Nanocrystallized Ge-Rich SiGe-HfO2 Highly Photosensitive in Short-Wave Infrared
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Measurement Methods
3. Results and Discussion
3.1. XTEM Analysis
3.2. XRD Investigations
3.3. Raman Scattering Analysis
3.4. Spectral Photosensitivity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zinovieva, A.F.; Zinovyev, V.A.; Nenashev, A.V.; Teys, S.A.; Dvurechenskii, A.V.; Borodavchenko, O.M.; Zhivulko, V.D.; Mudryi, A.V. Photoluminescence of compact GeSi quantum dot groups with increased probability of finding an electron in Ge. Sci. Rep. 2020, 10, 9308. [Google Scholar] [CrossRef] [PubMed]
- Poborchii, V.; Bouabdellaoui, M.; Uchida, N.; Ronda, A.; Berbezier, I.; David, T.; Ruiz, C.M.; Zazoui, M.; Paria Sena, R.; Abbarchi, M.; et al. Raman microscopy and infrared optical properties of SiGe Mie resonators formed on SiO2 via Ge condensation and solid state dewetting. Nanotechnology 2020, 31, 195602. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Wang, S.; Chen, P.; Zhang, L.; Peng, K.; Jiang, Z.; Zhong, Z. An array of SiGe nanodisks with Ge quantum dots on bulk Si substrates demonstrating a unique light–matter interaction associated with dual coupling. Nanoscale 2019, 11, 15487–15496. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Q.; Xiao, T.; Tian, Z.; Gao, T.; Liang, Y.; Chen, Q.; Xie, Q. Hidden state of Si50Ge50 nanoparticles during rapid solidification. Cryst. Growth Des. 2021, 21, 4746–4756. [Google Scholar] [CrossRef]
- Sultan, M.T.; Gudmundsson, J.T.; Manolescu, A.; Svavarsson, H.G. Structural and photoluminescence study of TiO2 layer with self-assembled Si1−xGex nanoislands. J. Appl. Phys. 2020, 128, 085304. [Google Scholar] [CrossRef]
- Shi, S.; Zaslavsky, A.; Pacifici, D. High-performance germanium quantum dot photodetectors: Response to continuous wave and pulsed excitation. Appl. Phys. Lett. 2020, 117, 251105. [Google Scholar] [CrossRef]
- Zhu, X.; ten Brink, G.H.; de Graaf, S.; Kooi, B.J.; Palasantzas, G. Gas-phase synthesis of tunable-size germanium nanocrystals by inert gas condensation. Chem. Mater. 2020, 32, 1627–1635. [Google Scholar] [CrossRef] [Green Version]
- Tkalčević, M.; Basioli, L.; Salamon, K.; Šarić, I.; Parramon, J.S.; Bubaš, M.; Bogdanović-Radović, I.; Bernstorff, S.; Fogarassy, Z.; Balázsi, K.; et al. Ge quantum dot lattices in alumina prepared by nitrogen assisted deposition: Structure and photoelectric conversion efficiency. Sol. Energy Mater. Sol. Cells 2020, 218, 110722. [Google Scholar] [CrossRef]
- Lin, G.; Liang, D.; Yu, C.; Hong, H.; Mao, Y.; Li, C.; Chen, S. Broadband 400-2400 nm Ge heterostructure nanowire photodetector fabricated by three-dimensional Ge condensation technique. Opt. Express 2019, 27, 32801–32809. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.; Zhou, S.; Zhao, S.; Peng, W.; Yang, D.; Pi, X. Silicon nanocrystals: Unfading silicon materials for optoelectronics. Mater. Sci. Eng. R 2019, 138, 85–117. [Google Scholar] [CrossRef]
- Parravicini, J.; Trapani, F.D.; Nelson, M.D.; Rex, Z.T.; Beiter, R.D.; Catelani, T.; Acciarri, M.F.; Podesta, A.; Lenardi, C.; Binetti, S.O.; et al. Quantum Confinement in the spectral response of n-doped germanium quantum dots embedded in an amorphous Si layer for quantum dot-based solar cells. ACS Appl. Nano Mater. 2020, 3, 2813–2821. [Google Scholar] [CrossRef]
- Pelant, I.; Kůsová, K. Towards a germanium and silicon laser: The history and the present. Crystals 2019, 9, 624. [Google Scholar] [CrossRef] [Green Version]
- Hussain, N.; Yisen, Y.; Sagar, R.U.R.; Anwar, T.; Murtaza, M.; Huang, K.; Shehzad, K.; Wu, H.; Wang, Z. Quantum-confined blue photoemission in strain-engineered few-atomic-layer 2D germanium. Nano Energy 2021, 83, 105790. [Google Scholar] [CrossRef]
- Si, Z.; Chai, C.; Zhang, W.; Song, Y.; Yang, Y. Theoretical investigation of group-IV binary compounds in the P4/ncc phase. Results Phys. 2021, 26, 104349. [Google Scholar] [CrossRef]
- Fan, Q.; Zhang, W.; Song, Y.; Zhang, W.; Yun, S. P63/mmc-Ge and their Si–Ge alloys with a mouldable direct band gap. Semicond. Sci. Technol. 2020, 35, 055012. [Google Scholar] [CrossRef]
- Fadaly, E.M.T.; Dijkstra, A.; Suckert, J.R.; Ziss, D.; van Tilburg, M.A.J.; Mao, C.Y.; Ren, Y.Z.; van Lange, V.T.; Korzun, K.; Kolling, S.; et al. Direct-bandgap emission from hexagonal Ge and SiGe alloys. Nature 2020, 580, 205–209. [Google Scholar] [CrossRef] [Green Version]
- Zinovyev, V.A.; Zinovieva, A.F.; Nenashev, A.V.; Dvurechenskii, A.V.; Katsuba, A.V.; Borodavchenko, O.M.; Zhivulko, V.D.; Mudryi, A.V. Self-assembled epitaxial metal–semiconductor nanostructures with enhanced GeSi quantum dot luminescence. J. Appl. Phys. 2020, 127, 243108. [Google Scholar] [CrossRef]
- Schatzl, M.; Hackl, F.; Glaser, M.; Rauter, P.; Brehm, M.; Spindlberger, L.; Simbula, A.; Galli, M.; Fromherz, T.; Schäffler, F. Enhanced telecom emission from single group-IV quantum dots by precise CMOS-compatible positioning in photonic crystal cavities. ACS Photonics 2017, 4, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Spindlberger, L.; Kim, M.; Aberl, J.; Fromherz, T.; Schäffler, F.; Fournel, F.; Hartmann, J.M.; Hallam, B.; Brehm, M. Advanced hydrogenation process applied on Ge on Si quantum dots for enhanced light emission. Appl. Phys. Lett. 2021, 118, 083104. [Google Scholar] [CrossRef]
- Cosentino, S.; Sungur Ozen, E.; Raciti, R.; Mio, A.M.; Nicotra, G.; Simone, F.; Crupi, I.; Turan, R.; Terrasi, A.; Aydinli, A.; et al. Light harvesting with Ge quantum dots embedded in SiO2 or Si3N4. J. Appl. Phys. 2014, 115, 043103. [Google Scholar] [CrossRef]
- Dhyani, V.; Ahmad, G.; Kumar, N.; Das, S. Size-dependent photoresponse of germanium nanocrystals-metal oxide semiconductor photodetector. IEEE Trans. Electron. Dev. 2020, 67, 558–565. [Google Scholar] [CrossRef]
- Siontas, S.; Li, D.F.; Wang, H.B.; Aravind, A.V.P.S.; Zaslavsky, A.; Pacifici, D. High-performance germanium quantum dot photodetectors in the visible and near infrared. Mat. Sci. Semicon. Proc. 2019, 92, 19–27. [Google Scholar] [CrossRef]
- Lepadatu, A.M.; Slav, A.; Palade, C.; Dascalescu, I.; Enculescu, M.; Iftimie, S.; Lazanu, S.; Teodorescu, V.S.; Ciurea, M.L.; Stoica, T. Dense Ge nanocrystals embedded in TiO2 with exponentially increased photoconduction by field effect. Sci. Rep. 2018, 8, 4898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chien, C.Y.; Lai, W.T.; Chang, Y.J.; Wang, C.C.; Kuo, M.H.; Li, P.W. Size tunable Ge quantum dots for near-ultraviolet to near-infrared photosensing with high figures of merit. Nanoscale 2014, 6, 5303–5308. [Google Scholar] [CrossRef] [PubMed]
- Lepadatu, A.M.; Palade, C.; Slav, A.; Cojocaru, O.; Maraloiu, V.A.; Iftimie, S.; Comanescu, F.; Dinescu, A.; Teodorescu, V.S.; Stoica, T.; et al. Influence of SiGe nanocrystallization on short-wave infrared sensitivity of SiGe-TiO2 films and multilayers. J. Phys. Chem. C 2020, 124, 25043. [Google Scholar] [CrossRef]
- Basioli, L.; Sancho-Parramon, J.; Despoja, V.; Fazinic, S.; Bogdanović Radović, I.; Boű;ićević Mihalić, I.; Salamon, K.; Nekic, N.; Ivanda, M.; Drazic, G.; et al. Ge quantum dots coated with metal shells (Al, Ta, and Ti) embedded in alumina thin films for solar energy conversion. ACS Appl. Nano Mater. 2020, 3, 8640–8650. [Google Scholar] [CrossRef]
- Ciurea, M.L.; Lepadatu, A.M. Tuning the properties of Ge and Si nanocrystals based structures by tailoring the preparation conditions Review. Dig. J. Nanomater. Bios. 2015, 10, 59–87. [Google Scholar]
- Siontas, S.; Wang, H.; Li, D.; Zaslavsky, A.; Pacifici, D. Broadband visible-to-telecom wavelength germanium quantum dot photodetectors. Appl. Phys. Lett. 2018, 113, 181101. [Google Scholar] [CrossRef]
- Stavarache, I.; Teodorescu, V.S.; Prepelita, P.; Logofatu, C.; Ciurea, M.L. Ge nanoparticles in SiO2 for near infrared photodetectors with high performance. Sci. Rep. 2019, 9, 10286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- John, J.W.; Dhyani, V.; Singh, S.; Jakhar, A.; Sarkar, A.; Das, S.; Ray, S.K. Low-noise, high-detectivity, polarization-sensitive, room-temperature infrared photodetectors based on Ge quantum dot-decorated Si-on-insulator nanowire field-effect transistors. Nanotechnology 2021, 32, 315205. [Google Scholar] [CrossRef]
- Teodorescu, V.S.; Ghica, C.; Maraloiu, A.V.; Vlaicu, M.; Kuncser, A.; Ciurea, M.L.; Stavarache, I.; Lepadatu, A.M.; Scarisoreanu, N.D.; Andrei, A.; et al. Nanostructuring of GeTiO amorphous films by pulsed laser irradiation. Beilstein J. Nanotechnol. 2015, 6, 893–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cojocaru, O.; Lepadatu, A.M.; Nemnes, G.A.; Stoica, T.; Ciurea, M.L. Bandgap atomistic calculations on hydrogen-passivated GeSi nanocrystals. Sci. Rep. 2021, 11, 13582. [Google Scholar] [CrossRef] [PubMed]
- Palade, C.; Stavarache, I.; Stoica, T.; Ciurea, M.L. GeSi nanocrystals photo-sensors for optical detection of slippery road conditions combining two classification algorithms. Sensors 2020, 20, 6395. [Google Scholar] [CrossRef]
- Lepadatu, A.M.; Palade, C.; Slav, A.; Maraloiu, A.V.; Lazanu, S.; Stoica, T.; Logofatu, C.; Teodorescu, V.S.; Ciurea, M.L. Single layer of Ge quantum dots in HfO2 for floating gate memory capacitors. Nanotechnology 2017, 28, 175707. [Google Scholar] [CrossRef]
- Slav, A.; Palade, C.; Lepadatu, A.M.; Ciurea, M.L.; Teodorescu, V.S.; Lazanu, S.; Maraloiu, A.V.; Logofatu, C.; Braic, M.; Kiss, A. How morphology determines the charge storage properties of Ge nanocrystals in HfO2. Scr. Mater. 2016, 113, 135–138. [Google Scholar] [CrossRef]
- Ciurea, M.L.; Stavarache, I.; Lepadatu, A.M.; Pasuk, I.; Teodorescu, V.S. Electrical properties related to the structure of GeSi nanostructured films. Phys. Status Solidi B 2014, 251, 1340–1346. [Google Scholar] [CrossRef]
- Palade, C.; Lepadatu, A.M.; Slav, A.; Cojocaru, O.; Iuga, A.; Maraloiu, V.A.; Moldovan, A.; Dinescu, M.; Teodorescu, V.S.; Stoica, T.; et al. A nanoscale continuous transition from the monoclinic to ferroelectric orthorhombic phase inside HfO2 nanocrystals stabilized by HfO2 capping and self-controlled Ge doping. J. Mater. Chem. C 2021, 9, 12353–12366. [Google Scholar] [CrossRef]
- Slav, A.; Dascalescu, I.; Lepadatu, A.M.; Palade, C.; Zoita, N.C.; Stroescu, H.; Iftimie, S.; Lazanu, S.; Gartner, M.; Buca, D.; et al. GeSn/SiO2 multilayers by magnetron sputtering deposition for short-wave infrared photonics. ACS Appl. Mater. Interfaces 2020, 12, 56161–56171. [Google Scholar] [CrossRef]
- Stavarache, I.; Logofatu, C.; Sultan, M.T.; Manolescu, A.; Svavarsson, H.G.; Teodorescu, V.S.; Ciurea, M.L. SiGe nanocrystals in SiO2 with high photosensitivity from visible to short-wave infrared. Sci. Rep. 2020, 10, 3252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palade, C.; Lepadatu, A.-M.; Slav, A.; Teodorescu, V.S.; Stoica, T.; Ciurea, M.L.; Ursutiu, D.; Samoila, C. Nanocrystallized Ge-Rich SiGe-HfO2 Highly Photosensitive in Short-Wave Infrared. Materials 2021, 14, 7040. https://doi.org/10.3390/ma14227040
Palade C, Lepadatu A-M, Slav A, Teodorescu VS, Stoica T, Ciurea ML, Ursutiu D, Samoila C. Nanocrystallized Ge-Rich SiGe-HfO2 Highly Photosensitive in Short-Wave Infrared. Materials. 2021; 14(22):7040. https://doi.org/10.3390/ma14227040
Chicago/Turabian StylePalade, Catalin, Ana-Maria Lepadatu, Adrian Slav, Valentin Serban Teodorescu, Toma Stoica, Magdalena Lidia Ciurea, Doru Ursutiu, and Cornel Samoila. 2021. "Nanocrystallized Ge-Rich SiGe-HfO2 Highly Photosensitive in Short-Wave Infrared" Materials 14, no. 22: 7040. https://doi.org/10.3390/ma14227040
APA StylePalade, C., Lepadatu, A. -M., Slav, A., Teodorescu, V. S., Stoica, T., Ciurea, M. L., Ursutiu, D., & Samoila, C. (2021). Nanocrystallized Ge-Rich SiGe-HfO2 Highly Photosensitive in Short-Wave Infrared. Materials, 14(22), 7040. https://doi.org/10.3390/ma14227040