Influence of Different Heater Structures on the Temperature Field of AlN Crystal Growth by Resistance Heating
Abstract
:1. Introduction
2. Simulation Model and Physical Parameters
2.1. Subsection Physical Model and Physical Parameters
2.2. Thermal Field Geometric Model and Simulation Parameters
3. Simulation Results and Discussion
4. Summary
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ambacher, O. Growth and applications of group III-nitrides. J. Phys. D Appl. Phys. 1998, 31, 2653–2710. [Google Scholar] [CrossRef]
- Yu, R.X.; Liu, G.X.; Wang, G.D.; Chen, C.M.; Xu, M.S.; Zhou, H.; Wang, T.L.; Yu, J.X.; Zhao, G.; Zhang, L. Ultrawide-bandgap semiconductor AlN crystals: Growth and applications. J. Mater. Chem. C 2021, 9, 1852–1873. [Google Scholar] [CrossRef]
- Sun, M.; Li, J.; Zhang, J.; Sun, W. The fabrication of AlN by hydride vapor phase epitaxy. J. Semicond. 2019, 40, 121803. [Google Scholar] [CrossRef]
- Zheng, W.; Huang, F.; Zheng, R.; Wu, H. Low-dimensional structure vacuum-ultraviolet-sensitive (λ < 200 nm) photodetector with fast-response speed based on high-quality AlN micro/nanowire. Adv. Mater. 2015, 27, 3921–3927. [Google Scholar]
- Yang, F.; Jin, L.; Sun, L.; Ren, X.; Duan, X.; Cheng, H.; Xu, Y.; Zhang, X.; Lai, Z.; Chen, W.; et al. Free-standing 2D hexagonal aluminum nitride dielectric crystals for high-performance organic field-effect transistors. Adv. Mater. 2018, 30, 1801891. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.J.; Lienhard, B.; Jeong, K.Y.; Moon, H.; Iranmanesh, A.; Grosso, G.; Englund, D. Bright high-purity quantum emitters in aluminum nitride integrated photonics. ACS Photonics 2020, 7, 2650–2657. [Google Scholar] [CrossRef]
- Taniyasu, Y.; Kasu, M.; Makimoto, T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 2006, 441, 325–328. [Google Scholar] [CrossRef]
- Chen, Z.L.; Liu, Z.Q.; Wei, T.B.; Yang, S.Y.; Dou, Z.P.; Wang, Y.Y.; Ci, H.N.; Chang, H.L.; Qi, Y.; Yan, J.C.; et al. Improved epitaxy of AlN film for deep-ultraviolet light-emitting diodes enabled by graphene. Adv. Mater. 2019, 31, 1807345. [Google Scholar] [CrossRef] [PubMed]
- Grandusky, J.R.; Smart, J.A.; Mendrick, M.C.; Schowalter, L.J.; Chen, K.X.; Schubert, E.F. Pseudomorphic growth of thick n-type AlxGa1−xN layers on low-defect-density bulk AlN substrates for UV LED applications. J. Cryst. Growth 2009, 311, 2864–2866. [Google Scholar] [CrossRef]
- Hartmann, C.; Dittmar, A.; Bickermann, M. Bulk AlN growth by physical vapour transport. Semicond. Sci. Technol. 2014, 29, 084002. [Google Scholar] [CrossRef]
- Slack, G.A.; McNelly, T.F. Growth of high purity AlN crystals. J. Cryst. Growth 1976, 34, 263–279. [Google Scholar] [CrossRef]
- Sumathi, R. Bulk AlN single crystal growth on foreign substrate and preparation of free-standing native seeds. CrystEngComm 2013, 15, 2232–2240. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Zhang, L.; Wang, Y.; Shao, Y.; Chen, C.; Liu, G.; Wu, Y.; Hao, X. Effect of temperature gradient on AlN crystal growth by physical vapor transport method. Cryst. Growth Des. 2019, 19, 6736–6742. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, L.; Wang, Y.; Shao, Y.; Chen, C.; Liu, G.; Yao, X.; Wu, Y.; Hao, X. Growth and stress analysis of spontaneous nucleation c-plane bulk AlN crystals by a PVT method. Cryst. Res. Technol. 2020, 55, 2000118. [Google Scholar] [CrossRef]
- Wang, Q.K.; Huang, J.L.; Wang, Z.H.; He, G.D.; Lei, D.; Gong, J.W.; Wu, L. Anisotropic three-dimensional thermal stress modeling and simulation of homoepitaxial AlN single crystal growth by the physical vapor transport method. Cryst. Growth Des. 2018, 18, 2998–3007. [Google Scholar] [CrossRef]
- Wang, Q.K.; Huang, J.L.; Fu, D.Y.; He, G.D.; Lei, D.; Wu, L. Influence of crucible shape on mass transport in AlN crystal growth by physical vapor transport process. J. Cryst. Growth 2019, 515, 21–25. [Google Scholar] [CrossRef]
- Wang, Z.H.; Deng, X.L.; Cao, K.; Wang, J.; Wu, L. Hotzone design and optimization for 2-in. AlN PVT growth process through global heat transfer modeling and simulations. J. Cryst. Growth 2017, 474, 76–80. [Google Scholar] [CrossRef]
- Qin, Z.; Chen, W.; Deng, D.; Sun, Z.; Li, B.; Zheng, R.; Wu, H. Simulation and experiment for growth of high-quality and large-size AlN seed crystals by spontaneous nucleation. Sensors 2020, 20, 3939. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Liu, B.T.; Tang, X.; Liu, S.; Gao, B. Homogenization of radial temperature by a tungsten sink in sublimation growth of 45 mm AlN single crystal. Materials 2020, 13, 5553. [Google Scholar] [CrossRef]
- Vilhunen, S.; Särkkä, H.; Sillanpää, M. Ultraviolet light-emitting diodes in water disinfection. Environ. Sci. Pollut. Res. 2009, 16, 439–442. [Google Scholar] [CrossRef]
- Xu, Z.; Sadler, B.M. Ultraviolet communications: Potential and state-of-the-art. IEEE Commun. Mag. 2008, 46, 67–73. [Google Scholar]
- Katagiri, Y.; Kishino, S.; Okuura, K.; Miyake, H.; Hiramatu, K. Low-pressure HVPE growth of crack-free thick AlN on a trenchpatterned AlN template. J. Cryst. Growth 2009, 311, 2831–2833. [Google Scholar] [CrossRef]
- Herro, Z.; Zhuang, D.; Schlesser, R.; Collazo, R.; Sitar, Z. Seeded growth of AlN on N- and Al-polar <0001> AlN seeds by physical vapor transport. J. Cryst. Growth 2006, 286, 205–208. [Google Scholar] [CrossRef]
- Freitas, J.A. Properties of the state of the art of bulk III-V nitride substrates and homoepitaxial layers. J. Phys. D Appl. Phys. 2010, 43, 073001. [Google Scholar] [CrossRef] [Green Version]
AlN | W | Mo | Al | Stainless Steel | |
---|---|---|---|---|---|
Thermal conductivity, k (W m−1k−1) | 220 | 175 | 138 | 138 | 44.5 |
Isobaric specific heat, Cp (J kg−1K−1) | 1197 | 132 | 250 | 900 | 475 |
Density, ρ (kg m−3) | 2702 | 17,800 | 10,200 | 2700 | 7850 |
Emissivity, ε | 0.08 | 0.04 | 0.08 | 0.07 | 0.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, R.; Chen, C.; Wang, G.; Liu, G.; Wang, S.; Hu, X.; Lei, M.; Xu, X.; Zhang, L. Influence of Different Heater Structures on the Temperature Field of AlN Crystal Growth by Resistance Heating. Materials 2021, 14, 7441. https://doi.org/10.3390/ma14237441
Yu R, Chen C, Wang G, Liu G, Wang S, Hu X, Lei M, Xu X, Zhang L. Influence of Different Heater Structures on the Temperature Field of AlN Crystal Growth by Resistance Heating. Materials. 2021; 14(23):7441. https://doi.org/10.3390/ma14237441
Chicago/Turabian StyleYu, Ruixian, Chengmin Chen, Guodong Wang, Guangxia Liu, Shouzhi Wang, Xiaobo Hu, Ma Lei, Xiangang Xu, and Lei Zhang. 2021. "Influence of Different Heater Structures on the Temperature Field of AlN Crystal Growth by Resistance Heating" Materials 14, no. 23: 7441. https://doi.org/10.3390/ma14237441
APA StyleYu, R., Chen, C., Wang, G., Liu, G., Wang, S., Hu, X., Lei, M., Xu, X., & Zhang, L. (2021). Influence of Different Heater Structures on the Temperature Field of AlN Crystal Growth by Resistance Heating. Materials, 14(23), 7441. https://doi.org/10.3390/ma14237441