Mechanical Properties and Durability Performance of Concrete Containing Calcium Carbide Residue and Nano Silica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mix Proportioning
2.3. Casting of Specimen
2.4. Test Methods
3. Results and Discussions
3.1. Workability
3.2. Compressive Strength
3.3. Splitting Tensile Strength
3.4. Flexural Strength
3.5. Modulus of Elasticity
3.6. Water Absorption
3.7. Microstructural Properties (FESEM)
3.8. Microstructural Properties (XRD Analysis)
3.9. Economic and Environmental Impact
4. Conclusions
- (1)
- The workability of concrete decreases with increment in partial substitution of cement using CCR, due to higher surface area and loss of ignition. NS addition to the concrete containing CCR further decreases the concrete’s workability, thereby increasing water demand during mixing due to its very fine sizes;
- (2)
- The strengths and modulus of elasticity of concrete increased with replacement of up to 15% cement using CCR. On the contrary, higher replacement levels of cement with CCR above 15% resulted in a decrease in the listed properties;
- (3)
- NS addition up to 3% by weight of binder further enhanced the mechanical strengths and modulus of elasticity of the concrete. This is due to enhanced pozzolanic reactions between quartz from NS with Portlandites from CCR generating excess calcium silicate hydrates responsible for strength development. However, addition of higher NS above 3% resulted in a decrease in the mechanical properties of the concrete, due to agglomeration and reduced consistency;
- (4)
- Both CCR and NS decrease the porosity of the concrete, resulting in a decrease in water absorption. However, this improvement was for the use of up to 22.5% CCR and up to 3% NS;
- (5)
- The microstructural morphology showed that the combination of NS and CCR in concrete densified its microstructure, refined its pores, and produced more hydration products such as C-S-H;
- (6)
- The optimum mix was obtained using a combination of 15% CCR with 2% NS, which gave the best performance in terms of mechanical strengths, elastic modulus, water absorption, and microstructural refinement;
- (7)
- The use of CCR as cement replacement in concrete reduces the cost and CO2 emission of the concrete. NS on the other hand increases the concrete’s cost but does not have much effect on the CO2 emission;
- (8)
- The developed concrete can be used for structural applications with a strength of more than 30 MPa where up to 30% cement can be replaced with CCR with the addition of NS.
5. Limitations of the Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Mehta, P.K.; Monteiro, P.J. Concrete: Microstructure, Properties, and Materials; McGraw-Hill Education: New York, NY, USA, 2017. [Google Scholar]
- Andrew, R.M. Global CO2 emissions from cement production. Earth Syst. Sci. Data 2018, 10, 195–217. [Google Scholar] [CrossRef] [Green Version]
- Majhi, R.K.; Padhy, A.; Nayak, A.N. Performance of structural lightweight concrete produced by utilizing high volume of fly ash cenosphere and sintered fly ash aggregate with silica fume. Clean. Eng. Technol. 2021, 3, 100121. [Google Scholar] [CrossRef]
- Le Quéré, C.; Andrew, R.M.; Friedlingstein, P.; Sitch, S.; Pongratz, J.; Manning, A.C.; Korsbakken, J.I.; Peters, G.P.; Canadell, J.G.; Jackson, R.B. Global carbon budget 2017. Earth Syst. Sci. Data Discuss. 2017, 123, 1–79. [Google Scholar] [CrossRef] [Green Version]
- Xi, F.; Davis, S.J.; Ciais, P.; Crawford-Brown, D.; Guan, D.; Pade, C.; Shi, T.; Syddall, M.; Lv, J.; Ji, L. Substantial global carbon uptake by cement carbonation. Nat. Geosci. 2016, 9, 880–883. [Google Scholar] [CrossRef] [Green Version]
- Yunchao, T.; Zheng, C.; Wanhui, F.; Yumei, N.; Cong, L.; Jieming, C. Combined effects of nano-silica and silica fume on the mechanical behavior of recycled aggregate concrete. Nanotechnol. Rev. 2021, 10, 819–838. [Google Scholar] [CrossRef]
- Makaratat, N.; Jaturapitakkul, C.; Laosamathikul, T. Effects of calcium carbide residue–fly ash binder on mechanical properties of concrete. J. Mater. Civ. Eng. 2010, 22, 1164–1170. [Google Scholar] [CrossRef]
- Sun, H.; Li, Z.; Bai, J.; Memon, S.A.; Dong, B.; Fang, Y.; Xu, W.; Xing, F. Properties of chemically combusted calcium carbide residue and its influence on cement properties. Materials 2015, 8, 638–651. [Google Scholar] [CrossRef] [Green Version]
- Seo, J.; Park, S.; Yoon, H.N.; Jang, J.G.; Kim, S.H.; Lee, H.-K. Utilization of calcium carbide residue using granulated blast furnace slag. Materials 2019, 12, 3511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kampala, A.; Horpibulsuk, S.; Prongmanee, N.; Chinkulkijniwat, A. Influence of wet-dry cycles on compressive strength of calcium carbide residue–fly ash stabilized clay. J. Mater. Civ. Eng. 2014, 26, 633–643. [Google Scholar] [CrossRef]
- Dueramae, S.; Tangchirapat, W.; Chindaprasirt, P.; Jaturapitakkul, C. Influence of activation methods on strength and chloride resistance of concrete using calcium carbide residue–fly ash mixture as a new binder. J. Mater. Civ. Eng. 2017, 29, 04016265. [Google Scholar] [CrossRef]
- Phoo-ngernkham, T.; Phiangphimai, C.; Intarabut, D.; Hanjitsuwan, S.; Damrongwiriyanupap, N.; Li, L.; Chindaprasirt, P. Low cost and sustainable repair material made from alkali-activated high-calcium fly ash with calcium carbide residue. Constr. Build. Mater. 2020, 247, 118543. [Google Scholar] [CrossRef]
- Hanjitsuwan, S.; Phoo-ngernkham, T.; Damrongwiriyanupap, N. Comparative study using Portland cement and calcium carbide residue as a promoter in bottom ash geopolymer mortar. Constr. Build. Mater. 2017, 133, 128–134. [Google Scholar] [CrossRef]
- Khongpermgoson, P.; Abdulmatin, A.; Tangchirapat, W.; Jaturapitakkul, C. Evaluation of compressive strength and resistance of chloride ingress of concrete using a novel binder from ground coal bottom ash and ground calcium carbide residue. Constr. Build. Mater. 2019, 214, 631–640. [Google Scholar] [CrossRef]
- Karthiga, S.; Devi, C.R.; Ramasamy, N.; Pavithra, C.; Sudarsan, J.; Nithiyanantham, S. Analysis on Strength Properties by Replacement of Cement with Calcium Carbide Remains and Ground Granulated Blast Furnace Slag. Chem. Afr. 2020, 3, 1133–1139. [Google Scholar] [CrossRef]
- Adamu, M.; Olalekan, S.S.; Aliyu, M.M. Optimizing the Mechanical Properties of Pervious Concrete Containing Calcium Carbide and Rice Husk Ash Using Response Surface Methodology. J. Soft Comput. Civ. Eng. 2020, 4, 95–118. [Google Scholar]
- Adamu, M.; Ayeni, K.O.; Haruna, S.I.; Mansour, Y.E.-H.I.; Haruna, S. Durability performance of pervious concrete containing rice husk ash and calcium carbide: A response surface methodology approach. Case Stud. Constr. Mater. 2021, 14, e00547. [Google Scholar] [CrossRef]
- Adamu, M.; Mohammed, B.S.; Liew, M.S. Mechanical properties and performance of high volume fly ash roller compacted concrete containing crumb rubber and nano silica. Constr. Build. Mater. 2018, 171, 521–538. [Google Scholar] [CrossRef]
- Khaloo, A.; Mobini, M.H.; Hosseini, P. Influence of different types of nano-SiO2 particles on properties of high-performance concrete. Constr. Build. Mater. 2016, 113, 188–201. [Google Scholar] [CrossRef]
- Abhilash, P.; Nayak, D.K.; Sangoju, B.; Kumar, R.; Kumar, V. Effect of nano-silica in concrete; a review. Constr. Build. Mater. 2021, 278, 122347. [Google Scholar]
- Raheem, A.; Abdulwahab, R.; Kareem, M. Incorporation of metakaolin and nanosilica in blended cement mortar and concrete-A review. J. Clean. Prod. 2021, 290, 125852. [Google Scholar] [CrossRef]
- Wang, F.; Lei, S. Permeabilities and Mechanical Properties of Hardened Cement Pastes Modified with Sodium Laurate and Nano Silica. Materials 2020, 13, 4867. [Google Scholar] [CrossRef]
- Mostafa, S.A.; Faried, A.S.; Farghali, A.A.; El-Deeb, M.M.; Tawfik, T.A.; Majer, S.; Abd Elrahman, M. Influence of nanoparticles from waste materials on mechanical properties, durability and microstructure of UHPC. Materials 2020, 13, 4530. [Google Scholar] [CrossRef] [PubMed]
- Shafiq, N.; Kumar, R.; Zahid, M.; Tufail, R.F. Effects of modified metakaolin using nano-silica on the mechanical properties and durability of concrete. Materials 2019, 12, 2291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AlKhatib, A.; Maslehuddin, M.; Al-Dulaijan, S.U. Development of high performance concrete using industrial waste materials and nano-silica. J. Mater. Res. Technol. 2020, 9, 6696–6711. [Google Scholar] [CrossRef]
- Gunasekara, C.; Sandanayake, M.; Zhou, Z.; Law, D.W.; Setunge, S. Effect of nano-silica addition into high volume fly ash–hydrated lime blended concrete. Constr. Build. Mater. 2020, 253, 119205. [Google Scholar] [CrossRef]
- Murthi, P.; Poongodi, K.; Awoyera, P.; Gobinath, R.; Saravanan, R. Enhancing the strength properties of high-performance concrete using ternary blended cement: OPC, nano-silica, bagasse ash. Silicon 2020, 12, 1949–1956. [Google Scholar] [CrossRef]
- Shahrul, S.; Mohammed, B.S.; Wahab, M.; Liew, M. Mechanical Properties of Crumb Rubber Mortar Containing Nano-Silica Using Response Surface Methodology. Materials 2021, 14, 5496. [Google Scholar] [CrossRef]
- Adamu, M.; Mohammed, B.S.; Shafiq, N.; Liew, M.S. Durability performance of high volume fly ash roller compacted concrete pavement containing crumb rubber and nano silica. Int. J. Pavement Eng. 2020, 21, 1437–1444. [Google Scholar] [CrossRef]
- Huang, Q.; Zhu, X.; Liu, D.; Zhao, L.; Zhao, M. Modification of water absorption and pore structure of high-volume fly ash cement pastes by incorporating nanosilica. J. Build. Eng. 2021, 33, 101638. [Google Scholar] [CrossRef]
- ASTM C150/150M. Standard Specification for Portland Cement; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Namarak, C.; Tangchirapat, W.; Jaturapitakkul, C. Bar-concrete bond in mixes containing calcium carbide residue, fly ash and recycled concrete aggregate. Cem. Concr. Compos. 2018, 89, 31–40. [Google Scholar] [CrossRef]
- ASTM Inernational. ASTM C127. Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- ASTM International. ASTM C136. Standard test Method for Sieve Analysis of Fine and Coarse Aggregates; ASTM International: West Conshohocken, PA, USA, 2006. [Google Scholar]
- ASTM International. ASTM C33. Standard Specification for Concrete Aggregates; ASTM International: West Conshohocken, PA, USA, 2018. [Google Scholar]
- BS EN 934-2. Admixtures for concrete, mortar and grout Part 2: Concrete admixtures-Definitions, Requirements, Conformity, Marking and Labelling; British Standards Institution: London, UK, 2001. [Google Scholar]
- ACI 211.1R. Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete; American Concrete Institute: Farmington Hills, MI, USA, 2002. [Google Scholar]
- ASTM International. ASTM C192/C192M. Standard Practice for Making and Curing Test Specimens in the Laboratory; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- ASTM International. ASTM C143/C143M. Standard Test Method for Slump Hydraulic-Cement Concrete; ASTM International: West Conshohocken, PA, USA, 2020. [Google Scholar]
- BS EN 12390-3. Testing Hardened Concrete. Compressive Strength of Test Specimens; British Standard Institution: London, UK, 2009. [Google Scholar]
- BS EN 12390-6. Testing Hardened Concrete. Tensile Splitting Strength of Test Specimens; British Standard Institution: London, UK, 2009. [Google Scholar]
- ASTM Inernational. ASTM C293/C293M. Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Center-Point Loading); ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- ASTM Inernational. ASTM C469/469M. Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression; ASTM Inernational: West Conshohocken, PA, USA, 2014. [Google Scholar]
- ASTM Inernational. ASTM C642. Standard Test Method for Density, Absorption, and Voids in Hardened Concrete; ASTM International: West Conshohocken, PA, USA, 2001. [Google Scholar]
- Rattanashotinunt, C.; Thairit, P.; Tangchirapat, W.; Jaturapitakkul, C. Use of calcium carbide residue and bagasse ash mixtures as a new cementitious material in concrete. Mater. Des. 2013, 46, 106–111. [Google Scholar] [CrossRef]
- Abdulmatin, A.; Khongpermgoson, P.; Jaturapitakkul, C.; Tangchirapat, W. Use of eco-friendly cementing material in concrete made from bottom ash and calcium carbide residue. Arab. J. Sci. Eng. 2018, 43, 1617–1626. [Google Scholar] [CrossRef]
- Mokuolu, O.; Olaniyi, T.; Jacob-Oricha, S. Evaluation of Calcium Carbide Residue Waste As a Partial Replacement for Cement in Concrete. J. Solid Waste Technol. Manag. 2018, 44, 370–377. [Google Scholar] [CrossRef]
- Hasan-Nattaj, F.; Nematzadeh, M. The effect of forta-ferro and steel fibers on mechanical properties of high-strength concrete with and without silica fume and nano-silica. Constr. Build. Mater. 2017, 137, 557–572. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, Z.; Bai, Y.; Zhao, G.; Sang, Z.; Zhao, Q. Development and characterization of a new multi-strength level binder system using soda residue-carbide slag as composite activator. Constr. Build. Mater. 2021, 291, 123367. [Google Scholar] [CrossRef]
- Krammart, P.; Tangtermsirikul, S. Properties of cement made by partially replacing cement raw materials with municipal solid waste ashes and calcium carbide waste. Constr. Build. Mater. 2004, 18, 579–583. [Google Scholar] [CrossRef]
- Amnadnua, K.; Tangchirapat, W.; Jaturapitakkul, C. Strength, water permeability, and heat evolution of high strength concrete made from the mixture of calcium carbide residue and fly ash. Mater. Des. 2013, 51, 894–901. [Google Scholar] [CrossRef]
- Li, W.; Yi, Y. Use of carbide slag from acetylene industry for activation of ground granulated blast-furnace slag. Constr. Build. Mater. 2020, 238, 117713. [Google Scholar] [CrossRef]
- Mohammed, B.S.; Adamu, M. Mechanical performance of roller compacted concrete pavement containing crumb rubber and nano silica. Constr. Build. Mater. 2018, 159, 234–251. [Google Scholar] [CrossRef]
- Hosan, A.; Shaikh, F.U.A. Influence of nano silica on compressive strength, durability, and microstructure of high-volume slag and high-volume slag–fly ash blended concretes. Struct. Concr. 2021, 22, E474–E487. [Google Scholar] [CrossRef]
- Nazari, A.; Riahi, S. The role of SiO2 nanoparticles and ground granulated blast furnace slag admixtures on physical, thermal and mechanical properties of self compacting concrete. Mater. Sci. Eng. A 2011, 528, 2149–2157. [Google Scholar] [CrossRef]
- Brooks, J.J. Elasticity of Concrete. In Concrete and Masonry Movements; Butterworth-Heinemann, Ed.; Elsevier-BV: Devon, UK, 2015; pp. 61–93. [Google Scholar]
- Silva, R.V.; De Brito, J.; Dhir, R.K. Establishing a relationship between modulus of elasticity and compressive strength of recycled aggregate concrete. J. Clean. Prod. 2016, 112, 2171–2186. [Google Scholar] [CrossRef]
- Mohammed, B.S.; Adamu, M.; Shafiq, N. Establishing relationship between modulus of elasticity and strength of nano silica modified roller compacted rubbercrete. Int. J. GEOMATE 2017, 13, 103–110. [Google Scholar] [CrossRef]
- ACI Code-318. Building Code Requirements for Structural Concrete and Commentary; American Concrete Institute: Farmington Hills, MI, USA, 2019. [Google Scholar]
- ACI PRC-363. Report on High-Strength Concrete; American Concrete Institute: Farmington Hills, MI, USA, 2010. [Google Scholar]
- Wang, B.; Jiang, R.; Wu, Z. Investigation of the mechanical properties and microstructure of graphene nanoplatelet-cement composite. Nanomaterials 2016, 6, 200. [Google Scholar] [CrossRef]
- Zhou, Z.; Sofi, M.; Liu, J.; Li, S.; Zhong, A.; Mendis, P. Nano-CSH modified high volume fly ash concrete: Early-age properties and environmental impact analysis. J. Clean. Prod. 2021, 286, 124924. [Google Scholar] [CrossRef]
- Kaur, R.; Kothiyal, N. Comparative effects of sterically stabilized functionalized carbon nanotubes and graphene oxide as reinforcing agent on physico-mechanical properties and electrical resistivity of cement nanocomposites. Constr. Build. Mater. 2019, 202, 121–138. [Google Scholar] [CrossRef]
- Ahmad, W.; Ahmad, A.; Ostrowski, K.A.; Aslam, F.; Joyklad, P. A scientometric review of waste material utilization in concrete for sustainable construction. Case Stud. Constr. Mater. 2021, 15, e00683. [Google Scholar] [CrossRef]
- Bheel, N.; Ali, M.O.A.; Khahro, S.H.; Keerio, M.A. Experimental study on fresh, mechanical properties and embodied carbon of concrete blended with sugarcane bagasse ash, metakaolin, and millet husk ash as ternary cementitious material. Environ. Sci. Pollut. Res. 2021, 1–16. [Google Scholar] [CrossRef]
- Onaizi, A.M.; Huseien, G.F.; Lim, N.H.A.S.; Amran, M.; Samadi, M. Effect of nanomaterials inclusion on sustainability of cement-based concretes: A comprehensive review. Constr. Build. Mater. 2021, 306, 124850. [Google Scholar] [CrossRef]
- Lazaro, A.; Quercia, G.; Brouwers, H.; Geus, J. Synthesis of a green nano-silica material using beneficiated waste dunites and its application in concrete. World J. Nano Sci. Eng. 2013, 3, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Turner, L.K.; Collins, F.G. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 2013, 43, 125–130. [Google Scholar] [CrossRef]
Oxide | Chemical Compositions (%) | ||
---|---|---|---|
Cement | CCR | NS | |
SiO2 | 20.76 | 3.66 | 99.8 |
Al2O3 | 5.54 | 2.56 | 0.04 |
Fe2O3 | 3.35 | 1.54 | 0.005 |
CaO | 61.4 | 89.13 | - |
MgO | 2.46 | - | - |
K2O | 0.76 | 0.22 | - |
Na2O | 0.19 | - | - |
SO3 | - | 0.54 | - |
TiO2 | - | - | - |
BaO | - | 0.11 | - |
Loss of Ignition | 2.24 | 2.24 | - |
Specific Gravity | 3.15 | 2.35 | 2.28 |
Specific Surface Area (m2/g) | 325 | 290 | 100 ± 25 |
Property | Coarse Aggregate | Fine Aggregate |
---|---|---|
Maximum Aggregate Size (mm) | 19 | 4.75 |
Specific Gravity | 2.67 | 2.63 |
Water Absorption (%) | 0.83 | 1.96 |
Bulk Density (kg/m3) | 1450 | 1560 |
Fineness Modulus | - | 2.32 |
Mud Content (%) | - | 1.1 |
Mix | Variables | Quantities of Materials for 1 kg/m3 (kg/m3) | |||||||
---|---|---|---|---|---|---|---|---|---|
CCR (%) | NS (%) | Cement (kg/m3) | CCR (kg/m3) | NS (kg/m3) | Fine Aggregate (kg/m3) | Coarse Aggregate (kg/m3) | Water (kg/m3) | SP (kg/m3) | |
M0C0N | 0 | 0 | 388 | 0 | 0 | 665 | 1258 | 178 | 5.82 |
M0C1N | 0 | 1 | 388 | 0 | 3.88 | 665 | 1258 | 178 | 5.88 |
M0C2N | 0 | 2 | 388 | 0 | 7.76 | 665 | 1258 | 178 | 5.94 |
M0C3N | 0 | 3 | 388 | 0 | 11.64 | 665 | 1258 | 178 | 5.99 |
M0C4N | 0 | 4 | 388 | 0 | 15.52 | 665 | 1258 | 178 | 6.05 |
M7.5C0N | 7.5 | 0 | 388 | 29.1 | 0 | 665 | 1258 | 178 | 6.26 |
M7.5C1N | 7.5 | 1 | 358.9 | 29.1 | 3.88 | 665 | 1258 | 178 | 5.88 |
M7.5C2N | 7.5 | 2 | 358.9 | 29.1 | 7.76 | 665 | 1258 | 178 | 5.94 |
M7.5C3N | 7.5 | 3 | 358.9 | 29.1 | 11.64 | 665 | 1258 | 178 | 5.99 |
M7.5C4N | 7.5 | 4 | 358.9 | 29.1 | 15.52 | 665 | 1258 | 178 | 6.05 |
M15C0N | 15 | 0 | 358.9 | 58.2 | 0 | 665 | 1258 | 178 | 6.26 |
M15C1N | 15 | 1 | 329.8 | 58.2 | 3.88 | 665 | 1258 | 178 | 5.88 |
M15C2N | 15 | 2 | 329.8 | 58.2 | 7.76 | 665 | 1258 | 178 | 5.94 |
M15C3N | 15 | 3 | 329.8 | 58.2 | 11.64 | 665 | 1258 | 178 | 5.99 |
M15C4N | 15 | 4 | 329.8 | 58.2 | 15.52 | 665 | 1258 | 178 | 6.05 |
M22.5C0N | 22.5 | 0 | 329.8 | 87.3 | 0 | 665 | 1258 | 178 | 6.26 |
M22.5C1N | 22.5 | 1 | 300.7 | 87.3 | 3.88 | 665 | 1258 | 178 | 5.88 |
M22.5C2N | 22.5 | 2 | 300.7 | 87.3 | 7.76 | 665 | 1258 | 178 | 5.94 |
M22.5C3N | 22.5 | 3 | 300.7 | 87.3 | 11.64 | 665 | 1258 | 178 | 5.99 |
M22.5C4N | 22.5 | 4 | 300.7 | 87.3 | 15.52 | 665 | 1258 | 178 | 6.05 |
M30C0N | 30 | 0 | 300.7 | 116.4 | 0 | 665 | 1258 | 178 | 6.26 |
M30C1N | 30 | 1 | 271.6 | 116.4 | 3.88 | 665 | 1258 | 178 | 5.88 |
M30C2N | 30 | 2 | 271.6 | 116.4 | 7.76 | 665 | 1258 | 178 | 5.94 |
M30C3N | 30 | 3 | 271.6 | 116.4 | 11.64 | 665 | 1258 | 178 | 5.99 |
M30C4N | 30 | 4 | 271.6 | 116.4 | 15.52 | 665 | 1258 | 178 | 6.05 |
Materials | Cement | CCR | NS | Fine Aggregate | Coarse Aggregate | Water | SP |
---|---|---|---|---|---|---|---|
Cost $/kg | 0.099 | 0 | 1.0 | 0.03 | 0.04 | - | 1.2 |
CO2 emission (kg CO2/kg) | 1 [64,65,66] | 0.00084 [18,67] | 0.0139 [18,68] | 0.0408 [18,68] | 0.000196 [18,68] | - |
Mix | Cost ($/m3) | CO2 Emission (kg/m3) |
---|---|---|
M0C0N | 113.3 | 448.605 |
M0C1N | 117.3 | 448.608 |
M0C2N | 121.2 | 448.611 |
M0C3N | 125.1 | 448.615 |
M0C4N | 129.0 | 448.618 |
M7.5C0N | 113.7 | 450.496 |
M7.5C1N | 114.4 | 421.400 |
M7.5C2N | 118.3 | 421.403 |
M7.5C3N | 122.2 | 421.406 |
M7.5C4N | 126.2 | 421.409 |
M15C0N | 110.8 | 423.288 |
M15C1N | 111.5 | 394.191 |
M15C2N | 115.4 | 394.194 |
M15C3N | 119.4 | 394.198 |
M15C4N | 123.3 | 394.201 |
M22.5C0N | 107.9 | 396.079 |
M22.5C1N | 108.6 | 366.983 |
M22.5C2N | 112.6 | 366.986 |
M22.5C3N | 116.5 | 366.989 |
M22.5C4N | 120.4 | 366.992 |
M30C0N | 105.0 | 368.871 |
M30C1N | 105.7 | 339.774 |
M30C2N | 109.7 | 339.777 |
M30C3N | 113.6 | 339.781 |
M30C4N | 117.5 | 339.784 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamu, M.; Ibrahim, Y.E.; Al-Atroush, M.E.; Alanazi, H. Mechanical Properties and Durability Performance of Concrete Containing Calcium Carbide Residue and Nano Silica. Materials 2021, 14, 6960. https://doi.org/10.3390/ma14226960
Adamu M, Ibrahim YE, Al-Atroush ME, Alanazi H. Mechanical Properties and Durability Performance of Concrete Containing Calcium Carbide Residue and Nano Silica. Materials. 2021; 14(22):6960. https://doi.org/10.3390/ma14226960
Chicago/Turabian StyleAdamu, Musa, Yasser E. Ibrahim, Mohamed E. Al-Atroush, and Hani Alanazi. 2021. "Mechanical Properties and Durability Performance of Concrete Containing Calcium Carbide Residue and Nano Silica" Materials 14, no. 22: 6960. https://doi.org/10.3390/ma14226960
APA StyleAdamu, M., Ibrahim, Y. E., Al-Atroush, M. E., & Alanazi, H. (2021). Mechanical Properties and Durability Performance of Concrete Containing Calcium Carbide Residue and Nano Silica. Materials, 14(22), 6960. https://doi.org/10.3390/ma14226960