Boron Doped Diamond for Real-Time Wireless Cutting Temperature Monitoring of Diamond Coated Carbide Tools
Abstract
:1. Introduction
2. Materials and Methods
2.1. Deposition of Undoped Diamond on Carbide Tool
2.2. Thermistor Fabrication
2.3. Microstructural and Electrical Characterization
2.4. Machining and Temperature Monitoring
3. Results and Discussion
3.1. CVD Diamond Morphology
3.2. Boron Doped Diamond Electrical Resistance
3.3. Wireless Temperature Monitoring during Milling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davim, J.P. Measurement in Machining and Tribology; Springer Nature Switzerland AG: Cham, Switzerland, 2019. [Google Scholar]
- Abukhshim, N.A.; Mativenga, P.T.; Sheikh, M.A. Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining. Int. J. Mach. Tools Manuf. 2006, 46, 782–800. [Google Scholar] [CrossRef]
- Rizal, M.; Ghani, J.A.; Nuawi, M.Z.; Haron, C.H.C. An embedded multi-sensor system on the rotating dynamometer for real-time condition monitoring in milling. Int. J. Adv. Manuf. Technol. 2017, 95, 811–823. [Google Scholar] [CrossRef]
- Campidelli, A.F.V.; Lima, H.V.; Abrão, A.M.; Maia, A.A.T. Development of a wireless system for milling temperature monitoring. Int. J. Adv. Manuf. Technol. 2019, 104, 1551–1560. [Google Scholar] [CrossRef]
- Yang, G.; Hou, J.Z.; Zhou, W.; Zhu, L.; Duan, H.J. Non-Contact temperature measurement by infrared pyrometer in high speed milling. Appl. Mech. Mater. 2014, 668–669, 969–972. [Google Scholar] [CrossRef]
- Moreira, M.D.O.; Abrão, A.M.; Ferreira, R.A.; Porto, M.P. Temperature monitoring of milling processes using a directional-spectral thermal radiation heat transfer formulation and thermography. Int. J. Heat Mass Transf. 2021, 171, 121051. [Google Scholar] [CrossRef]
- Feteira, A. Negative Temperature Coefficient Resistance (NTCR) Ceramic Thermistors: An Industrial Perspective. J. Am. Ceram. Soc. 2009, 92, 967–983. [Google Scholar] [CrossRef]
- Neto, M.; Esteves, D.; Girão, A.; Oliveira, F.; Silva, R. Tough negative temperature coefficient diamond thermistors comprising tungsten carbide ohmic contacts. Diam. Relat. Mater. 2020, 109, 108036. [Google Scholar] [CrossRef]
- Kim, T.J.; Davis, K.L.; Liu, Y.; Bredemann, J.R.; Ma, Z.; Anderson, M.; Corradini, M.L. Development of a Stable High-Temperature Diamond Thermistor Using Enhanced Supporting Designs. IEEE Sens. J. 2019, 19, 6587–6594. [Google Scholar] [CrossRef]
- Miyata, K.; Saito, K.; Nishimura, K.; Kobashi, K. Fabrication and characterization of diamond film thermistors. Rev. Sci. Instrum. 1994, 65, 3799–3803. [Google Scholar] [CrossRef]
- Blank, V.; Buga, S.; Bormashov, V.; Terentiev, S.; Kuznetsov, M.; Nosukhin, S.; Pel’, E. Pulse thermometers based on synthetic single crystal boron-doped diamonds. Diam. Relat. Mater. 2007, 16, 970–973. [Google Scholar] [CrossRef]
- Bormashov, V.S.; Buga, S.G.; Blank, V.D.; Kuznetsov, M.S.; Nosukhin, S.A.; Terent’Ev, S.A.; Pel’, E.G. Fast-response thermistors made of synthetic single-crystal diamonds. Instrum. Exp. Tech. 2009, 52, 738–742. [Google Scholar] [CrossRef]
- Hess, P. The mechanical properties of various chemical vapor deposition diamond structures compared to the ideal single crystal. J. Appl. Phys. 2012, 111, 051101. [Google Scholar] [CrossRef] [Green Version]
- Chae, K.-W.; Park, J.-K.; Lee, W.-S. Adhesion strength of diamond films on heat-treated WC–Co cutting tools. Diam. Relat. Mater. 2007, 16, 1992–1995. [Google Scholar] [CrossRef]
- Almeida, F.; Sacramento, J.; Oliveira, F.; Silva, R. Micro- and nano-crystalline CVD diamond coated tools in the turning of EDM graphite. Surf. Coat. Technol. 2008, 203, 271–276. [Google Scholar] [CrossRef]
- Almeida, F.; Carrapichano, J.; Fernandes, A.; Sacramento, J.; Silva, R.; Oliveira, F. Nanocrystalline CVD diamond coatings for drilling of WC-Co parts. Int. J. Refract. Met. Hard. Mater. 2011, 29, 618–622. [Google Scholar] [CrossRef]
- Silva, E.; Pratas, S.; Neto, M.; Fernandes, C.; Figueiredo, D.; Silva, R. Multilayer Diamond Coatings Applied to Micro-End-Milling of Cemented Carbide. Materials 2021, 14, 3333. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, J.; Hantschel, T.; Chandler, G.; Vandervorst, W.; Peralta, M. Boron Doping in Hot Filament MCD and NCD Diamond Films. MRS Proc. 2009, 1203, 1201–1203. [Google Scholar] [CrossRef]
- Rana, K.P.S.; Kumar, V.; Dagar, A.K.; Chandel, A.; Kataria, A. FPGA Implementation of Steinhart–Hart Equation for Accurate Thermistor Linearization. IEEE Sens. J. 2018, 18, 2260–2267. [Google Scholar] [CrossRef]
- Steinhart, J.S.; Hart, S.R. Calibration curves for thermistors. Deep. Sea Res. Oceanogr. Abstr. 1968, 15, 497–503. [Google Scholar] [CrossRef]
- Bade, J.; Sahaida, S.; Stoner, B.; von Windheim, J.; Glass, J.; Miyata, K.; Nishimura, K.; Kobashi, K. Fabrication of diamond thin-film thermistors for high-temperature applications. Diam. Relat. Mater. 1993, 2, 816–819. [Google Scholar] [CrossRef]
- Werner, M.; Job, R.; Zaitzev, A.; Fahrner, W.R.; Seifert, W.; Johnston, C.; Chalker, P.R. The Relationship between Resistivity and Boron Doping Concentration of Single and Polycrystalline Diamond. Phys. Status Solidi (a) 1996, 154, 385–393. [Google Scholar] [CrossRef]
- Hapert, J. Hopping Conduction and Chemical Structure: A Study on Silicon Suboxides. Ph.D. Thesis, Utrecht University Repository, Utrecht, The Netherlands, 2002. [Google Scholar]
- Sugino, T.; Muto, Y.; Shirafuji, J.; Kobashi, K. Electrical conduction mechanisms in polycrystalline chemically vapour-deposited diamond films. Diam. Relat. Mater. 1993, 2, 797–802. [Google Scholar] [CrossRef]
- Pipinys, P.; Kiveris, A. Variable range hopping and/or phonon-assisted tunneling mechanism of electronic transport in polymers and carbon nanotubes. Open. Eur. J. Phys. 2012, 10, 271–281. [Google Scholar] [CrossRef] [Green Version]
- Toyabe, T.; Asai, S. Theory of Phonon-Assisted Hopping Conduction in a Piezoeletric Semiconductor. Phys. Rev. B 1973, 8, 1531–1537. [Google Scholar] [CrossRef]
Type of Coating | Layer | H2 (mL/min) | CH4 (mL/min) | Ar (mL/min) | Tfilament (°C) | Tsubstrate (°C) | Pressure (kPa) |
---|---|---|---|---|---|---|---|
Undoped diamond | SMCD | 200 | 4 | 0 | 2300 | 850 | 15 |
NCD | 200 | 8 | 0 | 2250 | 800 | 10 | |
Boron doped diamond | MCD | 100 | 4 | 5 | 2300 | 700 | 75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pratas, S.; Silva, E.L.; Neto, M.A.; Fernandes, C.M.; Fernandes, A.J.S.; Figueiredo, D.; Silva, R.F. Boron Doped Diamond for Real-Time Wireless Cutting Temperature Monitoring of Diamond Coated Carbide Tools. Materials 2021, 14, 7334. https://doi.org/10.3390/ma14237334
Pratas S, Silva EL, Neto MA, Fernandes CM, Fernandes AJS, Figueiredo D, Silva RF. Boron Doped Diamond for Real-Time Wireless Cutting Temperature Monitoring of Diamond Coated Carbide Tools. Materials. 2021; 14(23):7334. https://doi.org/10.3390/ma14237334
Chicago/Turabian StylePratas, Sérgio, Eduardo L. Silva, Miguel A. Neto, Cristina M. Fernandes, António J. S. Fernandes, Daniel Figueiredo, and Rui F. Silva. 2021. "Boron Doped Diamond for Real-Time Wireless Cutting Temperature Monitoring of Diamond Coated Carbide Tools" Materials 14, no. 23: 7334. https://doi.org/10.3390/ma14237334
APA StylePratas, S., Silva, E. L., Neto, M. A., Fernandes, C. M., Fernandes, A. J. S., Figueiredo, D., & Silva, R. F. (2021). Boron Doped Diamond for Real-Time Wireless Cutting Temperature Monitoring of Diamond Coated Carbide Tools. Materials, 14(23), 7334. https://doi.org/10.3390/ma14237334