The Mechanism of Fracture and Damage Evolution of Granite in Thermal Environment
Abstract
:1. Introduction
2. Theoretical Basis
3. Numerical Model
3.1. Model Setup
3.2. Block Constitutive Model
3.3. Contact Constitutive Model
3.4. Calibration
4. Results and Discussion
4.1. Stress-Strain Relationship of Granite Specimens after Thermal Damage
4.2. Stress-Strain Curves for Granite after Heat Treatment at Different Temperatures
4.3. Comparison between High-Temperature State and Cooled State
4.4. Shear Cracking and Tensile Cracking
5. Conclusions
- (1)
- If the material has a non-negligible high porosity, the porosity needs to be considered in the UDEC modelling process.
- (2)
- In this research, the model established by Voronoi method can obtain the result which is more consistent with the actual situation after the thermal-mechanical coupling operation. Meanwhile, this method can be used to study the evolution or rock crack after thermal treatment.
- (3)
- According to the modified contact statistics method, shear contact first occurs in granite specimen, and part of shear contacts turns into tensile contacts when the shear contact approaches the peak value.
- (4)
- The thermal effect will lead to the advance of tensile contact. The higher the treatment temperature is, the higher the initial number of tensile contact is. The shear contact has the opposite rule.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kazerani, T. Effect of micromechanical parameters of microstructure on compressive and tensile failure process of rock. Int. J. Rock Mech. Min. Sci. 2013, 64, 44–55. [Google Scholar] [CrossRef]
- Sygała, A.; Bukowska, M.; Janoszek, T. High Temperature Versus Geomechanical Parameters of Selected Rocks—The Present State of Research. J. Sustain. Min. 2013, 12, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-L.; Ni, J.; Shao, W.; Azzam, R. Experimental study on the influence of temperature on the mechanical properties of granite under uni-axial compression and fatigue loading. Int. J. Rock Mech. Min. Sci. 2012, 56, 62–66. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Wang, S.-R.; Ni, J.; Azzam, R.; Fernández-Steeger, T.M. An experimental study of the mechanical properties of granite after high temperature exposure based on mineral characteristics. Eng. Geol. 2017, 220, 234–242. [Google Scholar] [CrossRef]
- Tiskatine, R.; Eddemani, A.; Gourdo, L.; Abnay, B.; Ihlal, A.; Aharoune, A.; Bouirden, L. Experimental evaluation of thermo-mechanical performances of candidate rocks for use in high temperature thermal storage. Appl. Energy 2016, 171, 243–255. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, Q.; Hao, S.; Geng, J.; Lv, C. Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment. Appl. Therm. Eng. 2016, 98, 1297–1304. [Google Scholar] [CrossRef]
- Ni, J.; Chen, Y.-L.; Wang, P.; Wang, S.-R.; Peng, B.; Azzam, R. Effect of chemical erosion and freeze–thaw cycling on the physical and mechanical characteristics of granites. Bull. Int. Assoc. Eng. Geol. 2017, 76, 169–179. [Google Scholar] [CrossRef]
- Hallbauer, D.K.; Wagner, H.; Cook, N.G.W. Some observations concerning the microscopic and mechanical behavior of quartzite specimens in stiff, triaxial compression tests. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1973, 10, 713–726. [Google Scholar] [CrossRef]
- Atkinson, B.K. Fracture Mechanics of Rock; Academic Press Inc: London, UK, 1987. [Google Scholar]
- Takarli, M.; Prince, W.; Siddique, R. Damage in granite under heating/cooling cycles and water freeze–thaw condition. Int. J. Rock Mech. Min. Sci. 2008, 45, 1164–1175. [Google Scholar] [CrossRef]
- Meng, Q.-B.; Wang, C.-K.; Liu, J.-F.; Zhang, M.-W.; Lu, M.-M.; Wu, Y. Physical and micro-structural characteristics of limestone after high temperature exposure. Bull. Int. Assoc. Eng. Geol. 2020, 79, 1259–1274. [Google Scholar] [CrossRef]
- Abe, S. Comparison of discrete element simulations to theoretical predictions of the elastic moduli of damaged rocks. Int. J. Rock Mech. Min. Sci. 2016, 88, 265–272. [Google Scholar] [CrossRef]
- Li, X.; Konietzky, H. Simulation of time-dependent crack growth in brittle rocks under constant loading conditions. Eng. Fract. Mech. 2014, 119, 53–65. [Google Scholar] [CrossRef]
- Bahrani, N.; Kaiser, P.K. Numerical investigation of the influence of specimen size on the unconfined strength of defected rocks. Comput. Geotech. 2016, 77, 56–67. [Google Scholar] [CrossRef]
- Zhang, X.P.; Wang, G.; Jiang, Y.J.; Wu, X.Z.; Wang, Z.C.; Huang, N. Simulation research on granite compression test based on particle discrete element model. Rock Soil Mech. 2014, 35, 99–105. [Google Scholar]
- Zhang, X.P.; Jiang, Y.J.; Wang, G.; Wang, J.C.; Wu, X.Z.; Zhang, Y.Z. Numerical experiments on rate-dependent behaviors of granite based on particle discrete element model. Rock Soil Mech. 2016, 37, 2679–2686. [Google Scholar]
- Potyondy, D.; Cundall, P. A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 2004, 41, 1329–1364. [Google Scholar] [CrossRef]
- Diederichs, M.S. Instability of Hard Rock Masses: The Role of Tensile Damage and Relaxation. Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 2000. [Google Scholar]
- Gao, F.; Stead, D. The application of a modified Voronoi logic to brittle fracture modelling at the laboratory and field scale. Int. J. Rock Mech. Min. Sci. 2014, 68, 1–14. [Google Scholar] [CrossRef]
- Kazerani, T.; Zhao, J. Micromechanical parameters in bonded particle method for modelling of brittle material failure. Int. J. Numer. Anal. Methods Géoméch. 2010, 34, 1877–1895. [Google Scholar] [CrossRef]
- Lisjak, A.; Grasselli, G. A review of discrete modeling techniques for fracturing processes in discontinuous rock masses. J. Rock Mech. Geotech. Eng. 2014, 6, 301–314. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Stead, D.; Elmo, D. Numerical simulation of microstructure of brittle rock using a grain-breakable distinct element grain-based model. Comput. Geotech. 2016, 78, 203–217. [Google Scholar] [CrossRef]
- Nicksiar, M.; Martin, C.D. Factors Affecting Crack Initiation in Low Porosity Crystalline Rocks. Rock Mech. Rock Eng. 2014, 47, 1165–1181. [Google Scholar] [CrossRef]
- Yan, C.; Zheng, H. A coupled thermo-mechanical model based on the combined finite-discrete element method for simulating thermal cracking of rock. Int. J. Rock Mech. Min. Sci. 2017, 91, 170–178. [Google Scholar] [CrossRef]
- Itasca Consulting Group Inc. UDEC User’s Manual; Itasca Consulting Group Inc: Minneapolis, MN, USA, 1996. [Google Scholar]
- Wang, S.; Chen, Y. Experimental and numerical study of the mechanical properties of granite after high temperature exposure. In Proceedings of the China-Europe Conference on Geotechnical Engineering, Vienna, Austria, 13–16 August 2018; pp. 423–426. [Google Scholar]
- Gao, F. Simulation of Failure Mechanisms around Underground Coal Mine Openings Using Discrete Element Modelling. Ph.D. Thesis, Simon Fraser University, Burnaby, BC, Canada, 6 September 2013. [Google Scholar]
Block Parameter | Before | After |
---|---|---|
Density (kg/m3) | 2724 | 2724 |
Poisson’s ratio | 0.23 | 0.23 |
Young’s modulus (GPa) | 40.23 | 30.23 |
Bulk modulus (GPa/m) | 24.82 | 18.66 |
Shear modulus (GPa/m) | 16.35 | 12.29 |
Contact Parameter | Before | After |
---|---|---|
Joint bulk modulus (GPa/m) | 186,520 | 20,000 |
Joint shear modulus (GPa/m) | 186,520 | 16,000 |
Joint cohesion (MPa) | 40 | 55.5 |
Joint residual cohesion (MPa) | 0 | 0 |
Joint friction (°) | 55 | 52 |
Joint residual friction (°) | 45 | 35 |
Joint dilation (°) | 0 | 35 |
Joint tension (MPa) | 20 | 5 |
Joint residual tension (MPa) | 0 | 0 |
1000 °C Experimental Result | 1000 °C Thermo-Mechanical Result | |
---|---|---|
Density (kg/m3) | 2724 | 2724 |
Young’s modulus (GPa) | 2.58 | 30.23 |
Bulk stiffness (GPa/m) | - | 18.66 |
Shear stiffness (GPa/m) | - | 12.29 |
Conductivity (W/(m2·K)) | - | 3.49 |
Specific heat (J/(kg·°C) | - | 920 |
Thermal expansion coefficient (1/°C) | - | 3 × 10−6 |
Joint bulk stiffness (GPa/m) | - | 20,000 |
Joint shear stiffness (GPa/m) | - | 16,000 |
Joint cohesion (MPa) | - | 55.5 |
Joint residual cohesion (MPa) | - | 0 |
Joint friction (°) | - | 52 |
Joint residual friction (°) | - | 35 |
Joint dilation (°) | - | 35 |
Joint tension (MPa) | - | 5 |
Joint residual tension (MPa) | - | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Chen, Y.; Xiong, M.; Du, X.; Liu, G.; Fernández-Steeger, T.M. The Mechanism of Fracture and Damage Evolution of Granite in Thermal Environment. Materials 2021, 14, 7234. https://doi.org/10.3390/ma14237234
Wang S, Chen Y, Xiong M, Du X, Liu G, Fernández-Steeger TM. The Mechanism of Fracture and Damage Evolution of Granite in Thermal Environment. Materials. 2021; 14(23):7234. https://doi.org/10.3390/ma14237234
Chicago/Turabian StyleWang, Suran, Youliang Chen, Min Xiong, Xi Du, Guanlin Liu, and Tomás Manuel Fernández-Steeger. 2021. "The Mechanism of Fracture and Damage Evolution of Granite in Thermal Environment" Materials 14, no. 23: 7234. https://doi.org/10.3390/ma14237234
APA StyleWang, S., Chen, Y., Xiong, M., Du, X., Liu, G., & Fernández-Steeger, T. M. (2021). The Mechanism of Fracture and Damage Evolution of Granite in Thermal Environment. Materials, 14(23), 7234. https://doi.org/10.3390/ma14237234