SD | ±25.0 | ±14.7 | ±15.9 | ±28.2 | ±25.8 | ||
Factor VIII (% activity) | mean | 606.7 | 574.8 | 468.7 | 554.8 | 579.1 | 507.0–760.4 |
SD | ±157.3 | ±162.4 | ±190.4 | ±183.7 | ±170.4 | ||
Factor IX (% activity) | mean | 512.3 | 297.5 | 266.2 * | 489.7 ** | 448.3 | 439.2–658.8 |
SD | ±298.1 | ±242.1 | ±288.1 | ±238.9 | ±334.9 | ||
Factor X (% activity) | mean | 50.0 | 36.8 | 37.6 | 58.5 | 59.8 | 34.1–51.1 |
SD | ±19.3 | ±15.1 | ±14.5 | ±21.5 | ±21.7 | ||
Factor XI (% activity) | mean | 37.6 | 46.9 | 35.2 | 187.3 a,b | 77.5 c | 46.3–69.4 |
SD | ±99.2 | ±83.9 | ±124.0 | ±245.4 | ±140.9 | ||
Factor XII (% activity) | mean | 73.5 | 38.3 | 28.6 | 52.9 | 76.3 | 109.8–164.8 |
SD | ±52.4 | ±25.9 | ±13.1 | ±27.7 | ±57.0 | ||
AT (% activity) | mean | 78.0 | 61.9 a | 67.3 * | 73.6 | 76.4 | 66.7–100.1 |
SD | ±11.6 | ±12.5 | ±13.1 | ±13.6 | ±9.9 | ||
Protein C (% activity) | mean | 48.9 | 50.0 | 42.2 | 57.0 | 62.6 a | 46.2–69.2 |
SD | ±7.7 | ±8.4 | ±8.5 | ±14.7 | ±13.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pliszczak-Król, A.; Kiełbowicz, Z.; Król, J.; Antończyk, A.; Gemra, M.; Skrzypczak, P.; Prządka, P.; Zalewski, D.; Bieżyński, J.; Nicpoń, J. Parameters of Hemostasis in Sheep Implanted with Composite Scaffold Settled by Stimulated Mesenchymal Stem Cells—Evaluation of the Animal Model. Materials 2021, 14, 6934. https://doi.org/10.3390/ma14226934
Pliszczak-Król A, Kiełbowicz Z, Król J, Antończyk A, Gemra M, Skrzypczak P, Prządka P, Zalewski D, Bieżyński J, Nicpoń J. Parameters of Hemostasis in Sheep Implanted with Composite Scaffold Settled by Stimulated Mesenchymal Stem Cells—Evaluation of the Animal Model. Materials. 2021; 14(22):6934. https://doi.org/10.3390/ma14226934
Chicago/Turabian StylePliszczak-Król, Aleksandra, Zdzisław Kiełbowicz, Jarosław Król, Agnieszka Antończyk, Marianna Gemra, Piotr Skrzypczak, Przemysław Prządka, Dariusz Zalewski, Janusz Bieżyński, and Jakub Nicpoń. 2021. "Parameters of Hemostasis in Sheep Implanted with Composite Scaffold Settled by Stimulated Mesenchymal Stem Cells—Evaluation of the Animal Model" Materials 14, no. 22: 6934. https://doi.org/10.3390/ma14226934
APA StylePliszczak-Król, A., Kiełbowicz, Z., Król, J., Antończyk, A., Gemra, M., Skrzypczak, P., Prządka, P., Zalewski, D., Bieżyński, J., & Nicpoń, J. (2021). Parameters of Hemostasis in Sheep Implanted with Composite Scaffold Settled by Stimulated Mesenchymal Stem Cells—Evaluation of the Animal Model. Materials, 14(22), 6934. https://doi.org/10.3390/ma14226934