Nonlinear Models of Thermo-Viscoelastic Materials
Abstract
:1. Introduction
2. Balance Laws and Entropy Inequality
3. Constitutive Relations
4. Hypo-Thermoelastic Solids
5. Hypo-Elastic Models with Thermal Dissipation
5.1. Fourier-Like Models
5.2. Maxwell–Cattaneo-like Models
6. Thermo-Viscoelastic and Viscoplastic Models
6.1. Thermo-Viscoelastic Behaviour
6.2. The Bingham–Norton Model
6.3. The Kelvin–Voigt Model
7. Thermo-Viscoelastic and Viscoplastic Models in the Spatial Description
7.1. Thermo-Viscoelastic Behaviour
7.2. Upper Convected Maxwell Model
7.3. Kelvin–Voigt Model in the Spatial Description
7.4. Bingham–Norton Visco-Plastic Fluid
8. Higher-Order Rate Models
8.1. Burgers Material
8.2. Oldroyd-B Model
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boltzmann, L. Zur Theorie der elastichen Nachwirkung. Sitzber. Kaiserl. Akad. Wiss. Wien, Math.-Naturw. Kl. 1874, 70, 275–300. [Google Scholar]
- Fabrizio, M.; Morro, A. Mathematical Problems in Linear Viscoelasticity; SIAM: Philadelphia, PA, USA, 1992; Chapter 3. [Google Scholar]
- Leitman, M.J.; Fisher, G.M.C. The linear theory of viscoelasticity. In Encyclopedia of Physics; Truesdell, C., Ed.; Springer: Berlin, Germany; New York, NY, USA, 1973; Volume VIa/3. [Google Scholar]
- Fabrizio, M.; Giorgi, C.; Morro, A. Internal dissipation, relaxation property, and free energy in materials with fading memory. J. Elast. 1995, 40, 107–122. [Google Scholar] [CrossRef]
- Fabrizio, M.; Giorgi, C.; Naso, M.G. Viscoelastic solids of exponential type. II. Free energies, stability and attractors. Meccanica 2004, 39, 547–561. [Google Scholar] [CrossRef]
- Rajagopal, K.R.; Srinavasa, A.R. An implicit thermomechanical theory based on a Gibbs potential formulation for describing the response of thermoviscoelastic solids. Internat. J. Engrg. Sci. 2013, 70, 15–28. [Google Scholar] [CrossRef]
- Choucha, A.; Boulaaras, S.; Ouchenane, D.; Beloul, S. General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, logarithmic nonlinearity and distributed delay terms. Math. Meth. Appl. Sci. 2021, 44, 5436–5457. [Google Scholar] [CrossRef]
- Giorgi, C.; Morro, A. A thermodynamic approach to rate-type models of elastic-plastic materials. J. Elast. 2021, in press. [Google Scholar] [CrossRef]
- Morro, A.; Giorgi, C. Objective rate equations and memory properties in continuum physics. Math. Comput. Simul. 2020, 176, 243–253. [Google Scholar] [CrossRef]
- Fukuma, M.; Sakatani, Y. Entropic formulation of relativistic continuum mechanics. Phys. Rev. E 2011, 84, 026315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuma, M.; Sakatani, Y. Progress in Quantum Field Theory and String Theory. Int. J. Mod. Phys. Conf. Ser. 2013, 21, 189–190. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, C.; Morro, A. A thermodynamic approach to hysteretic models in ferroelectrics. Math. Comput. Simul. 2020, 176, 181–194. [Google Scholar] [CrossRef]
- Giorgi, C.; Morro, A. A thermodynamic approach to rate-type models in deformable ferroelectrics. Cont. Mech. Thermodyn. 2021, 33, 727–747. [Google Scholar] [CrossRef]
- Müller, I. The coldness, a universal function in thermoelastic bodies. Arch. Ration. Mech. Anal. 1071, 41, 319–332. [Google Scholar] [CrossRef]
- Rajagopal, K.R.; Srinavasa, A.R. On the thermomechanics of shape memory wires. Z. Angew. Math. Phys. 1999, 50, 459–496. [Google Scholar]
- Morro, A. Evolution equations for dissipative bodies and hyperbolicity. Acta Mech. 1983, 48, 227–231. [Google Scholar] [CrossRef]
- Morro, A. Evolution equations and thermodynamic restrictions for dissipative solids. Math. Comp. Model. 2010, 52, 1869–1876. [Google Scholar] [CrossRef]
- Morro, A. Evolution equations for non-simple viscoelastic solids. J. Elast. 2011, 105, 93–105. [Google Scholar] [CrossRef]
- Morro, A. Thermodynamic consistency of objective rate equations. Mech. Res. Comm. 2017, 84, 72–76. [Google Scholar] [CrossRef]
- Morro, A. Modelling of elastic heat conductors via objective rate equations. Contin. Mech. Thermodyn. 2018, 30, 1231–1243. [Google Scholar] [CrossRef]
- Morro, A. Temperature waves in rigid materials with memory. Meccanica 1977, 12, 73–77. [Google Scholar] [CrossRef]
- Gurtin, M.E.; Pipkin, A.C. A general theory of heat conduction with finite wave speeds. Arch. Ration. Mech. Anal. 1968, 31, 113–126. [Google Scholar] [CrossRef]
- Bargmann, S.; Favata, A.; Podio-Guidugli, P. A revised exposition of the Green-Naghdi theory of heat propagation. J. Elast. 2014, 114, 143–154. [Google Scholar] [CrossRef] [Green Version]
- Green, A.E.; Naghdi, P.M. A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. 1991, 432, 171–194. [Google Scholar]
- Green, A.E.; Naghdi, P.M. Thermoelasticity without energy-dissipation. J. Elast. 1993, 31, 189–208. [Google Scholar] [CrossRef]
- Podio-Guidugli, P. A virtual power format for thermomechanics. Contin. Mech. Thermodyn. 2009, 20, 479–487. [Google Scholar] [CrossRef]
- Gurtin, M.E.; Williams, W.O.; Suliciu, I. On rate-type constitutive equations and the energy of viscoelastic and viscoplastic materials. Int. J. Solids Struct. 1980, 16, 607–617. [Google Scholar] [CrossRef]
- Straughan, B. Heat Waves; Springer: Berlin, Germany; New York, NY, USA, 2013. [Google Scholar]
- Fâciu, C.; Mihâilescu-Suliciu, M. The energy in one-dimensional rate-type semilinear viscoelasticity. Int. J. Solids Struct. 1987, 23, 1505–1520. [Google Scholar] [CrossRef]
- Suliciu, I.; Sabac, M. Energy estimates in one-dimensional rate-type viscoplasticity. J. Math. Anal. Appl. 1988, 131, 354–372. [Google Scholar] [CrossRef] [Green Version]
- Irgens, F. Continuum Mechanics; Springer: Berlin, Germany; New York, NY, USA, 2008. [Google Scholar]
- Burgers, J.M. Mechanical considerations-Model systems—Phenomenological theories of relaxation and viscosity. In First Report on Viscosity and Plasticity; Burgers, J.M., Ed.; Nordemann Publishing: New York, NY, USA, 1939; Chapter 1. [Google Scholar]
- Oldroyd, J. On the Formulation of Rheological Equations of State. Proc. R. Soc. Lond. Ser. A 1950, 200, 523–541. [Google Scholar]
- Malkin, A.Y.; Isayev, A.I. Rheology: Concepts, Methods, and Applications; Elsevier: New York, NY, USA, 2017; pp. 59–60. [Google Scholar]
- Málek, J.; Rajagopal, K.R.; Tuma, K. Derivation of the variants of the Burgers model using a thermodynamic approach and appealing to the concept of evolving natural configurations. Fluids 2018, 3, 69. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giorgi, C.; Morro, A. Nonlinear Models of Thermo-Viscoelastic Materials. Materials 2021, 14, 7617. https://doi.org/10.3390/ma14247617
Giorgi C, Morro A. Nonlinear Models of Thermo-Viscoelastic Materials. Materials. 2021; 14(24):7617. https://doi.org/10.3390/ma14247617
Chicago/Turabian StyleGiorgi, Claudio, and Angelo Morro. 2021. "Nonlinear Models of Thermo-Viscoelastic Materials" Materials 14, no. 24: 7617. https://doi.org/10.3390/ma14247617
APA StyleGiorgi, C., & Morro, A. (2021). Nonlinear Models of Thermo-Viscoelastic Materials. Materials, 14(24), 7617. https://doi.org/10.3390/ma14247617