High Resolution Powder Electron Diffraction in Scanning Electron Microscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. TEM Characterization
2.3. Calculation of PXRD Diffraction Patterns
2.4. 4D-STEM/PNBD Measurements and Calculations
2.4.1. SEM Microscope with Pixelated Detector
2.4.2. Principle of 4D-STEM/PNBD Method
2.4.3. 4D-STEM/PNBD Measurements
3. Results
3.1. Results of the Improved 4D-STEM/PNBD Method
3.1.1. Au Nanoislands: Strongly Diffracting Nanocrystals
3.1.2. TbF3 Nanoparticles: Smaller Nanocrystals with Preferred Orientation
3.1.3. TiO2 Nanoparticles: Differentiation between Anatase and Rutile Modifications
3.2. Description of the Improved STEMDIFF Package
3.2.1. STEMDIFF Algorithm
3.2.2. STEMDIFF User Interface
3.3. Influence of Experimental and Processing Parameters on 4D-STEM/PNBD Results
3.3.1. Data Processing Parameters: Summation and Deconvolution
3.3.2. Experimental Parameters: Primary Beam Intensity and Exposure Time
3.3.3. Experimental Parameters: Dataset Size
4. Discussion
4.1. Originality and Novelty of 4D-STEM/PNBD Method
4.2. Advantages and Disadvantages of 4D-STEM/PNBD Method
- Ease of use: The measurement of 4D-STEM dataset in a modern SEM microscope with modern software is a routine task. The conversion of 4D-STEM data to 1D-powder diffractogram is performed automatically with freeware STEMDIFF package. The final analysis of a single 1D-powder electron diffractogram is usually quite easy as explained in the following item.
- Accessible to everyone: The method can be used by virtually anyone with basic SEM experience and elementary computer skills. The analysis of powder electron diffraction pattern is basically a fingerprint method consisting of three steps: (i) the obtaining experimental diffractogram by means of 4D-STEM/PNBD method as described above in Section 3.2, (ii) the simple calculation of the theoretical PXRD diffractogram of the analyzed sample by means of arbitrary free software, such as PowderCell [19] or VESTA [27], and (iii) the comparison of the results. If the experimental and theoretical diffractograms correspond to each other (such as those in Figure 2, Figure 3 and Figure 4), the crystal structure is identified.
- The conversion of an SEM microscope to a powder diffractometer: This opens quite new possibilities for SEM users. Standard SEM methods include imaging (with secondary, backscattered or transmitted electrons) and elemental analysis (such as energy-dispersive analysis of X-rays). A simple diffraction technique in an SEM microscope, equivalent to TEM/SAED, has been missing so far. The 4D-STEM/PNBD method aims to fill this gap as it enables to identify crystal structures of nanocrystalline powders like in the field of TEM microscopy.
4.3. Possible Artifacts on 4D-STEM/PNBD Diffractograms Connected with PSF Deconvolution
4.4. Further Applications of 4D-STEM/PNBD Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. STEMDIFF Package—Installation, Documentation, Tips and Tricks
- Total number of files. The STEMDIFF calculates automatically all summations that convert 4D-STEM data to powder 2D- and 1D-diffraction patterns (i.e., summation of all files, summation of high-entropy files, and summation of high-entropy files with PSF deconvolution—as shown in Figure 5). The optimal number of files for the summation is slightly above 2000: higher numbers prolong calculation times without improving results significantly, while lower numbers may be insufficient to catch low-intensity diffractions.
- Percentage of high-entropy files. For summation of high-entropy files, the optimal results are usually obtained if we use 20–40% of files with the highest entropies: higher percentage prolong calculation times and diminish the filtering effect, while lower percentage may lead to less precise intensity ratios, as some less frequent crystal orientations may not be included in the filtered dataset. The exact percentage for given sample is connected with fraction of empty space between nanocrystals.
- Number of iterations during PSF deconvolution. For summation of high-entropy files with deconvolution, the optimal number of deconvolution iterations (using current implementation of Richardson-Lucy deconvolution algorithm in Python) usually ranges from 100–300: higher values prolong calculation times without improving the result and lower values may lead to incomplete deconvolution.
- Smaller area of the detector employed in summations. The edge areas of the detector may contain diffractions with very low or zero intensity. In such a case the program can be instructed to ignore edge areas of the stored files and take into consideration only central square with defined size. This may save a substantial amount of computing time needed for PSF deconvolution step.
- Upsampling. Contemporary pixelated STEM detectors have limited resolution. The modern DED detector employed in this work was an array of 256 × 256 pixels. The STEMDIFF program increases (i.e., upsamples) the resolution 4 times to 1024 × 1024 pixels, which is comparable to TEM cameras. The additional points are interpolated (using 2D bicubic interpolation algorithm). The upsampling constant can be adjusted by the user, but the resolution 1024 × 1024 was found optimal: a lower resolution led to rough profiles and a higher resolution increased the computation times considerably without any significant benefit. In this contribution, all 2D- and 1D-diffraction patterns are shown after the fourfold upsampling.
Appendix B. STEMDIFF Package—MATLAB Version
Appendix C. Reliability and Reproducibility of 4D-STEM/PNBD Method
References
- Watt, I.M. The Principles and Practice of Electron Microscopy, 2nd ed.; Cambridge University Press: Cambridge, UK, 1997; p. 500. [Google Scholar]
- Shibata, N.; Kohno, Y.; Findlay, S.D.; Sawada, H.; Kondo, Y.; Ikuhara, Y. New area detector for atomic-resolution scanning transmission electron microscopy. J. Electron. Microsc. (Tokyo) 2010, 59, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Skoupy, R.; Nebesarova, J.; Slouf, M.; Krzyzanek, V. Quantitative STEM imaging of electron beam induced mass loss of epoxy resin sections. Ultramicroscopy 2019, 202, 44–50. [Google Scholar] [CrossRef]
- Sun, C.; Muller, E.; Meffert, M.; Gerthsen, D. On the Progress of Scanning Transmission Electron Microscopy (STEM) Imaging in a Scanning Electron Microscope. Microsc. Microanal. 2018, 24, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Beche, A.; Rouviere, J.L.; Barnes, J.P.; Cooper, D. Strain measurement at the nanoscale: Comparison between convergent beam electron diffraction, nano-beam electron diffraction, high resolution imaging and dark field electron holography. Ultramicroscopy 2013, 131, 10–23. [Google Scholar] [CrossRef]
- Faruqi, A.R.; McMullan, G. Direct imaging detectors for electron microscopy. Nucl. Instrum. Methods Phys. Res. Sect. A 2018, 878, 180–190. [Google Scholar] [CrossRef]
- MacLaren, I.; Macgregor, T.A.; Allen, C.S.; Kirkland, A.I. Detectors—The ongoing revolution in scanning transmission electron microscopy and why this important to material characterization. APL Mater. 2020, 8, 110901. [Google Scholar] [CrossRef]
- Ophus, C. Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM): From Scanning Nanodiffraction to Ptychography and Beyond. Microsc. Microanal. 2019, 25, 563–582. [Google Scholar] [CrossRef] [Green Version]
- Savitzky, B.H.; Zeltmann, S.E.; Hughes, L.A.; Brown, H.G.; Zhao, S.; Pelz, P.M.; Pekin, T.C.; Barnard, E.S.; Donohue, J.; Rangel DaCosta, L.; et al. py4DSTEM: A Software Package for Four-Dimensional Scanning Transmission Electron Microscopy Data Analysis. Microsc. Microanal. 2021, 27, 712–743. [Google Scholar] [CrossRef]
- Vystavěl, T.; Tůma, L.; Stejskal, P.; Unčovský, M.; Skalický, J.; Young, R. Expanding Capabilities of Low-kV STEM Imaging and Transmission Electron Diffraction in FIB/SEM Systems. Microsc. Microanal. 2017, 23, 554–555. [Google Scholar] [CrossRef] [Green Version]
- Holm, J.D.; Caplins, B.W. STEM in SEM: Introduction to Scanning Transmission Electron Microscopy for Microelectronics Failure Analysis; ASM International: Novelty, OH, USA, 2020. [Google Scholar]
- Caplins, B.W.; Holm, J.D.; Keller, R.R. Orientation mapping of graphene in a scanning electron microscope. Carbon 2019, 149, 400–406. [Google Scholar] [CrossRef]
- Caplins, B.W.; Holm, J.D.; White, R.M.; Keller, R.R. Orientation mapping of graphene using 4D STEM-in-SEM. Ultramicroscopy 2020, 219, 113137. [Google Scholar] [CrossRef]
- Schweizer, P.; Denninger, P.; Dolle, C.; Spiecker, E. Low energy nano diffraction (LEND)—A versatile diffraction technique in SEM. Ultramicroscopy 2020, 213, 112956. [Google Scholar] [CrossRef] [PubMed]
- Slouf, M.; Skoupy, R.; Pavlova, E.; Krzyzanek, V. Powder Nano-Beam Diffraction in Scanning Electron Microscope: Fast and Simple Method for Analysis of Nanoparticle Crystal Structure. Nanomaterials 2021, 11, 962. [Google Scholar] [CrossRef] [PubMed]
- Labar, J.L.; Adamik, M.; Barna, B.P.; Czigany, Z.; Fogarassy, Z.; Horvath, Z.E.; Geszti, O.; Misjak, F.; Morgiel, J.; Radnoczi, G.; et al. Electron diffraction based analysis of phase fractions and texture in nanocrystalline thin films, Part III: Application examples. Microsc. Microanal. 2012, 18, 406–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slouf, M.; Vacková, T.; Zhigunov, A.; Sikora, A.; Piorkowska, E. Nucleation of Polypropylene Crystallization with Gold Nanoparticles. Part 2: Relation between Particle Morphology and Nucleation Activity. J. Macromol. Sci. Part B 2016, 55, 393–410. [Google Scholar] [CrossRef]
- Shapoval, O.; Oleksa, V.; Slouf, M.; Lobaz, V.; Trhlikova, O.; Filipova, M.; Janouskova, O.; Engstova, H.; Pankrac, J.; Modry, A.; et al. Colloidally Stable P(DMA-AGME)-Ale-Coated Gd(Tb)F3:Tb(3+)(Gd(3+)),Yb(3+),Nd(3+) Nanoparticles as a Multimodal Contrast Agent for Down- and Upconversion Luminescence, Magnetic Resonance Imaging, and Computed Tomography. Nanomaterials 2021, 11, 230. [Google Scholar] [CrossRef]
- Kraus, W.; Nolze, G. POWDER CELL—A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Crystallogr. 1996, 29, 301–303. [Google Scholar] [CrossRef]
- Glasser, L. Crystallographic Information Resources. J. Chem. Educ. 2016, 93, 542–549. [Google Scholar] [CrossRef]
- Granja, C.; Jakubek, J.; Polansky, S.; Zach, V.; Krist, P.; Chvatil, D.; Stursa, J.; Sommer, M.; Ploc, O.; Kodaira, S.; et al. Resolving power of pixel detector Timepix for wide-range electron, proton and ion detection. Nucl. Instrum. Methods Phys. Res. Sect. A 2018, 908, 60–71. [Google Scholar] [CrossRef]
- Andrews, K.W.; Dyson, D.J.; Keown, S.R. Interpretation of Electron Diffraction Patterns; Plenum Press: New York, NY, USA, 1967. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, R.; Gonçalves, W.N.; Lopes, F.J.P.; Bruno, O.M. Multi-q pattern analysis: A case study in image classification. Phys. A Stat. Mech. Appl. 2012, 391, 4487–4496. [Google Scholar] [CrossRef]
- Nord, M.; Webster, R.W.H.; Paton, K.A.; McVitie, S.; McGrouther, D.; MacLaren, I.; Paterson, G.W. Fast Pixelated Detectors in Scanning Transmission Electron Microscopy. Part I: Data Acquisition, Live Processing, and Storage. Microsc. Microanal. 2020, 26, 653–666. [Google Scholar] [CrossRef] [PubMed]
- Moskvin, M.; Huntosova, V.; Herynek, V.; Matous, P.; Michalcova, A.; Lobaz, V.; Zasonska, B.; Slouf, M.; Seliga, R.; Horak, D. In vitro cellular activity of maghemite/cerium oxide magnetic nanoparticles with antioxidant properties. Colloids Surf. B Biointerfaces 2021, 204, 111824. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Gammer, C.; Burak Ozdol, V.; Liebscher, C.H.; Minor, A.M. Diffraction contrast imaging using virtual apertures. Ultramicroscopy 2015, 155, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Shukla, A.K.; Ramasse, Q.M.; Ophus, C.; Kepaptsoglou, D.M.; Hage, F.S.; Gammer, C.; Bowling, C.; Gallegos, P.A.H.; Venkatachalam, S. Effect of composition on the structure of lithium- and manganese-rich transition metal oxides. Energy Environ. Sci. 2018, 11, 830–840. [Google Scholar] [CrossRef]
- Allen, F.I.; Pekin, T.C.; Persaud, A.; Rozeveld, S.J.; Meyers, G.F.; Ciston, J.; Ophus, C.; Minor, A.M. Fast Grain Mapping with Sub-Nanometer Resolution Using 4D-STEM with Grain Classification by Principal Component Analysis and Non-Negative Matrix Factorization. Microsc. Microanal. 2021, 27, 794–803. [Google Scholar] [CrossRef]
- Pekin, T.C.; Gammer, C.; Ciston, J.; Ophus, C.; Minor, A.M. In situ nanobeam electron diffraction strain mapping of planar slip in stainless steel. Scr. Mater. 2018, 146, 87–90. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Chen, Z.; Han, Y.; Deb, P.; Gao, H.; Xie, S.; Purohit, P.; Tate, M.W.; Park, J.; Gruner, S.M.; et al. Electron ptychography of 2D materials to deep sub-angstrom resolution. Nature 2018, 559, 343–349. [Google Scholar] [CrossRef]
- Guo, M.; Li, Y.; Su, Y.; Lambert, T.; Nogare, D.D.; Moyle, M.W.; Duncan, L.H.; Ikegami, R.; Santella, A.; Rey-Suarez, I.; et al. Rapid image deconvolution and multiview fusion for optical microscopy. Nat. Biotechnol. 2020, 38, 1337–1346. [Google Scholar] [CrossRef]
- Sage, D.; Donati, L.; Soulez, F.; Fortun, D.; Schmit, G.; Seitz, A.; Guiet, R.; Vonesch, C.; Unser, M. DeconvolutionLab2: An open-source software for deconvolution microscopy. Methods 2017, 115, 28–41. [Google Scholar] [CrossRef] [PubMed]
- Sarder, P.; Nehorai, A. Deconvolution methods for 3-D fluorescence microscopy images. IEEE Signal Process. Mag. 2006, 23, 32–45. [Google Scholar] [CrossRef]
- McBride, W.; Cockayne, D.J.H.; Tsuda, K. Deconvolution of electron diffraction patterns of amorphous materials formed with convergent beam. Ultramicroscopy 2003, 94, 305–308. [Google Scholar] [CrossRef]
- Zuo, B.; Hu, X.; Cai, Z.; Tian, J. Deconvolution image ringing artifacts removal via anisotropic diffusion. Opt. Eng. 2012, 51, 057001. [Google Scholar] [CrossRef]
- Horák, D.; Hlídková, H.; Trachtová, Š.; Šlouf, M.; Rittich, B.; Španová, A. Evaluation of poly(ethylene glycol)-coated monodispersed magnetic poly(2-hydroxyethyl methacrylate) and poly(glycidyl methacrylate) microspheres by PCR. Eur. Polym. J. 2015, 68, 687–696. [Google Scholar] [CrossRef]
- Tarkistani, M.A.M.; Komalla, V.; Kayser, V. Recent Advances in the Use of Iron-Gold Hybrid Nanoparticles for Biomedical Applications. Nanomaterials 2021, 11, 1227. [Google Scholar] [CrossRef]
- Mansor, M.; Hamilton, T.L.; Fantle, M.S.; Macalady, J.L. Metabolic diversity and ecological niches of Achromatium populations revealed with single-cell genomic sequencing. Front. Microbiol. 2015, 6, 822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres-Torres, D.; Bornacelli, J.; Vega-Becerra, O.; Garay-Tapia, A.M.; Aguirre-Tostado, F.S.; Torres-Torres, C.; Oliver, A. Magnetic Force Microscopy Study of Multiscale Ion-Implanted Platinum in Silica Glass, Recorded by an Ultrafast Two-Wave Mixing Configuration. Microsc. Microanal. 2020, 26, 53–62. [Google Scholar] [CrossRef] [PubMed]
- VanderPlas, J. Python Data Science Handbook; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2017; p. 529. [Google Scholar]
Dataset ID | Step 1 [nm] | Scanning Matrix 2 | HFW 3 [µm] | WD 4 [mm] | Probe Current [pA] | Total No. of Files | Duration [h:m:s] |
---|---|---|---|---|---|---|---|
Au | 20 | 9 × 230 | 4.6 | 5.4 | 25 | 2070 | 0:05:30 |
TbF3 | 50 | 12 × 190 | 9.5 | 4.8 | 25 | 2280 | 0:06:20 |
TiO2/anatase | 25 | 20 × 100 | 2.5 | 3.2 | 13 | 2000 | 0:10:30 |
TiO2/rutile | 25 | 20 × 100 | 2.5 | 3.2 | 13 | 2000 | 0:10:30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slouf, M.; Skoupy, R.; Pavlova, E.; Krzyzanek, V. High Resolution Powder Electron Diffraction in Scanning Electron Microscopy. Materials 2021, 14, 7550. https://doi.org/10.3390/ma14247550
Slouf M, Skoupy R, Pavlova E, Krzyzanek V. High Resolution Powder Electron Diffraction in Scanning Electron Microscopy. Materials. 2021; 14(24):7550. https://doi.org/10.3390/ma14247550
Chicago/Turabian StyleSlouf, Miroslav, Radim Skoupy, Ewa Pavlova, and Vladislav Krzyzanek. 2021. "High Resolution Powder Electron Diffraction in Scanning Electron Microscopy" Materials 14, no. 24: 7550. https://doi.org/10.3390/ma14247550
APA StyleSlouf, M., Skoupy, R., Pavlova, E., & Krzyzanek, V. (2021). High Resolution Powder Electron Diffraction in Scanning Electron Microscopy. Materials, 14(24), 7550. https://doi.org/10.3390/ma14247550