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Abstract: This paper deals with the linear natural vibrations analysis of beams where the geomet-
ric and material properties vary periodically along the beam axis. In contrast with homogeneous
prismatic beams, the frequency spectra of such beams are irregular as there exist enlarged intervals
between some adjacent frequencies. Presented here are two averaged models of beams based on
the tolerance modelling approach. The assumptions of classical Euler–Bernoulli and Timoshenko–
Ehrenfest beam theories are adopted as the foundations. The resulting mathematical models are
systems of differential equations with constant, weight-averaged coefficients. This makes it possi-
ble to apply any classical method of solution suitable for homogeneous beams, such as Galerkin
orthogonalization. Here, emphasis is placed on the comparison of natural frequencies neighbouring
the frequency band-gaps that are obtained from these two theories. Two basic cases of material and
geometric property distribution in a periodicity cell are studied, and the natural frequencies and
mode shapes are obtained for a simply supported beam. The results are supported by a comparison
with the finite element method and partially exact solutions.

Keywords: periodic beam; Timoshenko beam; tolerance modelling; vibrations

1. Introduction

Here, the considered periodic beams consist of repeated identical segments made from
two or more different materials or segments made of a single material but with a variable
cross-section dimensions or shape. Such structural elements possess certain distinguishing
dynamic features, such as the existence of gaps in the frequency spectrum. The very
mechanism of the gap occurrence in finite beams is clear. It is caused by the periodic
distribution of the stiffness and mass properties that tends to favour certain vibration
shapes and, as a result, the corresponding frequencies.

More precisely, as every mode shape consists of a finite number of half-waves, it is
important if the mode shape nodes or antinodes are close or overlap with maximum or
minimum stiffness and mass points. As a consequence, the frequency gaps for a simply
supported beam are expected near frequencies for which the corresponding number of
half-waves n is an even multiple or divisor of number of cells L/l (for an even number of
cells) or L/l ± 1 (for an odd number of cells).

This paper focuses on linear-elastic beams with a periodic structure considered in
the framework of the Euler–Bernoulli (abbreviated: Bernoulli) and Timoshenko–Ehrenfest
(abbreviated: Timoshenko) theories. Generally speaking, the former of these theories has
its application limited to analysis of slender beams, as it is a special case of the latter.
The second theory takes into account both shear deformations and rotatory inertia effects,
which makes it suitable for the analysis of moderately thick beams.

Many interesting remarks about these theories and their applications in the analysis
of stepped beams can be found in the works [1–6], the first of which draws attention to the
authorship of the so-called Timoshenko theory. There are many engineering fields in which
multiple-stepped beams can be applied.
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Structures, such as aircraft wings, long span truss and beam bridges, suspended
pipelines and rotatory unbalanced shafts can be approximately represented as such. For
example, high buildings made from repetitive floors can be modelled as clamped beams
with effective cross-section and equidistant lumped masses. There are other problems,
such as periodically damaged structures, e.g., cracked reinforced concrete beams. In many
of these domains, high-frequency vibrations are of crucial importance. Future applications
are in the fields of vibration control and acoustic insulation.

Thus, it is desirable to develop efficient methods to make the analysis of low and
high frequencies of these structures possible. The question arises: can an averaged model
yield correct results for such non-continuous structures? The answer to this question can
be pursued in various ways, including through numerical experiments as presented in
this paper.

Dynamical problems of beams with periodic distributions of material and geomet-
ric properties are governed by differential equations with highly oscillating, often non-
continuous coefficients. There are various ways to tackle this problem. One group of
these methods is based on discretization by means of the Finite Element Method, Finite
Difference Method, or others. The second group strives to obtain simplified models, often
based on homogenization. The resulting models replace the original, non-homogeneous
structure with an equivalent homogeneous one with effective constant or slowly varying
properties.

Among them, the theory of asymptotic homogenization [7] is one of the most popular-
ized due to its mathematical rigorousness. However, these models often neglect the effect
of the periodicity cell size, which is sufficient in the static analysis of such structures. In
this paper, the tolerance-averaging technique (TA) [8] is applied in order to obtain aver-
aged, non-asymptotic models of periodic beams. The resulting differential equations have
constant, weight-averaged coefficients, some of which are dependent on the periodicity
cell dimension.

In [9], Timoshenko’s composite beam functions and Mindlin–Reissner thick plate
theory were applied to a non-linear FE analysis of thin to moderately thick plates and slabs
made of reinforced concrete. Non-classical, microstructure dependent Timoshenko beam
models were analysed in [10–12], respectively. The effects of the moving load, boundary
condition and material gradation of a bi-directional functionally graded beam on free and
forced vibrations were examined in the framework of thin and thick beams in [13].

Periodically supported Timoshenko beams were analysed in [14]. Dynamic problems
of periodic Timoshenko beams resting on a two-parameter elastic foundation were investi-
gated in [15] by means of the weak-form quadrature element method. In [16], the problem
of wave propagation in periodic Timoshenko beams on elastic foundations under moving
loads, taking into account tensile and compressive axial load, was analysed.

Theoretical and experimental analysis of flexural vibration band gaps in Timoshenko
beams with locally resonant structures was presented in [17]. In [18], the third order
shear deformation theory was applied in the analysis of free vibrations of two directional
functionally graded beams, taking into account various sets of boundary conditions. Non-
linear vibrations of Timoshenko beams using FEM were investigated in [19].

The cell-centre finite volume method was applied in the analysis of static and natural
non-linear vibration analysis of functionally graded beams in [20]. Composites made of an
isotropic elastic matrix that contain periodically placed inclusions or voids were analysed
in [21].

A method of obtaining specified or extreme effective stiffness via topology optimiza-
tion of the microstructure design was developed in [22]. Vibrations of composite structures,
according to various beam theories, were considered in several papers. The beam can
be modelled as a Timoshenko beam [23,24], Rayleigh beam [25,26] or Euler–Bernoulli
beam [27].
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Dynamic analysis can be extended based on the Winkler model [28,29], Pasternak
model, a combination of both (the Winkler–Pasternak model), a nonlinear elastic model
and fractional order viscoelastic model [30].

Researchers have presented methods to analyse structures resting on elastic founda-
tions. The stability of periodic shells on elastic foundations subjected to external loading
was considered in [31]. Papers [31,32] investigated the periodic behaviour of function-
ally graded plates and shells, respectively. Thin walled beams were analysed in [33],
whereas the stress distributions and capabilities through a simple numerical example
were demonstrated.

A theoretical study on the propagation of the flexural wave in the periodic beam on
elastic foundation was presented in [34]. Moreover, the waves propagation was theoreti-
cally and experimentally investigated in straight beams with a periodic structure [35].

The tolerance-averaging technique was used for the static analysis [36] and various
dynamic problems, with reference in particular, to beams [37,38], plates [39], shells [40–43]
and thin-walled structures [44,45].

The aforementioned method was also applied to thermal problems [46–48] of peri-
odic laminates, longitudinally graded materials, micro-heterogeneous hollow cylinders
and cylindrical composite conductors, respectively. This work is a follow-up of earlier
papers published by the author, together with other participants, on vibrations of periodic
beams [49,50].

Although the results provided in these papers were satisfactory to some extent, the
theory has been improved since then, mainly due to the use of a new class of weakly
slowly varying functions in the analysis of shear-deformable beams. This contributed to an
increase in the scope of application of the proposed models. An attempt was also made to
compare the results of the proposed model with the exact results.

As stated before, vibration analysis of periodic beam type structures has recently
received a remarkable amount of attention due to the importance and various applications
of the subject. The tolerance-averaging approach is an effective analytical-numerical
technique for problems that concern periodic structures. The main aim of this paper is
to compare natural vibration frequencies and mode shapes of Bernoulli and Timoshenko
beams using this approach.

The paper is outlined as follows. The theoretical background of the Bernoulli and
Timoshenko beams is contained in Section 2. The tolerance approach and its fundamental as-
sumptions are introduced and briefly discussed in Section 3. A brief derivation of the model
equations in terms of both theories is presented in Section 4. In Section 5, the considered
calculational problem is stated, and the solution methodology is described. In Section 6,
the results and discussion are provided. The paper ends with our general conclusions.

2. Formulation of the Problem

We considered a beam made of linearly elastic material. The geometry of the beam is
described in an orthogonal Cartesian coordinate system Oxyz. The Ox axis coincides with
the axis of the beam, Figure 1. The inertial forces act in the direction of the axis Oz, and the
Oxz plane of the load is, at the same time, the symmetry plane of the beam cross-section.
With these assumptions, the problem becomes one-dimensional.

The region occupied by the beam is defined as Ω ≡ [0, L], where L stands for the
beam length. We assume that the beam consists of many repetitive small elements, called
periodicity cells. The periodicity cell is defined as ∆ ≡ [−l/2, l/2], where l � L is the
length of the cell. It is assumed that the beam thickness is of the order of the inhomogeneity
period and that the deflections are small compared to the beam thickness.
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Figure 1. A fragment of a periodic beam.

2.1. Governing Equations of Euler–Bernoulli Beam Theory

The Euler–Bernoulli beam theory assumes that the sections perpendicular to an un-
deformed beam axis remain planar and normal to the axis after deformation. This theory
also neglects the effect of rotational inertia. Let w = w(x, t) be the transverse deflection,
EJ = E(x)J(x) be flexural stiffness, µ = ρ(x)A(x) be mass per unit length. Let ∂k = ∂k/∂xk

be the k-th derivative of a function with respect to the x-coordinate; overdot stands for the
derivative with respect to time.

The strain–displacement relations are assumed as follows:

κ = ∂2w, (1)

where κ stands for the beam axis curvature. Then, the relations between stress resultants
(internal forces) and displacements can be introduced :

M = EJκ = EJ∂2w, (2)

where M is the bending moment.
The strain and kinetic energy density per unit length of the beam are given by:

W =
1
2
(Mκ), K =

1
2
(µẇẇ). (3)

The equations of motion can be obtained from the principle of stationary action A,
formulated as:

δA = δ

t1∫
t0

L∫
0

Ldxdt =
t1∫

t0

L∫
0

δLdxdt = 0, (4)

cf. [8], where the Lagrangian L = L
(
x, t, w, ∂2w, ẇ

)
is given by the formula:

L =W −K, (5)

and since the variations of unknown functions have to vanish at t = t0, t1, Equation (4) can
be rewritten as:

δA =

t1∫
t0

L∫
0

[Mδκ + µẅδw]dxdt = 0. (6)

The differential equation of motion resulting from the above assumptions can be
written as:
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∂2
(

EJ∂2w
)
+ µẅ = 0. (7)

2.2. Governing Equations of Timoshenko Beam Theory

The Timoshenko beam theory includes both shear deformation and rotational inertia
effects. This makes the theory applicable in the analysis of thick beams, sandwich composite
beams, or beams subjected to high-frequency excitation when the wavelength is on the
order of the beam thickness. In addition to the previous section, we introduce some new
denotations: let θ = θ(x, t) be the average cross-section rotation and γ = γ(x, t) be the
shear angle. Let kGA = k(x)G(x)A(x) be the shear stiffness and ϑ = ρ(x)J(x) be the
rotational moment of inertia per unit length.

The strain–displacement relations are assumed as follows:

κ = ∂θ, γ = ∂w− θ, (8)

as the cross-section rotation is no longer assumed to be equal to the deflection slope.
Then, the relations between stress resultants (internal forces) and displacements can
be introduced:

M = EJκ = EJ∂θ,

Q = kGAγ = kGA(∂w− θ)
(9)

where M, and Q are the bending moment and shear force, respectively.
The strain and kinetic energy density per unit length of the beam can then written as:

W =
1
2
(Mκ + Qγ), K =

1
2
(
µẇẇ + ϑθ̇θ̇

)
. (10)

Again, equations of motion can be obtained from the principle of stationary action
A (4); however, now, the Lagrangian (5) is a function of different arguments, L = L(x, t,
w, θ, ∂w, ∂θ, ẇ, θ̇), and we obtain:

δA =

t1∫
t0

L∫
0

[Mδκ + Qδγ + µẅδw + ϑ∂ẅ∂δw]dxdt = 0. (11)

The system of coupled differential equations of motion resulting from the above
assumptions can be written as:

∂[kGA(∂w− θ)]− µẅ = 0,

∂(EJ∂θ) + kGA(∂w− θ)− ϑθ̈ = 0.
(12)

The coefficients of Equations (6) and (12) are highly oscillating, often non-continuous
functions of the x-coordinate. Subsequently, we present two averaged models of beams in
order to circumvent this drawback.

3. Introductory Concepts and Basic Assumptions of the Tolerance Modelling

The tolerance modelling (or tolerance-averaging) technique (TA), cf. [8] is based on a
set of intuitive heuristic concepts, such as tolerance relations, slowly varying functions and
fluctuation shape functions. The most important of them are described here.

The operation of averaging over a region of periodicity cell is defined as:

〈 f 〉(x) ≡ 1
|∆|

∫
∆(x)

f (y)dy, y ∈ ∆(x), x ∈ Ω∆, (13)
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where y are coordinates in the local system associated with the cell, Ω∆ is the region
containing cell centres.

Let Ω be a regular region in Rm and λ be a positive real number. Points x = (x1, . . . , xm)
and y = (y1, . . . , ym) that belong to Ω are in tolerance determined by λ if the distance
between those points is equal or less than λ. Now, let δ be a positive number. Real numbers
µ, ν are said to be in tolerance determined by δ if the absolute value of the difference
between these numbers does not exceed δ. These relations can be written as:

(i) x
λ≈ y⇔ ‖x− y‖Rm ≤ λ,

(ii) µ
δ≈ ν⇔ |µ− ν| ≤ δ.

(14)

A function F(·) will be called slowly varying, F ∈ SVR
δ (Ω, ∆), of the R-th kind with

respect to cell ∆ and the set of tolerance parameters δ = (λ, δ0, δ1, . . . , δm) if and only if the
following conditions are satisfied:

(i)
(
∀(x, y) ∈ Ω2

)[(
x

λ≈ y
)
⇒ F(x)

δ0≈ F(y) and ∂kF(x)
δ0≈ ∂kF(y), k = 1, 2, . . . , R

]
,

(ii) (∀x ∈ Ω)

[
λ
∣∣∣∂i
(

∂(k−1)F(x)
)∣∣∣δ(k−1) ≈ 0, i = 1, . . . , m k = 1, 2, . . . , R

]
.

(15)

A function F(·) will be referred to as weakly slowly varying, F ∈ WSVR
δ (Ω, ∆), if

only the first of the above conditions is satisfied. The tolerance parameter λ is known
a priori as a diagonal of the periodicity cell, and the δk parameters can be determined
a posteriori. Let h(·) be a λ-periodic highly oscillating function defined in Ω and on its
boundary, continuous together with its gradients ∂kh, k = 1, . . . , R − 1, and let it have
piecewise continuous bounded gradient ∂Rh. The function is called the fluctuation shape
function of the R-th kind h ∈ FSR

δ (Ω, ∆), if it depends on λ as a parameter and satisfies the
following conditions:

(i) h ∈ O
(

λR
)

, ∂kh ∈ O
(

λR−k
)

, k = 1, 2, . . . , R,

(ii)
∫

∆(x)

µ(y)h(y)dy = 0, y ∈ ∆(x), x ∈ Ω∆, (16)

for µ(·) being a certain positive valued λ-periodic function defined in Ω.
The tolerance-averaging approximation will be introduced only for the cases applica-

ble in this paper. Let b(·), c(·) be arbitrary integrable λ-periodic functions (which usually
are the medium physical properties) defined in Ω, and let us introduce the functions:

h(·) ∈ FSC
δ (Ω, ∆),

F(·) ∈WSVC
δ (Ω, ∆),

(17)

For example, for C = 1, the tolerance approximations have the form:

〈bF + c∂F〉(x) = 〈bF + c∂F〉T(x) ≡ 〈b〉F(x) + 〈c〉∂F(x) + O(λ),

〈bhF + c∂(hF)〉(x) = 〈bhF + c∂(hF)〉T(x) ≡ 〈bh〉F(x) + 〈c∂h〉F(x) + 〈ch〉∂F(x) + O(λ),
(18)

and the terms O(λ) are negligible.
The micro–macro decomposition is based on the observation than the response of a

periodic structure is periodic-like (periodic with respect to cell ∆ and tolerance parame-
ters). Let us then decompose the transverse deflection and cross section rotation angle
into their slowly varying and tolerance periodic parts (summation convention holds for
superscript indices):
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w(x, t) = W(x, t) + hAVA(x, t), A = 1, . . . , N,

θ(x, t) = Θ(x, t) + pRZR(x, t), R = 1, . . . , N,
(19)

where the decomposition of w(x, t) is valid for Bernoulli beam theory only, and decom-
positions of both w(x, t) and θ(x, t) are valid for Timoshenko beam theory. The new
unknowns—the averaged transverse deflection, cross-section rotation and their fluctuation
amplitudes—are weakly slowly varying functions of the C kind, respectively:

W(·), VA(·), Θ(·), ZR(·) ∈WSVC
δ (Ω, ∆), (20)

and the corresponding fluctuation shape functions (FSs) are λ-periodic highly
oscillating functions:

hA(·), pR(·) ∈ FSC
δ (Ω, ∆), (21)

which should approximate the deviation of the displacements in a cell from the average
motion caused by the periodic structure. In the above relations, values C = 1, 2 define the
classes of the unknown functions that are determined for the Timoshenko and Bernoulli
beam theories, respectively.

4. Averaged Models

After substitution the micro–macro decompositions (19) into the Lagrangian (5), the
next step of modelling is averaging (13) over an arbitrary periodic cell with approximations
(18). The variations of the unknown functions are as follows:

δw = δW + hAδVA, δθ = δΘ + pRδZR. (22)

Now, the variation of the averaged action functional has the following form:

δAh = δ

t1∫
t0

L∫
0

〈Lh〉dxdt =
t1∫

t0

L∫
0

δ〈Lh〉dxdt = 0. (23)

4.1. Timoshenko Beam Tolerance Model

Let us now introduce tolerance-averaged bending moments and shear forces for the
Timoshenko beam model:

〈M〉〈
M∂pR〉〈
MpR〉

 =


〈EJ〉

〈
EJ∂pS〉 〈

EJpS〉〈
EJ∂pR〉 〈

EJ∂pR∂pS〉 〈
EJ∂pR pS〉〈

EJpR〉 〈
EJpR∂pS〉 〈

EJpR pS〉



∂Θ

ZS

∂ZS

, (24)



〈Q〉〈
Q∂hA〉〈
QhA〉〈
QpR〉


=



〈kGA〉
〈
kGA∂hB〉 〈

kGAhB〉 〈
kGApS〉〈

kGA∂hA〉 〈
kGA∂hA∂hB〉 〈

kGA∂hAhB〉 〈
kGA∂hA pS〉〈

kGAhA〉 〈
kGAhA∂hB〉 〈

kGAhAhB〉 〈
kGAhA pS〉〈

kGApR〉 〈
kGA∂hB pR〉 〈

kGAhB pR〉 〈
kGApR pS〉





(∂W −Θ)

VB

∂VB

−ZS


. (25)

The 2(1+ N) differential equations of the tolerance model for the macrodisplacements
W(·), Θ(·) and their fluctuation amplitudes VA(·) and ZR(·) can be now written as:
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− ∂〈Q〉+ 〈µ〉Ẅ +
〈

µhA
〉

V̈A = 0,

− ∂〈M〉 − 〈Q〉+ 〈ϑ〉Θ̈ +
〈

ϑpS
〉

Z̈S = 0,

〈
Q∂hA

〉
− ∂
〈

QhA
〉
+
〈

µhA
〉

Ẅ +
〈

µhAhB
〉

V̈B = 0,

〈
M∂pR

〉
− ∂
〈

MpR
〉
−
〈

QpR
〉
+
〈

ϑpR
〉

Θ̈ +
〈

ϑpR pS
〉

Z̈S = 0.

(26)

Finally, a system of differential equations with constant coefficients is obtained. The
number of these equations depends on the number of introduced fluctuation shape func-
tions. Additionally, some of the coefficients depend on the size l of the periodicity cell. From
the principle of stationary action, we can also conclude the natural boundary conditions:

〈Q〉δW
∣∣∣∣L
0
+ 〈M〉δΘ

∣∣∣∣L
0
+
〈

QhA
〉

δVA
∣∣∣∣L
0
+
〈

MpR
〉

δZR
∣∣∣∣L
0
= 0. (27)

Together with the averaged equation of motion, the following natural boundary
conditions (for x = 0, L) with averaged coefficients are obtained:

〈Q〉 = 0 or W = 0, 〈M〉 = 0 or Θ = 0,〈
QhA

〉
= 0 or VA = 0,

〈
MpR

〉
= 0 or ZR = 0.

(28)

4.2. Bernoulli Beam Tolerance Model

Let us now introduce tolerance weight-averaged bending moments for the Bernoulli
beam model:

〈M〉〈
M∂2hA〉〈
M∂hA〉〈
MhA〉


=



〈EJ〉
〈

EJ∂2hB〉 〈
EJ∂hB〉 〈

EJhB〉〈
EJ∂2hA〉 〈

EJ∂2hA∂2hB〉 〈
EJ∂2hA∂hB〉 〈

EJ∂2hAhB〉〈
EJ∂hA〉 〈

EJ∂hA∂hB〉 〈
EJ∂hA∂hB〉 〈

EJ∂hAhB〉〈
EJhA〉 〈

EJhA∂2hB〉 〈
EJhA∂hB〉 〈

EJhAhB〉





∂2W

VB

2∂VB

∂2VB


. (29)

This leads to a system of N+1 differential equations for macro-deflection and its
fluctuation amplitudes:

∂2〈M〉+ 〈µ〉Ẅ +
〈

µhA
〉

V̈A = 0,

〈
M∂2hA

〉
− 2∂

〈
M∂hA

〉
+ ∂2

〈
MhA

〉
+
〈

µhA
〉

Ẅ +
〈

µhAhB
〉

V̈B = 0,

(30)

and natural boundary conditions:

− ∂〈M〉δW
∣∣∣∣L
0
+ 〈M〉∂δW

∣∣∣∣L
0
+
〈

MhA
〉

∂δVA
∣∣∣∣L
0
+
(

∂
〈

MhA
〉
− 2
〈

M∂hA
〉)

δVA
∣∣∣∣L
0
= 0, (31)

where W(x, t), VA(x, t) are the new kinematic unknowns. Together with the averaged
equations of motion, the following natural boundary conditions (for x = 0, L) with aver-
aged coefficients are obtained:

− ∂〈M〉 = 0 or W = 0, 〈M〉 = 0 or ∂W = 0,

∂
〈

MhA
〉
− 2
〈

M∂hA
〉
= 0 or VA = 0,

〈
MhA

〉
= 0 or ∂VA = 0.

(32)
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It is worth mentioning that expressions (28) and (32) reduce to classic natural boundary
conditions for a homogeneous beam.

5. Applications
5.1. Problem Statement

We consider an elastic beam of length L with l-periodic variation of geometric
and material properties. These two types of properties variation are: variable height
δ(x + l) = δ(x) and variable material properties E(x + l) = E(x), ρ(x + l) = ρ(x). The
first case is related to a piecewise change of beam cross-section (stepped beam) for a beam
made of a homogeneous material. Then, for steel the Young modulus Es = 205 GPa, the
mass density ρs = 7850 kg/m3, the Poisson’s ratio νs = 3/10 are assumed. The cross
section is rectangular: b0 × h0 = 0.01× 0.0250 m, b1 × h1 = 0.01× 0.0375 m.

In the second case, a beam consists of repetitive sections of aluminium and steel;
therefore, different Young moduli and mass densities are considered (bi-material beam).
For aluminium, the Young modulus Ea = 69 GPa, the mass density ρa = 2700 kg/m3, the
Poisson’s ratio νa = 3/10 are assumed. The cross section is rectangular: b0 = b1 = 0.01 m,
h0 = h1 = 0.0250 m. The length of the beam for both cases, is L = 1.0 m. The shear
coefficient was assumed equal to k = (10 + 10ν)/(12 + 11ν).

A fragment of the beam and a single periodicity cell are illustrated in Figure 2. In all
of the cases, the length of the cell length was assumed to be equal; l = L/10. The analysis
was performed for seven values of the saturation parameter α = 1/8, 1/4, . . . , 3/4, 7/8,
which stands for the relative length of the central segment of the cell.

l

l

l

xy

z

αl(1− α) l (1− α) l

E0, ρ0

δ0

E1, ρ1

δ1

E0, ρ0

Figure 2. Geometry of the beam and the periodicity cell under consideration.

5.2. Effective Properties

Determining of the fluctuation shape functions is a crucial point in calculation of
the averaged coefficients of the Equations (26) and (30). These functions have to, at least
approximately, represent the eigenmodes of a periodicity cell. From previous works, we
concluded that the best results were obtained when analysing a combination of two cells.
A finite element model of a two-cell assembly with periodic boundary conditions was used
to obtain the eigenmodes. The minimal number of elements per unit cell was set by a prior
convergence study. The first four of the fluctuation shape functions hA for stepped and
bi-material beam are displayed in Figure 3.
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stepped beam bi-material beam
mode

number

1

2

3

4

Figure 3. The first four eigenmodes for stepped and bi-material beams for α = 5/8.

5.3. Natural Vibrations Analysis

In order to obtain a system of algebraic frequency equations, the Galerkin method is
applied. The trial functions are assumed in the form of truncated trigonometric series. In
the case of a Timoshenko beam, these are:

W(x, t) =
Mw

∑
m=1

WmXW
m (x) cos(ωt), Θ(x, t) =

MΘ

∑
m=1

ΘmXΘ
m(x) cos(ωt),

VA(x, t) =
MVA

∑
n=1

VA
m XVA

m (x) cos(ωt), ZR(x, t) =
MZR

∑
n=1

ZR
mXZR

m (x) cos(ωt),

(33)

where the x-dependent functions Xm and Ym have to satisfy the appropriate boundary
conditions. The macro-displacements solutions for a simply supported beam were assumed
as Xm(x) = sin(mπx/L) and Ym(x) = cos(mπx/L). For the fluctuation amplitudes VA

and ZA, which come in pairs, one has to carefully examine the boundary conditions. The
fluctuation shape functions for a symmetric unit cell are of two kinds.

If the fluctuation shape function hA is symmetric, its corresponding pA function is
antisymmetric with respect to the centre of the cell, and vice versa. In that case, XVA

m (x) =
XZA

m (x) = sin(mπx/L); and in the opposite case, XVA
m (x) = XZA

m (x) = cos [(m− 1)πx/L].
In case of the Euler–Bernoulli theory, the rotation of cross section is dependent of the
deflection, and naturally unknowns Θ(x, t) and ZR(x, t) drop out of the equations.

Inserting the assumed solutions to either the Timoshenko (26) or Euler–Bernoulli (30)
beam equations, leads to a homogeneous matrix equation. The non-trivial solutions for the
eigenfrequencies ω and the eigenvectors are obtained through equating the determinant∣∣∣K[n×n] −ω2M[n×n]

∣∣∣ to zero. The number of degrees of freedom is equal to n = Mw +

MΘ + N(MVA + MZA) for the Timoshenko beam model and n = Mw + NMVA for the
Euler–Bernoulli model.
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5.4. Exact Models and Their Numerical Solutions

Let us divide the beam into n sections wit constant geometrical and material properties,
so that EJ = const, kGA = const, µ = const, ϑ = const. Then, in every section, the
equations of motion according to the Timoshenko theory have the form:

kGA
(

∂2w− ∂θ
)
− µẅ = 0,

EJ∂2θ + kGA(∂w− θ)− ϑθ̈ = 0.
(34)

Now, we introduce the nondimensional coordinate ξi =
xi
li

for i-th segment, i =

1, . . . , n. The relation between derivatives can be written as:

∂(n) f (xi)

(∂xi)n =

(
1
li

)n ∂(n) f (ξi)

(∂ξi)n . (35)

Solutions to the obtained differential equations can be sought in the form:

wi(ξi) = Ci1 sin(aiξi) + Ci2 cos(aiξi) + Ci3 sinh(biξi) + Ci4 cosh(biξi),

θi(ξi) =
λ4

i s2
i − a2

i
aili

Ci2 sin(aiξi)−
λ4

i s2
i − a2

i
aili

Ci1 cos(aiξi)+

+
λ4

i s2
i + b2

i
bili

Ci4 sinh(biξi) +
λ4

i s2
i + b2

i
bili

Ci3 cosh(biξi),

(36)

where the coefficients are as follows:

a2
i =

Hi +
√

H2
i − 4Ki

2
, b2

i =
−Hi +

√
H2

i − 4Ki

2
, (37)

λ4
i = ω2 µil4

i
Ei Ji

, r2
i =

Ji

Ail2
i

, s2
i =

Ei Ji

kiGi Ail2
i

, (38)

Hi = λ4
i

(
r2

i + s2
i

)
, Ki = λ4

i

(
λ4

i r2
i s2

i − 1
)

. (39)

The internal forces in i-th section of the beam are equal to:

Mi(ξi) = −
Ei Ji
li

∂θi(ξi)

∂ξi
, Qi(ξi) = kiGi Ai

(
1
li

∂wi(ξi)

∂ξi
− θi(ξi)

)
. (40)

Now, one has to define the continuity conditions of displacements and internal forces
on the interfaces between the neighbouring sections:

wi(ξi = 0) = wi−1(ξi−1 = 1), θi(ξi = 0) = θi−1(ξi−1 = 1),

Mi(ξi = 0) = Mi−1(ξi−1 = 1), Qi(ξi = 0) = Qi−1(ξi−1 = 1).
(41)

Moreover, the boundary conditions have to be defined on the beam ends. For a simply
supported beam these conditions are:

w1(ξ1 = 0) = wn(ξn = 1) = 0, M1(ξ1 = 0) = Mn(ξn = 1) = 0. (42)

From the above relations, we obtain a set of homogeneous algebraic equations for the
constants C11 − Cn4:

A(ω)C = 0. (43)
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The condition for existence of nontrivial solutions is as follows:

det(A(ω)) = 0, (44)

from which we obtain a transcendental equation, which was solved in two steps. First, the
roots were isolated by linear search. Next, the secant method was applied to determine the
roots with precision ∆ = 1−ωi/ωi−1 < 10−30.

The solution procedure has to be simplified in order to analyse this problem in the
framework of Bernoulli theory. Assuming that the shear angle γ is now equal to zero, the
average cross-section rotation θ = ∂w, we obtain Equation (7), bearing in mind that now
the bending stiffness is constant. The solution for the deflection w given by first of the
expressions in Equation (36) is still valid. Now, in the expressions (38) and (39) r2

i � 1,
s2

i � 1 Hi ≈ 0, Ki ≈ −λ4
i . The coefficients in Equation (37) are now equal, a2

i = b2
i = λ2

i .
The boundary and continuity conditions remain the same, but the bending moment and
shear force in Equation (40) have to be written as:

Mi(ξi) = −
Ei Ji

l2
i

∂2wi(ξi)

∂ξ2
i

, Qi(ξi) = −Ei Ji

l3
i

∂3wi(ξi)

∂ξ3
i

, (45)

and the general form of Equations (43) and (44) remains unchanged.

6. Results and Discussion

In this section, a numerical study of natural frequencies of considered Bernoulli
and Timoshenko beams will be carried out. The influence of beam stiffness and mass
distribution will be investigated in relation to the saturation parameter α. First, low order
frequencies ω1–ω5 for the two considered cases, for various saturation parameter α = 1/2,
according to the proposed and the exact models, are investigated.

The results are displayed in Table 1. The discrepancies between the averaged and exact
models increase slowly with increasing mode number, and the agreement is remarkable.
The relative differences are less than 0.0075%.

Table 1. Comparison of the first five natural frequencies according to both beam theories for stepped
and bi-material beams, α = 1/2: TA and exact results.

Mode

Stepped Beam Bi-Material Beam

Timoshenko Bernoulli Timoshenko Bernoulli

Exact TA Exact TA Exact TA Exact TA

1 403.881 403.883 404.479 404.479 314.946 314.947 315.280 315.280
2 1609.50 1609.52 1619.02 1619.02 1257.70 1257.71 1263.06 1263.06
3 3599.16 3599.29 3647.04 3647.06 2822.20 2822.27 2849.48 2849.49
4 6344.62 6345.06 6494.45 6494.58 4998.94 4999.17 5085.78 5085.83
5 9808.91 9809.51 10,169.4 10,169.9 7775.64 7776.22 7989.56 7989.76

Then, frequencies ω1–ω5 for the two considered cases, for various values of saturation
parameter α, according to both models, are investigated. The results are displayed in
Tables 2 and 3 for a stepped beam according to the Timoshenko and Bernoulli theories,
respectively. The results for a bi-material beam are shown in Tables 4 and 5. The results of
the TA and FE models are in excellent agreement, as the relative difference between these
models does not exceed 0.02%.

It can be seen that the low frequencies increase with increasing α parameter value
for a stepped beam. In the case of a bi-material beam, these frequencies are lowest for
α = 1/2 and increase when this parameter decreases towards its minimum value and when
it increases towards its maximum value. For these low frequencies, the relative difference
between Bernoulli and Timoshenko model is less than 5% for the stepped beam and less
than 3% for the bi-material beam.
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Table 2. Comparison of the first five natural frequencies according to the Timoshenko beam theory
for a stepped beam: TA and FE results.

Model n
α

1/8 1/4 3/8 1/2 5/8 3/4 7/8

TA

1 369.347 377.603 388.859 403.883 423.904 450.980 488.791
2 1472.47 1505.27 1550.00 1609.52 1688.57 1795.18 1943.82
3 3294.91 3367.92 3467.49 3599.29 3773.35 4007.12 4332.22
4 5813.56 5941.46 6115.87 6345.06 6645.39 7046.58 7602.84
5 8997.96 9194.10 9461.46 9809.51 10,261.3 10,861.2 11,690.7

FE

1 369.347 377.602 388.858 403.881 423.904 450.980 488.792
2 1472.47 1505.27 1549.98 1609.50 1688.56 1795.18 1943.83
3 3294.93 3367.91 3467.39 3599.19 3773.33 4007.17 4332.37
4 5813.66 5941.45 6115.56 6344.75 6645.39 7046.82 7603.61
5 8998.31 9194.17 9460.76 9808.82 10,261.3 10,861.9 11,693.3

Table 3. Comparison of the first five natural frequencies according to teh Bernoulli beam theory for a
stepped beam: TA and FE results.

Model n
α

1/8 1/4 3/8 1/2 5/8 3/4 7/8

TA

1 369.774 378.077 389.388 404.479 424.590 451.788 489.782
2 1479.26 1512.81 1558.42 1619.02 1699.48 1808.02 1959.50
3 3328.95 3405.79 3509.79 3647.06 3828.15 4071.34 4410.29
4 5919.73 6059.78 6248.22 6494.58 6816.58 7246.27 7844.05
5 9252.89 9478.83 9780.50 10,169.9 10,672.9 11,338.7 12,263.1

FE

1 369.774 378.077 389.388 404.479 424.590 451.788 489.781
2 1479.26 1512.81 1558.42 1619.02 1699.48 1808.01 1959.50
3 3328.95 3405.79 3509.78 3647.04 3828.11 4071.28 4410.25
4 5919.73 6059.77 6248.18 6494.45 6816.31 7245.90 7843.80
5 9252.89 9478.80 9780.33 10,169.4 10,671.8 11,337.1 12,262.1

Table 4. Comparison of the first five natural frequencies according to the Timoshenko beam theory
for a bi-material beam: TA and FE results.

Model n
α

1/8 1/4 3/8 1/2 5/8 3/4 7/8

TA

1 337.554 324.170 317.013 314.947 317.673 325.588 339.966
2 1346.40 1293.75 1265.76 1257.71 1268.39 1299.42 1356.03
3 3015.30 2900.14 2839.54 2822.27 2845.45 2912.89 3036.93
4 5326.13 5129.46 5027.74 4999.17 5038.31 5152.30 5364.56
5 8254.66 7963.10 7816.31 7776.22 7833.30 7999.58 8314.94

FE

1 337.554 324.169 317.011 314.946 317.672 325.588 339.966
2 1346.40 1293.74 1265.74 1257.70 1268.39 1299.42 1356.04
3 3015.31 2900.08 2839.43 2822.21 2845.44 2912.91 3036.98
4 5326.19 5129.31 5027.41 4999.02 5038.30 5152.3 5364.83
5 8254.87 7962.80 7815.60 7775.93 7833.35 7999.91 8315.94
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Table 5. Comparison of the first five natural frequencies according to the Bernoulli beam theory for a
bi-material beam: TA and FE results.

Model n
α

1/8 1/4 3/8 1/2 5/8 3/4 7/8

TA

1 337.911 324.513 317.347 315.280 318.009 325.933 340.326
2 1352.10 1299.24 1271.13 1263.06 1273.79 1304.93 1361.77
3 3043.96 2927.88 2866.82 2849.49 2872.86 2940.78 3065.77
4 5415.97 5217.14 5114.44 5085.83 5125.34 5240.32 5454.90
5 8471.71 8177.14 8029.54 7989.76 8046.98 8213.98 8532.96

FE

1 337.911 324.513 317.347 315.280 318.009 325.933 340.326
2 1352.10 1299.24 1271.13 1263.06 1273.78 1304.93 1361.77
3 3043.96 2927.88 2866.82 2849.48 2872.84 2940.76 3065.76
4 5415.97 5217.13 5114.43 5085.78 5125.24 5240.17 5454.81
5 8471.71 8177.12 8029.48 7989.57 8046.58 8213.42 8532.61

The frequency spectrum for a stepped beam is presented in Figure 4 for Bernoulli and
Timoshenko beam models for the saturation parameter α = 1/2. The first frequency gap
is placed between the 9th and 10th natural frequency and is equal to ∆ω =14,493 rad/s
according to the Bernoulli beam model and ∆ω =10,588 rad/s according to the Timoshenko
beam model. The second frequency gap can be found between the 20th and 21st natural
frequency and is equal to ∆ω =34,728 rad/s for the Bernoulli model and ∆ω =17,594 rad/s
for the Timoshenko model.
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Figure 4. Comparison of the natural frequencies between the TA and FE models according to the Bernoulli (a) and
Timoshenko (b) theories, and comparison between the two models (c), α = 1/2 for a bi-material beam.

Similar results are presented in Figure 5 for a bi-material beam and for the satu-
ration parameter value α = 1/2. There is no distinct frequency gap near the 10th fre-
quency for either of the models. The difference between the 20th and 21st frequency
is equal to ∆ω =34,378 rad/s and ∆ω =22,418 rad/s for the Bernoulli and Timoshenko
model, respectively.
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Figure 5. Comparison of the natural frequencies between the TA and FE models according to the Bernoulli (a) and
Timoshenko (b) theories, and comparison between the two models (c), α = 1/2 for a stepped beam.

Next, the influence of the saturation parameter α on width of the first and second
frequency gap was studied and displayed in Figures 6–9. The results for the Bernoulli and
Timoshenko averaged models are compared with finite element results.
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Figure 6. Comparison of the 8th to 11th eigenfrequency for stepped beams according to the Bernoulli (a) and Timoshenko
(b) theories, in relation to the saturation parameter α. TA—solid line, and FE—dots.
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Figure 7. Comparison of the 18th to 22nd eigenfrequency for stepped beams according to the Bernoulli (a) and Timoshenko
(b) theories, in relation to the saturation parameter α. TA—solid line, and FE—dots.
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Figure 8. Comparison of the 8th to 11th eigenfrequency for bi-material beams according to the Bernoulli (a) and Timoshenko
(b) theories, in relation to the saturation parameter α. TA—solid line, and FE—dots.
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Figure 9. Comparison of the 18th to 22nd eigenfrequency for bi-material beams according to the Bernoulli (a) and
Timoshenko (b) theories, in relation to the saturation parameter α. TA—solid line, and FE—dots.

For the stepped beam case, the maximum difference occurs between the 9th and 10th
frequency for α = 3/4 for both models, Figure 6. For higher frequencies, the maximum
difference occurs between the 19th and 20th frequency for α = 7/8 for the Bernoulli model;
however, according to the Timoshenko model, it is between the 20th and 21st frequency for
α = 1/2, cf. Figure 7.

For the bi-material beam case in the lower frequency spectrum, the largest gap occurs
between 10th and 11th frequency for α = 1/4 for both models, Figure 8, and there is no
distinct gap near α = 1/4, which confirms the data in Figure 6. For higher frequencies,
the maximum difference occurs between the 20th and 21st for α = 1/2 according to the
Bernoulli model, and for α = 5/8 according to the Timoshenko model, cf. Figure 9.

The general conclusion that can been formulated from the considerations is that the
frequencies obtained from the Timoshenko beam model are lower then the calculated from
the Bernoulli model, and the differences increase with increasing the number of eigenmode
half-waves.

Considering the differences between the results obtained from the compared theories,
let us introduce the relative differences rn = (ω

(n)
B − ω

(n)
T )/ω

(n)
T , corresponding to the

frequency number n.
The growth of these differences, as a function of the frequency number, is approx-

imately quadratic; at the same time, it is nearly linear as a function of frequency. This
can be said about both the stepped and bi-material beam cases. For example, the relative
difference for the stepped beam varies from r1 = 0.1% for α = 1/8 and r1 = 0.2% for
α = 7/8 to r21 = 39.3% for α = 1/8 and r21 = 67.7% for α = 7/8. In the case of a
bi+material beam, these values vary from r1 = 0.1% for all values of α to r19 = 31.9% for
α = 1/8 and r19 = 45.8% for α = 7/8. The situation is therefore, unsurprisingly, similar to
that of uniform beams of constant height.

On the other hand, it is expected that the heterogeneity at the cell level should have
some impact on the results. With fixed proportions of cell sections’ stiffness, the parameter
α should be the crucial parameter. Let us first analyse the results for the stepped beam.

When increasing this parameter from its lowest to the highest value, the relative
differences increase as well. However, up to the fifth form of vibration, these differences
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do not exceed 5%. For the sixth form, these values range from r6 = 3.8% for α = 1/8
to r6 = 6.9% for α = 7/8. For the 10th mode, the differences range from 11% to 21%.
Generally, for the higher frequencies, the relative frequencies increase faster.

For the bi-material beam, the distribution of differences is of a slightly different nature.
Initially, as in the previous case, these differences are less than 5% for the first five modes
of vibration. Up to the eighth frequency, the discrepancies do not exceed 8% and are
basically independent of the parameter α. For higher modes, the relative differences tend
to grow from their minimal values for extreme values of α to their maximal values for
intermediate values of this parameter. However, the changes in the discrepancies are much
more moderate than for the stepped beam. For the 11th mode, they are equal to r11 = 14.2%
for α = 1/8 through r11 = 16.7% for α = 5/8 and to r11 = 14.7% for α = 7/8.

In Figures 10 and 11 the 9th, 10th and 11th mode shapes of the considered beams are
displayed. The shapes are shown for the left half of the beam, x ∈ (0, L/2) for the stepped
beam (Figure 10) and for the bi-material beam (Figure 11). It can be seen that the TA and
FE results are in good agreement, but the deflections obtained from the Bernoulli beam
model differ slightly for some cases, especially near the beam supports, as the shear forces
are maximal there.

(a) (b) (c)

Figure 10. The 9th (a), 10th (b) and 11th (c) natural vibration modes presented for the left half of the beam, for a stepped
beam for the TA and FE Timoshenko beam models and for the TA Bernoulli model.

(a) (b) (c)

Figure 11. The 9th (a), 10th (b) and 11th (c) natural vibration modes presented for the left half of the beam, for a bi-material
beam for the TA and FE Timoshenko beam models and for the TA Bernoulli model.

7. Conclusions

In this paper, the basic dynamic properties of beams with periodically varying geo-
metric and material properties were investigated. The periodic variation of geometric and
material properties produces the band gaps in the frequency domain. It was shown by
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comparison with FE results that the proposed tolerance-averaging technique for differential
operators leads to reliable homogenized models of beams.

As some of the averaged coefficients of obtained differential equations depend explic-
itly on the unit cell length, the positions of gaps in the frequency spectrum were determined
properly. They can also be predicted by considering the order of the vibrational forms
of the periodicity cell. We confirmed that, for the considered boundary conditions, the
trial functions used in the Galerkin method solutions can be adopted from solutions of a
homogeneous beam.

As the second result, we demonstrated, through comparison between both models,
that taking the Euler–Bernoulli assumptions should be considered with caution. In the
higher frequency range, the simplification of neglecting the shear susceptibility and ro-
tational inertia terms leads to unacceptable discrepancies in relation to the Timoshenko
model, which was proven by many researchers to be more accurate.

Applications of the so-called technical theories of beams have their limitations. The
Bernoulli model’s application possibilities are limited to the analysis of rather slender
beams. More precisely, it is required that the half-wave length of any eigenmode is
significantly greater than the cross-section height. The Timoshenko model, concerning
shear deformability and rotatory inertia as well, has the potential to yield correct results
for thick beams.

Let us be concerned only with the technical 1-D theories of continuous beams here.
The main factors that matter are the half-wave length of the n-th vibration mode λn = L/n
and the length-to-height ratio of the beam η = L/h. It was shown in [51] that the possible
scope of application of the Timoshenko model is rather significant.

Comparing the results obtained from this model and a 2-D FE model, the half-wave
length can be of the order of the beam thickness. Thus, the number of eigenfrequencies
and eigenmodes is limited by the ratio of the mode half-wave length to the beam thickness.
It was assumed here that the safe range of applicability of Timoshenko’s theory is for the
ratio λ/hmax greater than 1.25.

A shortcoming of this paper is the modelling assumption that the bonds between
neighbouring sections of the beam are ideal. Especially in stepped beams, there are stress-
free areas of the beam adjacent to the height jump. Therefore, bending stresses do not occur
over the entire height of the deeper section. This could be taken into account by assuming
a functional change in the cross-section height in the vicinity of these points of transition
between the two sections. The proposed models allow for the introduction of such an
assumption. However, a significant qualitative change in the results is not expected.
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