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Abstract: Based on material constitutive models and the classic Koistinen—-Marburger (KM) kinetics
model, a new dilatometric analysis model was developed to extract the kinetics curve of martensitic
transformation under a temperature gradient and stress from the measured dilatometric data and to
determine the transformation parameters. The proposed dilatometric analysis model is generally for
athermal martensitic transformation, relying only on the average atom volume of martensite and
austenite. Furthermore, through theoretical calculations, the proposed model also provided a more
accurate method for obtaining the martensite start temperature, which is different from the traditional
method. According to the dilatometric analysis results for the martensitic transformation of a type of
high-strength low-alloy steel, and the thermodynamic basis of martensitic transformation, a refined
kinetics model was developed that successfully predicted the martensitic transformation kinetics
curves under different stresses, taking into account the physical significance of the transformation
parameter « and the driving force of stress for martensitic transformation.

Keywords: dilatometric analysis; martensitic transformation kinetics; stress; temperature gradient

1. Introduction

The expansion of metal is essentially a continuous or discontinuous change in atomic
volume caused by temperature change or phase transformation. This physical nature
makes dilatometric analysis a powerful technique for studying the phase transformation
behaviors in ferrous alloys [1-3].

The dilatometric data measured by a sensitive high-speed dilatometer can provide
detailed information on the thermal expansion characteristics and the change in average
atomic volume during transformation [4]. Using specific analysis models, the product
phase fraction can be extracted as a function of temperature or time from the dilatometric
curve.

The classic analysis model proposed to calculate the phase fraction from the dilato-
metric curve is the lever rule [5]. As shown in Figure 1, the linear expansion behaviors
of the dilatometric curve are extrapolated into the temperature range, where phase trans-
formation occurs. Assuming that the fraction of the product phase is proportional to the
dilatation strain, at a given temperature, the fraction of the product phase can be calculated
using Equation (1), according to the relative position of the dilatometric curve between the
two baselines extrapolated from the linear segments:
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Figure 1. Schematic dilatometric curve during transformation.

It should be realized that there are three implicit premises for the establishment of the
lever rule model [1,4,6,7]:

(1) The transformation is essentially complete when the maximum strain of the dilato-
metric curve is reached, usually at room temperature.

(2) Thelever rule can only be applied to single-phase transformation or to multiple phase
transformations if they can be considered to be in sequence, with no overlaps.

(3) The lever rule is only valid for a transformation without repartition of alloy elements.

The previous premises limit the accuracy and availability of the lever rule in most
materials, specifically in continuously-cooled steels after austenitizing. To overcome these
shortcomings, dilatometric analysis models based on the average atom volume were
developed to extract the transformation kinetics curve. Takahashi and Bhadeshia first
examined the proportional relationship between the dimensional change and the fraction
of product phase and provided a quantitative method related to lattice parameters [8].
Then Onink et al. conducted pioneering research in the quantification of simultaneous
transformations [9,10]. The lattice parameters of austenite cementite and ferrite at elevated
temperatures were measured by neutron diffraction and formulated as a function of carbon
content. A numerical model was proposed to calculate the phase transformation kinetics
curve of hyper-eutectoid Fe—C steel during an isothermal transformation by the formulated
lattice parameters.

In subsequent studies, most of the researchers tried to expand the Onink model to a
wider range of applications, while some researchers took a different approach, using the
density of the constituting phases as the basis of their models [6,11,12]. Li et al. [13,14]
suggested a dilatometric analysis model for the isothermal austenite decomposition in
both hyper-eutectoid and hypo-eutectoid Fe-C steels. Some researchers took the effect
of alloying elements on lattice parameters into account [15,16]. Garcia et al. [17] and
Kop et al. [1] improved the model to analyze the transformations in continuously heating
or cooling steels. In Kop’s study, the non-linear relationship between temperature and
the atom volume of austenite due to the repartition of carbon was considered, which was
normally neglected in the standard analysis of the dilatometric data.

The easily-ignored shortcoming of the average atom volume models, which did not
consider the effect of the non-isotropic strain during transformation [4], was studied by Suh
and Oh. In their study, the non-isotropic strain was attributed to the transformation plastic-
ity, expressed as being proportional to the fraction of the product phase. In reference [18],
they further distinguished the contribution of individual transformations to the evolution
of non-isotropic dilatation and proposed a pair of linear relationships with different slopes.

The previous models aimed at the transformations without stress (mostly ferrite
and pearlite transformations in steels, rather than martensitic transformation). However,
martensitic transformation is essentially a stress-assisted transformation and stress can
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directly affect the kinetics, due to the stress-induced transformation. In addition, the
mechanical behavior of the specimen is affected by stress during transformation, leading
to transformation plasticity strain. Therefore, it is essential to develop an analytical model
that takes the effect of stress into account.

Another easily overlooked fact is that the surface of the specimen [19], which is
exposed to convective cooling, radiative cooling, and even stronger conduction cooling
by mediums, can often be cooler than the core zone of the specimen. The temperature
gradient can change the dilatometric curve significantly, through the pre-transformation
on the cooler surface.

In the present paper, a new dilatometric analysis model was proposed to deal with
the martensitic transformation under the function of temperature gradient and stress. By
comparing the kinetics curves under different conditions, an improved kinetics model was
developed that considers the physical significance of the parameter « and the effect of
mechanical driving energy from stress.

2. Models
2.1. The Temperature Field and the Martensite-Start Temperature in the Specimen

As shown in Figure 2, the transforming zone of the specimen for the Gleeble thermal-
mechanical simulator in the present paper can be divided into two zones. Due to the
position close to the thermocouples, the central/middle zone of the specimen can be
regarded as an isothermal zone, since its temperature can be precisely controlled by the
simulator. There is a temperature gradient in the surface/edge zone, due to stronger
heat transfer.

O O
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o
4 Core/middle isothermal zone
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F= The fraction of core/middle isothermal zone

F The fraction of Surface/edge temperature gradient zone
Figure 2. Schematic representation of temperature distribution in the specimen.

Based on Fourier’s law and energy conservation law, the one-dimensional transient
nonlinear differential equation along the transverse direction of the specimen can be

expressed as [20]:
oT 0°T

where t is time, p is density, c is the specific heat capacity, A is the heat transfer coefficient,
and gy is the internal heat source, which can be expressed as the sum of the transformation
latent heat g; and the heat from electric current ge:

v =q1+qe = q1 + AHAf 3)
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where AH is the enthalpy difference between martensite and austenite.
According to Equation (2), since the central/middle zone is an isothermal zone, the
heat from the electric current can be expressed as:

oT
e = ch — AHdfc 4)

When the temperature gradient in the surface/edge zone is small, Equation (2) can be
approximated as:

Tk _ A<82TX

oT 92T, oT
c o5 2 > +pCt+AH(dfs—dfc)~/\( ) +p (5)

C JES—
d 9x? ot
where T, is the temperature at the point with the relative position x.
The boundary conditions in the dilatometric experiment can be expressed as:

T, _r =T

6
A(%S’H = W(Ty — Ts) ~ h(M; — Ty) ©
where T; is the ambient temperature, M is the martensite-start temperature, / is the heat
transfer coefficient of the surface, which can be approximated as a constant in a small
temperature range.
Considering the symmetry, half of the specimen is taken as the research object. Ac-
cording to Equations (5) and (6), the integral calculation gives:

T+ATy-%0x  (0<x<%)

T:
it (32 1)

@)

where AT is the maximal difference of temperature between the central/middle zone and
the surface/edge zone. With a small temperature gradient, due to less impact on kinetics
curve, ATj can be approximated as a constant during transformation and calculated by:

Fs

ATy = — -3
0 20

Lh(Ms — Ts) ®)
where L is the width of the specimen, A is the heat transfer coefficient of austenite at the
reference temperature.

According to Equation (7), when Tx = M, the martensitic transformation starts at the
point with the relative position x, and the martensite-start temperature Mgy measured by
thermocouples in the core/middle zone can be expressed by:

M, - ATo+3lx  (0<x<§)

T =M =
R A (5<x<i)

)

where M is the martensitic transformation start temperature without stress.

Patel and Cohen [21] considered that the work done by stress contributed to the
driving force of transformation and gave an expression for M/, the transformation start
temperature under tensile stress:

dT
~ dAGYTn

dT

where AG77% is the difference of Gibbs free energy between martensite and austenite,
U}pax is the maximum mechanical driving energy, and ¢y is the tensile stress applied on
the specimen.
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Although the temperature gradient and the non-simultaneous martensitic transforma-
tion lead to internal stress in the specimen, the strain from transformation and transfor-
mation plasticity can rapidly reduce the internal stress and result in a uniform stress field
in the complete specimen. Therefore, with a small temperature gradient, the martensite
induced by internal stress can be ignored. Then, according to Equations (9) and (10), the
martensite start temperature My and the martensite start temperature under external
stress are shown in Figure 3.
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Figure 3. The transformation start temperature under a temperature gradient and stress.

2.2. Extracting the Model of the Martensitic Kinetics Curve under a Temperature Gradient
and Stress

During martensitic transformation under stress, the measured strain change Ae can be
written as the sum of individual components, as the following [22]:

Ae = Ae® + AeP + Ae'™ + Ae®P + AeT (11)

where A¢®, AeP, AeT, Aet™, and Ae'P are the strain changes induced by elastic deformation,
plastic deformation, temperature change, transformation, and transformation plasticity.

For the test on a Gleeble thermal-mechanical simulator, the measured strain is longitu-
dinal to the load application/current flow axis. Assuming that the stress is less than the
yield strength during the martensitic transformation, then it can be written as [23]:

1
Ae' = Ae'™ + Ae + AeP! + AeT = Ae'™ — pAe®t — EAStPt + Ae' (12)

where Aée!, Ae®!, and AetP! are the measured strain, the elastic strain, and the transformation
plasticity stain in the longitudinal direction to the load application/current flow axis. Ae®t
and A¢'P! are the elastic stain and the transformation plasticity stain in the transverse
direction. y is the Poisson ratio of specimens.

The change of transformation strain can be calculated by [4]:

av

tr
Ae' = 3V0f

(13)

where V) is the average atomic volume of austenite at the reference temperature, and AV is
the difference between the average atomic volume of martensite and austenite.
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Taking M., the martensite start temperature under stress at the point with the relative
position 0, as the reference temperature, the change of temperature change strain can be
obtained by mixing law [23]:

Ael = [BY(1— f) + B fI(T — Mig) = [BY — (BY — B™)f1(T — M) (14)

where Y and B™ are the expansion coefficient of austenite and martensite.

According to Schuh and Dunand’s induction [24], the change of the transformation
plasticity stain can be approximated as:

pt_ DAV 5[AV Coamy (i agy | 0L
dAe® —gvad ~el v 3(BT = p™)(T — M) aydf (15)

where AV /V is the volume mismatch between austenite and martensite, AV, /V, is the
volume mismatch at the reference temperature, oy is the yield stress of the weaker phase,
and o is the applied external stress.

Considering that most of the martensite is generated rapidly near M;, the strain
from transformation plasticity can be approximated as a linear function of the martensitic
fraction. Then the change of transformation plasticity strain can be calculated by:

5 AV o
6 Vs oy

AetPt — /of 5 {AVO —3(p7 _5m)(T_ Méx) Zidf ~ (16)
Y

61 Vo
where AV;/Vj is the volume mismatch at Ms.
During the martensitic transformation, the material parameters of the specimen
change with the martensitic fraction. The Young’s modulus of the specimen can be ex-
pressed by [23]:
K™KY

K= fr —xmy 1 &m 47

where K™ and KY are Young's modulus of the martensite and the austenite.
The strain due to elastic deformation can be calculated by Hooke’s law,

e KV -KM)fHK™ o KY K™
T kmky 0T kv T gmgy 18)
The change of elastic strain can be calculated by:
KY — K™
t_
Age — W(flf (19)

Combining Equations (12)—(14), (16), and (19), the strain change in the longitudinal
direction has the following relationship with the martensitic fraction:

AV (KY=K™) 1 _5AVo

Ad —BY(T - M;) = 3V (ﬁy—ﬁm)(T—Mé)—ﬂwﬁ—ix 6 Vo oy f (20)

Since the term (BY — p™)(T — M) is much smaller than the other terms, Equation (20)
can be simplified to:
ad = V(T - M)
f= N (KY—Km) 5 AV,

3, H Ry 1T 12V, oy

(21)

Equation (21) reveals that the martensitic fraction is approximately linearly related to
the difference between the measured strain and the strain due to temperature change.

2.3. The Determine of the Transformation Parameter a and the Martensite Start Temperature

The classic martensitic transformation kinetics model that has been widely applied
was proposed by Koistinen and Marburger in 1959 [25]. In this study, the accurate fraction
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of retained austenite in different Fe-C alloys with 0.37 to 1.10 wt.% carbon was measured
with an X-ray diffractometer and a fitted relationship was found, as follow:

f=1—exp[—a(Ms—T)] (22)

where « is a constant and equal to 0.011 for Fe-C alloy with less than 0.11 wt.% carbon.
Ignoring the difference between the transformation parameters « in the surface/edge
zone and the core/middle zone, the martensitic fraction under a temperature gradient can
be calculated using the following equations.
When M < T < My, the martensitic fraction can be calculated by:

Fg

(T_MSO) F F F
. [0 el B ko B Kk B
fffsfz/o {1 —expl-a(Mo ~ T}dv = 33 (T~ M) + on — omexpl-a(Ma ~ 1)) (23)

where fg is the martensitic fraction of the surface/edge zone.
When T < M, the martensitic fraction can be calculated by:

f=fot+fc= 2/07 {1 — exp[—a(Ms — T)]}dx + (1 — Fs){1 — exp|—a(Ms — T)]} = 1 — exp [—zx(Msg - T)] (24)

where fc is the martensitic fraction of the core/middle zone, M® is the equivalent transfor-
mation start temperature under a temperature gradient and can be expressed by:

M = M, — iln{txiSTo [1—exp(aATo)] + (1 — FS)} =M, — %m(l —Fy,) (25
where Fy, is the fraction of martensite at Ms.

Although the KM model was found to fit well with the experimental data only in
the initial stage in many studies, according to Equations (23) and (24), the initial value
of parameters « and M¢ can be determined by fitting the measured kinetics curve with
the KM-equation when T < M; as shown in Figure 4. In addition, Ms can be obtained by
finding the highest temperature where the KM model coincides with the kinetic curve.

The KM Model |

3 . =0.0237
0.8 Experimental data =0.023

M,

Fraction of martensite
o
b
1
T

M?

0-0 T T T T T T T T T T T T
120 140 160 180 200 220 240 260 280 300 320 340 360 380

Temperature
Figure 4. The experimental curve and the fit KM model.

3. Experimental Procedure

The chemical composition of the studied low-carbon alloyed steel is shown in Table 1,
which was measured using a Spectrolab M10 stationary metal analyzer. The specimens,
from a cold-rolled sheet, with an original microstructure of ferrite and pearlite and a
thickness of 1.8 mm, were cut into shape, as shown in Figure 5.
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Table 1. Chemical composition (wt.%) of the investigated steel.

C Mn Si B Cr Ti P Ni Al Cu Mo Co S
0360 1.240 0.232 0.002 0.116 0.031 0.012 0.018 0.016 0.011 0.005 0.005 0.002

100

@ ¢6 ;; (D

$5 }e
5

Figure 5. The drawing of specimens for dilatometric experiment.

10

35

The heating, quenching, and loading process was performed using a Gleeble-1500
thermal-mechanical simulator, and the applied stress in the experimental process was set
according to Figure 6.

Soaking: 180 s at 950°C

Application of tensile stress
at 850°C

/

Cooling under stress
With a rate of 30°C/s

Temperature

Heating rate: 10°C/s

Time
Figure 6. The thermo-mechanical processes of the dilatometric experiment.

To obtain an initial complete, homogeneous austenitizing microstructure, the speci-
mens were heated to the austenitizing temperature of 950 °C with a rate of 10 °C/s and
had a soaking time of 3 min. As shown in Figure 6, the specimens were cooled to 850 °C at
a rate of 30 °C/s after soaking. Then a constant tensile stress was put on the specimens.
With the constant stress, the specimens were quenched to room temperature, with a cooling
rate of 30 °C/s.

4. Results and Discussion
4.1. The Kinetics of Martensitic Transformation without External Stress

Figure 7 shows the measured dilatometric curves of the investigated low-alloy steel
under a temperature gradient without external stress. Although the martensitic kinetic
curves of many kinds of steel, including the investigated steel, have a similar shape to the
KM model, it is important to note that, according to many studies, the parameter « is only
constant in the middle stage of the transformation kinetics curve, between 5% and 60%
martensite, and changes in the initial stage and the ending stage [26].
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Martensitic Fraction

0.24 4 (b)

0.22 4 r

Experimental data
0.20 r
The proposed model
0.18 r

0.16 r
0.14 7 r
0.12 1 L

.
Martensitic Fraction

0.10 4 r
0.08 r

0.086 r
o 5=0185
0.04 2 r

- 0.02 AT =14°C
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The proposed model

120 140 160 180 200 220 240 260 280 300 320

————T—— T 0.00F—T T T T T T
334 336 338 340 342 344 346 348 350 352 354 336 358 360

Temperature  C Temperature  'C

Figure 7. The kinetics curve of martensitic transformation under temperature gradient. (a) The kinetics curve when T < M;
(b) The kinetics curve when Mg < T < M.

Through experimental observation, Magee [27] derived the thermodynamic form of
the KM-model. The newly formed number of martensite laths dN and the change of the
driving force dU have the following proportional relationship:

dN = ¢dU (26)
Then the fraction of the newly formed martensite can be expressed by:

_ _dAGT®
df = VdN = gV——

(1-f)dT (27)
where V is the average volume of newly formed martensitic laths.
The integral calculation gives Equation (22), and & can be expressed as:

dAGT*
- dT

x = (28)
The volume of martensitic laths is constrained by the grain boundary and the formed
laths and changes gradually during transformation, which means « is not always constant
during martensitic transformation. Therefore, it is reasonable to improve the KM-model

as following;:
f=1—exp[—ap(Ms—T)] (29)

where af is a parameter that is constant at the beginning of the transformation but changes
with the fraction of the formed martensite in the following stages.

According to Equation (29), the parameter ap can be extracted from the measured
kinetics curve by:

E T In(1—f) (30)

Figure 8 shows the parameter ay as a function of the formed martensite fraction. It
indicates that ag is constant in the first half of the transformation, where the transformed
martensite is less than 47%. Then, ar enters a linearly decreasing stage until 80% of
austenite has transformed into martensite. Beyond this stage, ar becomes a constant once
more and equals approximately one-quarter of the initial value. When f is more than 87%,
af, starts to decrease linearly again, with a higher rate.
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Figure 8. The measured parameter ap during the transformation without stress.

Through fitting, ap can be expressed as:

X (0< f£<047)
) o1 —0.7353(f — 0.46)] (047 < f < 0.8) -
“F = 07500 (0.8 < f < 0.87) (1)
0.75a0[1 — 7.692(f — 0.87)] (087 < f < 1)

for the tested steel, ay equals 0.0237.
When T < M, according to Equations (29) and (31), the kinetics curve of martensitic
transformation without stress can be expressed as:

T=M+ Lin(l-f) (32)
aF

The proposed kinetics model shows a good agreement with the experimental curve,
as shown in Figure 7a. Considering that the turning points of the parameter ay are only
dependent on geometric constraints, it can be concluded that the proposed model applies
to all the lath martensitic transformations with close habit planes and sliding directions.

In Figure 7b, the agreement between the experimental data and the model prediction
confirms that the deviation between the experimental data and the previous kinetics models
in the initial stage comes from the effect of the temperature gradient.

4.2. The Kinetics of Martensitic Transformation under Stress

Figure 9 shows the parameter af as a function of the martensitic fraction under a
temperature gradient and external stress. Although the curves under different stresses
show the same pattern of variation, the values of ap under stress are bigger than the value
without stress and increase with stress.
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Figure 9. The parameter zxi: during the transformation under stress: (a) 32.7 MPa. (b) 65.4 MPa. (c) 81.7 MPa.

df = ¢V

dAGT

Considering the mechanical driving energy from stress, according to Equation (26),
the fraction of the newly formed martensite can be expressed by the following equation,
when T < Ms:

dT (33)

- . T
(1—Fyy — f)dT + u] [dAG

17 =V (1—Fy, — f)dT + gy df
where U’ is the average mechanical driving force from the applied stress. ¢ is a constant.
A, is the fraction of martensite induced by stress at Ms.
The integral calculation gives an approximate expression for the martensitic fraction:
£ =1 exp[—ap (M3t~ T)] @
where Ms! is the equivalent transformation start temperature under stress and can be
expressed by:

1
MS' = Mg — —In(1 — ag) (35)
&'F
ay, is the transformation parameter under stress and can be expressed by:
1 —
ap = ———ap ~ ap(l+ ¢Voor) = ap(1l + pagpe 36
L s F(1+¢Veor) = ap(l+ papor) (36)

where 1 is a constant.
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M:t_g = Ms —

Approximately, assuming that the parameter af, in the surface/edge zone is always
equal to Déi; in the core/middle zone, when T < Ms, the total fraction of formed martensite
can be obtained by:

fo=rfstfe
=2Jo" {1 —exp[—ap(M' — T)[}dx + (1 - Fs){1 —exp[—ap(M' —T)]}  (37)
=1—exp [—zx{: (Mzt_g — T)}

where MS® is the equivalent transformation start temperature under stress and can be
calculated by:

Fs

/ / 1
alln{ (1- FMs){a{:ATO [1—exp(a'pATp) ]| + (1 — FS)}} = M, — gln(l — Fa,) (38)

According to Equation (34), af; can be extracted from the measured kinetics curve by:

1
/
ap AR Tln(l 1) (39)

The parameter af under stress is shown in Figure 9 and can be expressed by the
following equation through fitting:

o) = ap (1 1545 x 10_80¢F01) (40)

When T < M, according to Equations (34) and (40), the kinetics curve of martensitic
transformation under stress can be expressed as:

1
In(1—
ap(145.45 x 10-8agoq) n(1-£)

T =M, + (41)

5. Conclusions

Based on the proportional relationship between the martensitic fraction and the differ-
ence of the measured strain from thermal strain under stress, a new dilatometric analysis
model was suggested to extract the kinetics curves and determine the transformation
parameters. According to the dilatometric analysis results under different stresses, the KM
kinetics model was refined and the improved model showed excellent agreement with the
experiment results. Furthermore, the following conclusions can be drawn.

(1) The parameter ap was not a constant but a variable, expressed as a segmentation
function with the martensitic fraction as the independent variable. This phenomenon can
be attributed to the linear relationship between o and the average volume of newly formed
martensitic laths.

(2) As a part of the driving force of martensitic transformation, the mechanical energy
from stress increased the value of af linearly.
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