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Abstract: An original technique of chemical deposition (CVD) by catalytic pyrolysis of ethanol vapor
was used to directly grow multiwall carbon nanotubes (MWCNTs) layers on aluminum foil. The
grown nanotubes had excellent adhesion and direct electrical contact to the aluminum substrate.
This material was perfect for use in electrochemical supercapacitors. In this work, the possibility
of a significant increase in the specific capacity of MWCNTs by simple electrochemical oxidation
was investigated. The optimal conditions for improving the characteristics of the MWCNT/Al
electrodes were found. Electrochemical treatment of MWCNT/Al electrodes in a 0.005 M Na2SO4

solution at a potential of 4–5 V for 20–30 min increased the specific capacity of MWCNTs from
30 F/g to 140 F/g. The properties of modified nanotubes were investigated by X-ray photoelectron
spectroscopy, cyclic voltammetry (CV), and impedance spectroscopy. A significant increase in the
concentration of oxygen-containing functional groups on the surface of MWCNTs was found as
a result of electrochemical oxidation. The modified MWCNT/Al electrodes maintained excellent
stability to multiple charge–discharge cycles. After 20,000 CVs, the capacity loss was less than 5%.
Thus, the results obtained significantly expanded the possibilities of using MWCNT/Al composite
materials obtained by the method of direct deposition of carbon nanotubes on aluminum foil as
electrodes for supercapacitors.

Keywords: CVD; supercapacitors; carbon nanotubes on aluminum foil; electrochemical oxidation

1. Introduction

Numerous useful properties of carbon nanomaterials, such as a large specific surface
area, low specific gravity, excellent chemical resistance, low cost and abundant supply of
starting materials for their production, make them very attractive for widespread use in
various fields of practical application [1–3]. Among them, carbon nanomaterials are often
applied to promising energy sources [4–6]. They are of particular interest for developing
electric double layer capacitors (EDLCs) or supercapacitors, as their characteristics directly
depend on the surface area of the working electrodes increased by carbon nanomaterials.
In this regard, carbon nanotubes (CNTs) are of constant interest in this field of applica-
tion, since they possess all the properties required (e.g., high specific surface area, low
electrical resistance and chemical stability) for use in supercapacitors [7–9]. At the same
time, the value of the specific capacity of the raw (untreated) CNTs as an active material of
supercapacitors does not exceed several tens of F/g when they are an active material for
supercapacitors [10–12]. This is not enough to effectively compete with modern nanomate-
rials with hundreds of F/g [9]. There have been methods reported [13–16] for achieving
significant improvements in the characteristics of CNTs involving surface functionalization.
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The most common method for activating the CNT surface is the treatment of materials with
strong oxidants. More than 40% increase in capacity was observed after treatment of carbon
fabrics with concentrated nitric acid [13]. Frackowiak et al. [14] observed that the values of
specific capacitance varied from 4 to 135 F/g, depending on the type of nanotubes or/and
their posttreatments. Kang et al. [15] obtained MWCNTs with specific capacity of 147 F/g
after oxidation with chlorate and thermal deoxygenation in air. In the work of Frackowiak
et al. [16], MWCNTs were activated with KOH at 800 ◦C under argon flow, resulting in a
nearly 7-fold increase in their specific capacity (from 15 to 90 F/g). However, this method of
nanotube activation has a number of significant drawbacks. High temperature processing
with strong oxidants is dangerous and requires strict precautions. Aggressive reagents
and wash water must be disposed of after CNT processing. Activated nanotubes acquire
hydrophilic properties and are difficult to separate from the solution. When electrodes are
made of bulk materials, functionalization of the nanotube surface can lead to an increase of
the electrical resistance in the active layer and in the contact with the current collector.

At present, the processes of direct growth of CNTs on metal substrates are being devel-
oped. Such composite materials can be directly used as supercapacitor electrodes [17–19].
Methods for growing CNTs on an aluminum substrate are of great interest, as aluminum
is the most suitable inexpensive material for electrodes due to its properties (low specific
gravity −2.7 g/cm3, low specific electrical resistivity −2.7× 10−8 Ohm·m, high plasticity,
etc., http://www.matweb.com, accessed on 10 September 2021). There are serious limita-
tions associated with direct deposition of CNTs on aluminum including a lack of catalytic
properties and a relatively low melting point (660 ◦C) of this metal. Nevertheless, several
authors have demonstrated successful results on the deposition of CNTs on aluminum
substrates and the use of the obtained materials as supercapacitor electrodes [20–25].

Specific capacitance is one of the most important characteristics of a supercapacitor
electrode material for energy storage. As mentioned above, specific capacity of pristine
nanotubes can be significantly increased by oxidation. The problem of increasing the
specific capacity is also relevant for CNTs on aluminum substrates. Obviously, methods
of improving performance by treating with concentrated acids and alkalis under harsh
conditions are not applicable to this category of materials. In this case, the method of elec-
trochemical modification of CNTs is more suitable. The method consists of anodic oxidation
of nanotubes to form oxygen-containing functional groups on their surface [26–29]. During
electrochemical oxidation, the surface of nanotubes can be etched with the formation of
pores and an increase in the specific surface area [29,30].

The advantages of electrochemical oxidation are the absence of aggressive reagents,
control of the degree of modification, and the possibility of improving the characteristics
of ready-made electrodes. The results of electrochemical oxidation may depend on both
the processing conditions and on the quality of CNTs (the degree of their defectiveness).
Earlier, a simple and reliable method was developed for the deposition of highly defective
MWCNTs on aluminum foil by pyrolysis of ethanol vapors. The material obtained was
then successfully applied as supercapacitor electrodes by us [31]. In contrast, the present
work will investigate the possibility of improving the characteristics of such MWCNT/Al
electrodes using the method of electrochemical modification.

2. Materials and Methods

A 50 µm thick aluminium foil was used as a substrate. The following steps were
carried out to provide catalytic properties to the foil. It was cleaned with isopropyl alcohol
and distilled water and cut into 1.5 cm × 3 cm pieces. The prepared aluminum strips were
sonicated for 5 min on each side in a suspension of 40 mL of 20 wt% Ni(NO3)2 solution and
45 mg of corundum of 28 µm. Then, they were washed with distilled water. Further mild
oxidation of the samples carried out in a 20 wt% aqueous solution of Ni(NO3)2 for 20 h.
Then, they were washed several times with deionized water to remove residual Ni(NO3)2
and dried in air. MWCNTs were deposited on the prepared aluminum foil by the pyrolysis
of ethanol vapor on a nickel catalyst as described previously [31–33]. A home-made setup
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was used with a flow-type silica reactor, an external electric furnace, and peristaltic pump
to control the flow of liquid ethanol [31]. No gaseous reagents were used. MWCNTs were
deposited at atmospheric pressure at temperature 600 ◦C for 1 h. Alcohol consumption
was 6–7 mL/h. The masses of the deposited MWCNTs were calculated from the difference
in the masses of the substrates before and after synthesis.

A two-electrode cell was used for the electrochemical oxidation of the samples under
study. The MWCNT/Al strip served as an anode, the potential of which varied from 2 to
7 V. A platinum wire was used as a counter electrode. An aqueous solution of sodium
sulfate of various concentrations was used as the electrolyte. The entire process was carried
out in several steps with the intermediate measurement of the characteristics of the sample.
The total oxidation time was usually 1 h.

Electrochemical testings of the initial and modified samples (cyclic voltammetry, gal-
vanostatic charge–discharge tests, and impedance spectroscopy) were carried out in a
three-electrode cell. A saturated calomel electrode (SCE; warning: care must be exercised
in handling the SCE owing to health hazard of mercury.) and a platinum wire were, re-
spectively, used as a reference electrode and a counter electrode. Strips of aluminium foil
(0.75 cm × 3 cm) coated on both sides with a layer of MWCNTs were used as working
electrodes. A 0.5 M aqueous solution of Na2SO4 was used as the electrolyte. Electrochem-
ical impedance experiments were conducted in the presence of 0.5 M aqueous Na2SO4
solution at a DC potential of 0 V, superimposed by an AC potential of 20 mV peak-to-peak
amplitude over a frequency range of 50 kHz to 10 mHz. All potentiostatic and impedimet-
ric experiments were carried out using a P-40X potentiostat (Electrochemical Instruments,
Moscow, Russia).

Morphology of the samples was examined using a JSM 6490 scanning electron mi-
croscope. X-ray photoelectron spectroscopy was conducted using a Specs PHOIBOS 150
MCD9 spectrometer for chemical analysis (SPECS Gmbh, Berlin, Germany) and an X-ray
tube with a magnesium anode (Mg Kα—radiation 1253.6 eV). Peak fitting of the spectra
was performed with the Origin software.

3. Results and Discussions

As reported in a previous article [31], the optimal conditions for the preparation of
MWCNT/Al foil composites are 15–20 h of processing aluminum foil in a 20 wt% aqueous
solution of Ni(NO3)2 at room temperature and deposition of MWCNT layer by pyrolysis
of alcohol vapor at 600 ◦C within 1 h. Under these conditions, a continuous homogeneous
layer with an average surface mass of MWCNTs (mass per surface area) of 0.3–0.4 mg/cm2

was deposited on the surface of the aluminum foil. Such MWCNT/Al samples were
used in this work to increase their specific capacity by electrochemical oxidation. A
photograph of an MWCNT/Al strip and typical scanning electron micrographs of the
MWCNT layers are shown in Figure 1. The photograph of MWCNT/Al strip (left panel,
Figure 1) clearly showed that the nanotube layer completely covered the substrate without
any open spots. The scanning electron micrographs (Figure 1a–c) show a dense filamentary
layer approximately 10 µm thick on the substrate. These results confirmed the fibrous
nature of the deposit. The MWCNTs have a sinuous shape and are entangled, which
indicates their high defectiveness [7]. The transmission electron micrograph in Figure 1d
shows high resolution image of individual MWCNT. The MWCNT structure consists of
many sp2-carbon basal planes (0001) which are visible in the tube image (Figure 1d) as
a series of parallel lines with an average spacing of 0.36 nm. This value corresponds to
the distance between the sp2-carbon basal planes in graphite-like structures [25]. The long
and short arrows in Figure 1d show the directions of the tube axis and sp2-carbon planes,
respectively. It is seen that the sp2-carbon planes are directed at an angle relative to the
nanotube axis. Thus, the edges of the planes come out onto the surface of the nanotube,
creating a large number of defects. (In perfect nanotubes, the sp2-carbon planes are directed
along the axis; therefore, the surface of such tubes is rather inert.) The average diameter
of MWCNTs is 20–50 nm. The grown MWCNT layers have excellent adhesion to the



Materials 2021, 14, 7612 4 of 14

aluminum substrate, which allows them to be repeatedly twisted, bent, and also cut into
pieces of the required size and shape. No delamination of the MWCNT layer from the
substrate was observed.

Materials 2021, 14, x FOR PEER REVIEW 4 of 14 
 

 

sp2-carbon planes are directed along the axis; therefore, the surface of such tubes is rather 
inert.) The average diameter of MWCNTs is 20–50 nm. The grown MWCNT layers have 
excellent adhesion to the aluminum substrate, which allows them to be repeatedly 
twisted, bent, and also cut into pieces of the required size and shape. No delamination of 
the MWCNT layer from the substrate was observed.  

 
Figure 1. Left: a photograph of an MWCNT/Al foil strip; scanning electron micrographs of 
MWCNT/Al foil: (a) cross section, (b) top view, (c) a 45° view, and (d) transmission electron mi-
crograph of individual MWCNT. 

Electrochemical measurements of a two-electrode cell demonstrated the applicabil-
ity of the MWCNT/Al foil as EDLC [31]. The average specific capacity of the MWCNTs 
was 30–40 F/g. However, in some samples, this value reached 60 F/g [31]. As noted in 
Introduction, such values are typical for non-modified carbon nanotubes. As will be 
shown below, the electrochemical oxidation of MWCNTs can significantly improve these 
characteristics.  

No information in the literature on the electrochemical oxidation of CNTs directly 
deposited on aluminum foil was found. The electrochemical oxidation of nanotubes in 
acidic and alkaline electrolytes has previously been reported [26,28,29]. In the work of 
Senokos et al. [27], a neutral aqueous Na2SO4 solution was used as an electrolyte. As the 
electrochemical oxidation of the MWCNTs grown on aluminum foil was done for the 
first time, the issue of choosing of suitable electrolyte was very critical. It was clear that 
acidic and alkaline electrolytes were not suitable due to the possible reaction with alu-
minum. In previous work [31], Na2SO4 solutions were used to measure the electrochem-
ical characteristics of MWCNT/Al electrodes. The material has shown excellent resistance 
to this electrolyte. Therefore, in the present work, this electrolyte was chosen for exper-
iments on the electrochemical oxidation of MWCNT/Al in order to increase their specific 
capacity. Preliminary experiments showed that during anodic oxidation of MWCNT/Al 
samples in aqueous solution of Na2SO4, the aluminum substrate was not etched if there is 
no open Al surface on it (fresh cuts). Thus, the aluminum foil coated with a layer of 
MWCNTs proved to be resistant to anodic etching, which allowed us to study in detail 
the effect of anodic oxidation of nanotubes on their electrochemical characteristics.  

Figure 2 shows an example of cyclic voltammograms of untreated and electro-
chemically oxidized MWCNT/Al samples. In contrast to the two-electrode configuration, 
in a three-electrode cell, the values of the specific capacitance and the shape of the cyclic 

Figure 1. Left: a photograph of an MWCNT/Al foil strip; scanning electron micrographs of
MWCNT/Al foil: (a) cross section, (b) top view, (c) a 45◦ view, and (d) transmission electron
micrograph of individual MWCNT.

Electrochemical measurements of a two-electrode cell demonstrated the applicability
of the MWCNT/Al foil as EDLC [31]. The average specific capacity of the MWCNTs
was 30–40 F/g. However, in some samples, this value reached 60 F/g [31]. As noted
in Introduction, such values are typical for non-modified carbon nanotubes. As will be
shown below, the electrochemical oxidation of MWCNTs can significantly improve these
characteristics.

No information in the literature on the electrochemical oxidation of CNTs directly
deposited on aluminum foil was found. The electrochemical oxidation of nanotubes
in acidic and alkaline electrolytes has previously been reported [26,28,29]. In the work
of Senokos et al. [27], a neutral aqueous Na2SO4 solution was used as an electrolyte.
As the electrochemical oxidation of the MWCNTs grown on aluminum foil was done
for the first time, the issue of choosing of suitable electrolyte was very critical. It was
clear that acidic and alkaline electrolytes were not suitable due to the possible reaction
with aluminum. In previous work [31], Na2SO4 solutions were used to measure the
electrochemical characteristics of MWCNT/Al electrodes. The material has shown excellent
resistance to this electrolyte. Therefore, in the present work, this electrolyte was chosen
for experiments on the electrochemical oxidation of MWCNT/Al in order to increase
their specific capacity. Preliminary experiments showed that during anodic oxidation of
MWCNT/Al samples in aqueous solution of Na2SO4, the aluminum substrate was not
etched if there is no open Al surface on it (fresh cuts). Thus, the aluminum foil coated with
a layer of MWCNTs proved to be resistant to anodic etching, which allowed us to study in
detail the effect of anodic oxidation of nanotubes on their electrochemical characteristics.

Figure 2 shows an example of cyclic voltammograms of untreated and electrochem-
ically oxidized MWCNT/Al samples. In contrast to the two-electrode configuration, in
a three-electrode cell, the values of the specific capacitance and the shape of the cyclic
voltammetric loops differ depending on the scanning range, as different ions are involved
in the formation of an electric double layer in the cathodic and anodic ranges, leading to
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different redox processes. Traces 1 and 2 in Figure 2 correspond to cyclic voltammograms
of the MWCNT/Al sample before and after oxidation. Oxidation led to an increase in the
areas inside the voltammetric loops, which indicated an increase in the sample capacity.
Figure 2a,b shows cyclic voltammograms in the cathodic and anodic ranges, respectively.
As can be seen, in the separate scan windows, the effect of electrochemical oxidation was
different. The general form of the cyclic voltammogram also changed after oxidation
(Figure 2c). In particular, curve 2 in Figure 2b and curve 2 in Figure 2c showed the features
of the peaks that could be associated with electrochemical redox reactions at the electrode.
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Figure 2. CVs of the MWCNT/Al foil in the three-electrode cell. Before electrochemical modification
(1) and after anodic oxidation at 5 V for 20 min in 0.005 M aqueous Na2SO4 solution (2). Voltage
scanning range: (a) From −800 to 10 mV; (b) From −10 to 800 mV; (c) From −800 to 800 mV.

As noted earlier, the MWCNT layer in our samples has excellent adhesion to the
aluminum substrate. Handling them (cutting, bending, twisting, washing in water and
electrolyte, etc.) did not lead to the exfoliation of the MWCNT layer. Therefore, after
measurements in the electrochemical cell, the MWCNT/Al electrode can be washed with
distilled water, dried, and used in the next experiment. No exfoliation of the carbon layer
from the aluminum substrate occurs. The experiments with randomly chosen samples
showed that the capacitive characteristics of the electrode are retained not only the next
day, but also after weeks and even months of storage in air. The sample capacity changed
after 6 months by ~10%. Due to this, we were able to study in sufficient detail the change in
the capacitance characteristics of MWCNTs in the process of electrochemical oxidation by
means of intermediate measurements at certain time intervals. Figure 3 shows the depen-
dences of the increase in the specific capacity of MWCNTs on the time of electrochemical
oxidation at different potentials. C0 is the initial capacity of the untreated MWCNT/Al
electrode, calculated by the equation (1). It is known that the area inside the CV loop is
proportional to the electric double layer capacitance of the electrode. A standard approach
was used to measure the specific capacity of MWCNTs on the electrode [23,25]. The cell
capacity was calculated by Equation (1):

Ccell =
∫

IdV/(∆V • ν) (1)

where Ccell is the capacity of the cell;
∫

IdV is the area under the CV characteristic at I > 0
(V•A). (This is half of the area inside the complete loop in Figure 2); ∆V is the voltage range
(V); ν is the voltage scan rate (V/s).
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Figure 3. The ratio of the specific capacity of the modified and initial samples of MWCNT/Al (Cox/C0) versus the time of
anodic oxidation. Electrolyte is 0.005 M aqueous Na2SO4 solution. Potential of the electrochemical oxidation: 1–3 V; 2–4 V;
3–5 V; 4–6 V; 5–7 V. CVs range: (a) From −800 to 10 mV; (b) From −10 to 800 mV; (c) From −800 to 800 mV.

The capacity of the working electrode in a three-electrode cell is equal to the capacity
of the cell. Therefore, the specific capacity of MWCNTs (Csp) is Ccell/mMWCNT, where
mMWCNT is the mass of MWCNTs on the electrode.

Cox is the capacity of the sample after electrochemical oxidation. Thus, the Cox/C0 ratio
shows how much the electrode capacitance changed after the treatment.

The MWCNT/Al electrodes were subjected to electrochemical oxidation at potentials
from 3 to 7 V. At certain intervals, the capacitance of these samples was measured. The
relative change in capacitance is shown in Figure 3. Thus, the traces on the figure show
the dynamics of changes in the capacity of MWCNT/Al electrodes during the process of
electrochemical oxidation under different conditions. As can be seen, the electrochemical
oxidation of MWCNTs can lead to a multiple increase in their specific capacity. In 0.005 M
aqueous Na2SO4 solution, the capacity reaches its maximum value within 20–30 min, after
which it changes little for anodization potentials of 3–4 V. At higher oxidation potentials
(5–7 V), treatment for more than 30 min leads to a decrease in capacity. Table 1 contains
detailed data on the changes in the specific capacity of MWCNTs after anodic oxidation at
various potential.

Table 1. The Cox/C0 ratio of MWCNT/Al for various time of anodic oxidation at different potential.
Electrolyte was 0.005 M aqueous Na2SO4 solution.

Potential of the
Oxidation, V

CV Range,
mV 10 min 20 min 30 min 60 min 90 min

3
−800 to 10 2.2 2.9 3.0 3.4 -
−10 to 800 1.1 1.7 1.7 1.9 -
−800 to 800 1.3 2.0 2.0 2.2 -

4
−800 to 10 2.5 3.6 3.8 4.4 4.4
−10 to 800 1.3 1.9 1.9 2.3 2.1
−800 to 800 1.7 2.5 2.6 3.1 2.9

5
−800 to 10 3.8 4.8 5.0 3.1 -
−10 to 800 1.7 2.0 1.9 0.8 -
−800 to 800 2.0 3.0 3.1 1.6 -

6
−800 to 10 2.6 4.4 4.4 1.9 -
−10 to 800 3.8 1.9 1.8 0.9 -
−800 to 800 1.4 2.7 2.8 1.8 -

7
−800 to 10 4.0 4.3 3.6 1.1 -
−10 to 800 2.6 2.4 2.8 0.4 -
−800 to 800 3.3 3.4 1.7 0.9 -

In addition to the anodizing potential, the electrolyte concentration plays a significant
role in the process of electrochemical modification of MWCNTs. Figure 4 shows the
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time dependences of the increase in the specific capacity of MWCNTs during oxidation
in a solution of Na2SO4 of different concentrations, as well as in distilled water. When
processing in pure water, practically no changes in properties are observed (Figure 4,
trace 1). With increasing salt concentration, the rate of growth in the specific capacity of
MWCNTs increases. However, oxidation at a potential above 5 V in a 0.5 M Na2SO4 solution
leads to the rapid destruction of the continuous MWCNT layer and the appearance of open
areas of the substrate. More details on the change in the specific capacity of MWCNTs after
anodic oxidation at various electrolyte concentrations are given in Table 2.
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Table 2. The Cox/C0 ratio of MWCNT/Al for various time of anodic oxidation in the electrolyte of
different concentration (aqueous Na2SO4 solution). The potential of anodic oxidation was 3 V.

Concentration of
Na2SO4 Solution,

mol/L
CV Range, mV 10 min 20 min 30 min 60 min

0
−800 to 10 1.3 1.3 1.3 -
−10 to 800 1.1 1.1 1.1 -
−800 to 800 1.1 1.1 1.1 -

0.005
−800 to 10 2.2 2.9 3.0 3.4
−10 to 800 1.1 1.7 1.7 1.9
−800 to 800 1.3 2.0 2.0 2.2

0.05
−800 to 10 2.4 3.2 3.7 3.7
−10 to 800 0.8 1.0 1.1 1.0
−800 to 800 1.1 1,4 1.5 1.5

0.5
−800 to 10 4.3 4.4 5.1 4.3
−10 to 800 2.5 2.5 2.9 2.8
−800 to 800 3.4 3.4 4.1 4.1

Thus, the optimal conditions for improving the capacitive characteristics of MWCNT/
Al electrodes can be considered an oxidation potential in the range of 4–5 V, a moderate
electrolyte concentration of 0.005–0.05 mol/L, and a processing time of 20–30 min. The
electrodes treated in this way have a specific capacity 4–5 times higher than the original
ones. At the same time, the integrity of the MWCNT layer and excellent adhesion to the Al
substrate are retained.

To suggest the main reasons for the increase in the specific capacity of MWCNTs after
electrochemical oxidation, the features of the electrochemical behavior of the modified
electrodes were investigated, and the materials were tested using methods that provide
information on changes in the surface properties of MWCNTs.

First, attention should be paid to the change in the cyclic voltammetric shape after
oxidation of the MWCNT/Al electrode (Figure 2). The presence of maximum and min-
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imum on the curve may indicate the occurrence of reversible electrochemical reactions
with oxygen-containing functional groups [7]. Ideal EDLS has rectangular voltammetric
characteristics. In this case, the accumulation of energy is purely electrostatic and does
not depend on the potential. The sign of current is immediately reversed upon reversal
of the potential sweep [7]. The deviation of the CV shape from rectangular in real super-
capacitors is due to a number of reasons (ohmic resistance, difficulties in ion diffusion,
redox processes). The CVs of the oxidized MWCNT/Al sample at different scanning rates
(Figure 5a), had a shape close to rectangular, which confirmed the main mechanism of
charge accumulation as an electric double layer.
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Figure 5. (a) CVs at the different scan rates. Working electrode was the MWCNT/Al foil oxidized
at 5 V for 20 min; (b) the dependences of the specific capacity on the scanning rate. Oxidation time,
min: 0 (trace 1); 10 (trace 2); 20 (trace 3); 30 (trace 4).

Figure 5b shows the dependences of the calculated specific capacity on the scanning
speed for the MWCNT/Al sample with different oxidation degrees. They were obtained
by intermediate measurements of the characteristics of one sample oxidized at a potential
of 5 V in a 0.005 M Na2SO4 solution. In the general, the specific capacitance value depends
on the CV scanning rate, as the formation of an electric double layer takes a certain time
associated with the diffusion of ions to the electrode surface. In trace 1, obtained using the
initial (nonoxidized) sample, the specific capacity does not increase much with decreasing
scanning speed. This may indicate the absence of serious diffusion difficulties during
the formation of the electric double layer [7–9]. As indicated by trace 2–4 in Figure 5b,
as the sample was oxidized for duration from 10 min to 30 min, the specific capacity of
MWCNTs increased by almost 5 times its original value. The character of the dependence
of the Csp on the scanning rate remains the same. However, the relative increase in the
specific capacity with a decrease in the scanning speed for the oxidized sample (~30%) is
greater than that for the initial one (~15%) (Figure 5b). This observation can be explained
by an increase in the specific surface area and porosity of MWCNTs due to electrochemical
etching.

Important data on the nature of the electrochemical processes occurring at the electrode
can be obtained from the galvanostatic charge–discharge experiments. A triangular shape
of the charge–discharge curves is characteristic of the EDLC, and the slope of the discharge
curve is proportional to the electrode capacitance. Figure 6 presents the charge-discharge
curves of one MWCNT/Al sample: pristine and subsequently oxidized at 5 V in 0.005 M
Na2SO4 solution for 10 and 20 min. It can be seen that as oxidation proceeds, the slope of
the discharge curve decreases, which indicates an increase in the sample capacity. At the
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same time, the shape of the charge–discharge dependences remains triangular in both the
cathodic and anodic regions. This suggests that the accumulation of charge occurs due to
the formation of an electric double layer.
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The conclusions drawn from the experiments described above are also confirmed by
the results of impedance spectroscopy. Figure 7 presents the Nyquist (imaginary impedance
(Z”) versus real impedance (Z’)) plots of 0.5 M Na2SO4 solution at the MWCNT/Al
electrode. In the experiments, a pristine MWCNT/Al electrode oxidized at 5 V in a 0.005 M
Na2SO4 solution for 10, 20 and 30 min was used. One of the simplest ways to describe the
supercapacitor frequency behavior is to associate a serial resistance and a capacitance [34].
In the Nyquist plot, the ohmic resistance defines the high-frequency region (bottom of the
plot) and the capacitance defines the low-frequency region (top of the plot). For ideal EDLS
electrode (for example, polished glassy carbon), the Nyquist plot is a semi-infinite straight
line parallel to the ordinate axis (Z”). However, for real electrodes there is a deviation
of the Nyquist plot from an angle of 90◦. This may be due to the inhomogeneity of the
electrode surface.

As can be seen from Figure 7a, the shape of the Nyquist plot is near linear for the
MWCNT/Al sample before oxidation and remains so after its oxidation. This is typical
of supercapacitors. In a Nyquist plot, the ohmic resistance of a cell is estimated by the
offset of Z’ on the abscissa in the high frequency region. Accordingly, the ohmic resistance
was ~3 Ω for both the non-oxidized and oxidized electrode. These results indicate that
oxidation did not lead to an increase in the ohmic resistance of the cell. At the same time,
the slope of the Nyquist plot for the oxidized sample decreases with increasing oxidation
time. Figure 7b clearly shows this trend. This behavior can be explained by an increase in
the porosity of MWCNTs as a result of electrochemical oxidation [34].
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Additional information on changes in MWCNTs after electrochemical oxidation was
obtained from the X-ray photoelectron spectra of the samples. X-ray photoelectron spec-
troscopy is a semi-quantitative method for investigation the elemental composition, chemi-
cal and electronic state of atoms on the surface of the material. A comparison was made of
the spectra of the initial MWCNT/Al sample and the sample oxidized at 5 V in a 0.005 M
Na2SO4 solution for 20 min. As can be seen from the survey spectrum (Figure 8), surfaces
both initial (Figure 8a) and oxidized MWCNTs contain mainly carbon and oxygen atoms.
Based on the areas of the O 1 s peaks at 600 eV in the survey spectrum, the total concentra-
tion of surface oxygen increased almost 3 times (up to 9.4 atomic %) in the oxidized sample
compared to the initial.
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Characteristic changes are observed in the high-resolution carbon X-ray photoelectron
spectra (Figure 9). In the spectra of both samples, bands related to oxygen-containing
functional groups [15] can be observed. However, an additional maximum at 286.5 eV in
the spectrum of the oxidized sample indicates that the concentration of oxygen-containing
groups on its surface is higher than on the surface of the initial sample (Figure 9). According
to the peak-fitted results, an increase in the concentration of such groups as -CO, -C=O,
O-C=O is observed, which is consistent with the literature data [15,26,28].
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One of the main advantages of supercapacitors is their resistance to multiple charge-
discharge cycles. In the case of oxidized nanotubes, it is especially important to check
how the acquired improved characteristics will be retained under long-term operating
conditions. We tested a MWCNT/Al sample oxidized at 5 V for 20 min. The test included
20,000 cyclic voltammograms in the anodic and cathodic ranges at a scan rate of 1000 mV/s.
The sample demonstrated excellent stability. Figure 10 shows the cyclic voltammograms
in the anode range with 1st, 10,000th and 20,000th scan. It can be seen that after a slight
decrease in the capacity at the beginning of cycling (~5%), the characteristics of the sample
remain unchanged in the future. It is also important that the cyclic voltammetric shape
remains unchanged, which indicates the absence of degradation of the active layer.
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The study showed that during the anodic oxidation of MWCNTs deposited on alu-
minum foil, certain changes occurred. First, there is a functionalization of MWCNTs, which
consists in a significant increase in oxygen-containing groups covalently bonded to the
surface of the tubes. The results of electrochemical tests indirectly indicate an increase in
the porosity of MWCNTs. These results are generally consistent with those reported in
the literature [26–29]. Several reasons for the increase in the specific capacity of MWCNTs
after oxidative modification are discussed in the literature. On the one hand, an increase
in capacity can occur due to redox processes with the participation of oxygen-containing
groups, which are formed on the surface of carbon nanotubes during oxidation. Another
reason is the increase in porosity and specific surface area of MWCNTs, which is the
result of electrochemical etching of the surface of nanotubes. According to the work of
Ye et al. [29], an increase in capacity could be attributed to the increasing hydrophilic
characteristics of nanotubes. In our research, we also found an increase in the concentration
of oxygen-containing groups on the surface of oxidized nanotubes. A change in the cyclic
voltammetric shape may indicate the participation of functional groups in the process
of energy accumulation. However, it is impossible to explain the 4–5-fold increase in
specific capacity only by redox processes. In general, as the studies have shown, oxidized
MWCNT/Al electrodes retain the charge accumulation mechanism due to the formation
of an electric double layer. Most likely, the reason for the strong increase in capacity as
result of the electrochemical oxidation of MWCNT/Al electrodes is due to a combination
of several factors mentioned above.

4. Conclusions

An original method for growing MWCNT layers on aluminum foil was used to
develop electrodes for EDLCs. It is shown that a simple operation of electrochemical
oxidation of MWCNT/Al foil samples makes it possible to increase the specific capacity by
a factor of 4–5. An aqueous solution of sodium sulfate was used as the electrolyte. The best
results were obtained upon oxidation of MWCNT/Al samples for 20–30 min at a potential
of 4–5 V in an electrolyte with a concentration of 0.005 mol/L. The specific capacity of
MWCNTs after modification reached 140 F/g. The improved characteristics of oxidized
samples are retained with multiple charge–discharge cycles (up to 20,000). The samples do
not degrade when stored for a long time in an ambient atmosphere (up to 6 months). The
results obtained significantly expand the possibilities of using MWCNTs grown on Al foil
as electrodes for supercapacitors.
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