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Abstract: Refined microstructures achieved by cyclic heat treatment significantly contribute to
improving the wear resistance of steels. To acquire the refined microstructures of 65Mn low-alloy steel,
first, the specimens were solid solution-treated; then, they were subjected to cyclic heat treatment at
cyclic quenching temperatures of 790–870 ◦C and quenching times of 1–4 with a fixed holding time
of 5 min. The mechanical properties of 65Mn low-alloy steel in terms of hardness, tensile strength,
elongation and wear resistance were characterized. Afterwards, the effect of cyclic heat treatment on
microstructure evolution and the relationships between grain refinement and mechanical properties’
improvement were discussed. The results show that the average grain size firstly decreased and
then increased with the increase in the quenching temperature. Hardness increased with grain
refinement when the temperature was lower than 830 ◦C. Once the temperature exceeded 830 ◦C,
hardness increased with the temperature increase owing to the enrichment of carbon content in the
martensite. With the increase in cyclic quenching times, hardness continuously increased with grain
refinement strengthening. In addition, both tensile strength and elongation could be significantly
improved through grain refinement. The relationships among wear loss, hardness and average grain
size showed that wear resistance was affected by the synthesis reaction of grain refinement and
hardness. Higher hardness and refined grain size contributed to improving the wear resistance of
65Mn low-alloy steel.

Keywords: 65Mn low-alloy steel; cyclic heat treatment; grain refinement; microstructure evolution;
hardness; wear resistance

1. Introduction

A typical spring steel, 65Mn low-alloy steel possesses dual mechanical properties
of high-carbon steel and low-alloy steel involving high strength and hardness, excellent
elasticity and hardenability, and superior wear resistance [1–3]. In addition to its use in
the making of spring products, 65Mn low-alloy steel is a specified material for rotary
blades listed in the national standard GB/T 5669-2008 [4]. Meanwhile, it is also one
of the desirable materials for manufacturing the friction clutches and brakes of large
engineering machinery such as tracked armored vehicles, cranes and loaders [3,5,6]. Due
to the long-term alternating stress and heavy-loaded working conditions, excessive wear is
the primary failure mode in these components [3,7]. Hence, improving the comprehensive
mechanical properties in terms of hardness and wear resistance is desirable for 65Mn low-
alloy steel. Grain refinement, as an important strengthening mechanism, not only enhances
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the strength and hardness of steels, but also simultaneously improves their toughness
and plasticity [8–10]. When grain size is refined to microns or even sub-microns, the
comprehensive mechanical properties of steels are significantly boosted [11,12]. Therefore,
preparing refined microstructures of 65Mn low-alloy steel is critical to improving the wear
resistance and service performances of such components.

So far, the main methods for acquiring grain refinement microstructures include
alloying element addition [13], thermo-mechanical-controlled processing (TMCP) technol-
ogy [14], magnetic-field and electric-field processing [15,16], cyclic heat treatment [17–19],
etc. Among them, cyclic heat treatment has been applied to many steels and alloys to refine
grain size and further enhance their mechanical performance without thermo-mechanical
treatment or adding alloying elements. This technique involves repeated heating and
quenching processes. In each cycle, the steel is heated to a critical temperature and held
at that temperature for a short duration, followed by quenching and cooling to room
temperature. The crucial cyclic heat treatment parameters, including temperature, holding
time, quenching rate and cycles, directly influence the final microstructure morphology
and grain refinement effect, thereby determining the mechanical properties of steels. Atanu
Saha et al. [20] characterized the microstructures and mechanical properties of 0.6 wt%
carbon steel in cyclic heat treatment with different cycles, from one to eight. It was found
that, after eight cycles of heat treatment, the microstructures with fine ferrite grains and
spheroidized cementite exhibited an excellent combination of strength and ductility. In
another work, by Atanu Saha et al. [21], on an annealed hypereutectoid 1.24 wt% carbon
steel, the result shows that, with the increase in heat treatment cycles, more uniformly
dispersed finer cementite particles in austenite matrix were obtained at 894 ◦C. Grange
et al. [22] suggested that grain refinement subjected to cyclic heat treatment improved both
the strength and toughness properties of martensitic stainless steel. Alok Mishra et al. [23]
also reported that the considerable improvements of hardness and strength for AISI 1080
steel were achieved by employing cyclic heat treatment with repeated short duration at
775 ◦C, followed by oil quenching. Agnieszka Kościelna [24] investigated the effect of
cycle heat treatment parameters on the grain refinement of the Ti–48Al–2Cr–2Nb alloy
and refined microstructures with eight-fold reduction in average grain size were obtained
after cyclic heat treatment with five cycles. These works also confirmed that cyclic heat
treatment holds tremendous potential for obtaining superior comprehensive mechanical
properties through grain refinement microstructures. Nevertheless, it is noteworthy that
the effect of cyclic heat treatment parameters on grain refinement is extremely complicated;
more importantly, the wear resistance of steels is not completely linearly correlated with
grain size, but it is also determined by hardness and strength [25]. Therefore, it is necessary
to explore the microstructure evolution with cyclic heat treatment parameters and further
uncover the relationships among wear resistance, hardness and grain refinement. These
will provide significant guidance for improving the wear resistance of 65Mn low-alloy steel
through adjusting grain refinement by cyclic heat treatment.

In this work, a series of cyclic heat treatment experiments with varying quenching
temperature and quenching times were designed and conducted to prepare refined mi-
crostructures of 65Mn low-alloy steel. Mechanical properties’ tests, including hardness,
tensile and wear experiments of 65Mn low-alloy steel subjected to cyclic heat treatment,
were performed. Subsequently, the effects of quenching temperature and quenching times
on variations in average grain size and grain refinement degree were analyzed and the
relationships among hardness, average grain size and cyclic heat treatment parameters
were revealed. The relationships between grain refinement and the improvement of ten-
sile strength and elongation were analyzed. The friction coefficient and wear loss were
evaluated to detail the effects of refined microstructures on wear resistance. Finally, the
relationships among wear loss, hardness and grain refinement were uncovered.
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2. Principles of Cyclic Phase Transformation Heat Treatment

During the cyclic heat treatment process of 65Mn low-alloy steel, austenite grains
prefer to nucleate at higher stored energy regions, such as the original austenite grain
boundary, dislocation and impurity in heating period, following the diffusionless phase
transformation of austenite to martensite, which takes place in the quenching period [26]. It
is generally known that martensite phase transformation is a shear transformation, during
which the massive micro-defects of dislocation, stacking fault and twin generate [1]. Such
micro-defects are further inherited in the reverted transformation of martensite to austenite
in latter cycle heat treatment. Not only it can increase the stored energy of austenite and
accelerate its nucleation in non-nucleated regions, but it can also increase the driving
force of phase transformation and facilitate the next cyclic phase transformation. The
repeated phase transformation of austenite to martensite causes austenite grain refining;
thus, the refined microstructures are finally obtained. A schematic illustration of the grain
refinement mechanism in cyclic phase transformation heat treatment for 65Mn low-alloy
steel is shown in Figure 1.
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Figure 1. Principles of grain refinement in cyclic phase transformation heat treatment for 65Mn
low-alloy steel.

For a cyclic phase transformation heat treatment, the crucial heat treatment parame-
ters, including heating rate, holding time, quenching temperature and quenching times,
etc., have a strong influence on grain refinement. It is well accepted that the quenching
temperature is determined by the critical temperature of Ac1 or Ac3. If the temperature
lowers below Ac1, austenitization does not occur. On the contrary, austenite grains are
coarser at a relatively higher temperature (above Ac3 would be too much) [26]. Gener-
ally, the quenching temperature is Ac3 + (30–50) ◦C for a hypo-eutectoid steel and Ac3 +
(50–100) ◦C for a low-alloy steel. Since 65 Mn low-alloy steel is a hypo-eutectoid steel, its
quenching temperature is determined as Ac3 + (30–100) ◦C. In order to obtain the complete
phase transformation point of alloys, according to the volume expansion or shrinkage in
phase transformation process, the CCT curve of 65Mn low-alloy steel was drawn using
the thermal dilatation test and tangent methods, as shown in Figure 2. Then, the critical
temperature of Ac3 was 760 ◦C and the critical cooling rate for acquiring martensite was
50 ◦C/s. With that, the optimal quenching temperature region for 65Mn low-alloy steel
was identified as 790–860 ◦C in this work. Moreover, two vital parameters, holding time
and heating rate, are also closely associated with refined austenite microstructures; further,
a faster austenitizing rate and a lower holding time correspond to a grain growth that is
as inconspicuous as possible. Usually, holding time t can be calculated by an experience
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formula such as Equation (1), where α is the heating coefficient, K is the furnace coefficient
and D is the workpiece’s diameter.

t = α·K·D (1)
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Figure 2. CCT curve of 65Mn low-alloy steel.

To ensure complete austenitization and reduce time, the holding time was identified
as 5 min. The maximal heating rate was adopted and taken as 10 ◦C/s. In addition, it is
widely known that, with the increase in cyclic quenching times, austenite grain size can be
refined significantly, while the grain refinement effect becomes weaker and weaker. Here,
the maximal cyclic quenching times for 65Mn low-alloy steel was set as four times.

3. Experiment Procedures
3.1. Experiment Schedule of Cyclic Heat Treatment

The studied material in this work is 65Mn low-alloy steel, whose chemical com-
position is given in Table 1. The as-received billet was a hot-rolled bar with a size of
ø75 mm × 100 mm; its microstructures were composed of ferrite and pearlite. Ten cylindri-
cal specimens 10 mm in diameter and 12 mm in height were machined from the billet by
wire-electrode cutting. In order to make the specimens austenitize more completely and
improve the distribution of composition in the alloy and uniformity of the microstructure,
all specimens were solid solution-treated at the temperature of 900 ◦C for 60 min, followed
by oil quenching. This process was performed to make preparations for the following cyclic
heat treatment experiments. The solid solution-treated microstructure was characterized as
shown in Figure 3, in which the austenite grains are distributed uniformly with an average
grain size of 63.4 µm.

Table 1. Chemical composition (wt%) of 65Mn low-alloy steel.

C Mn Cr P S Si Ni

0.65 0.92 0.05 0.02 0.01 0.25 0.01

Based on the principles of cyclic heat treatment, an experiment scheme, with five
different quenching temperatures of 790 ◦C, 810 ◦C, 830 ◦C, 850 ◦C and 870 ◦C, a fixed
holding time of 5 min and a fixed cyclic quenching time of 1 time, was designed. Moreover,
another experiment scheme, with four different cyclic quenching times of 1, 2, 3 and 4 times;
a fixed optimal quenching temperature; and a fixed holding time of 5 min, was designed. In
each cycle, the specimen was heated to a proposed quenching temperature with a heating
rate of 10 ◦C/s and held at that temperature for 5 min in an electric resistance furnace, then
immediately quenched in oil. The experimental procedures of cyclic phase transformation
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heat treatment are exhibited in Figure 4. The optimal cyclic quenching temperatures and
times were determined by the analysis of grain morphology and austenite grain size.
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(b) Scheme two.

After cyclic phase transformation heat treatment, the specimens were grinded and
mechanically polished with successive grades of emery papers and diamond paste, fol-
lowed by chemical corrosion in a solution consisting of saturated picric acid and sodium
dodecyl benzene sulfonate detergent at the temperature of 60–70 ◦C for 80–100 s. Finally,
the microstructures were observed using metallurgical optical microscope (OM). The statis-
tical analysis of average grain size was conducted with the intercept method in image-pro
plus software. Then, the grain refinement degree δ was calculated using Equation (2) to
characterize the refinement effect of cyclic heat treatment under various cyclic quenching
temperatures and times [27].

δ =
d0 − d

d0
× 100% (2)

where δ is the grain refinement degree; d0 is the initial average grain size and, in this work,
d0 is the average austenite grain size after solid solution treatment, i.e., 63.4 µm; d is the
average grain size after cyclic phase transformation heat treatment.

3.2. Characterization of Mechanical Performance

The mechanical performance of the specimens after cyclic heat treatment was charac-
terized. Hardness tests were performed on an HR150A Rockwell (Laizhou Lailuote Testing
Instrument Co., Ltd., Yan tai, China) hardness tester equipped with a diamond cone-type
indenter using a load of 1471 N. For each specimen, five points were tested and the average
value was taken as the final hardness of the specimen. To characterize the tensile properties
of 65Mn low-alloy steel subjected to various cyclic heat treatment conditions, tensile tests
were conducted using a WDW-100 electronic universal testing machine. According to the
Chinese national standard GB/T 4338-2006 [28], standard cylindrical tensile specimens
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processing various average grain sizes were machined to the dimensions shown in Figure 5.
During the tensile test process, the specimens were stretched to break at the temperatures
of 400 ◦C and 600 ◦C with a fixed strain rate of 1 s−1. The load and displacement data
were monitored continuously by a computer control data acquisition system; then, the
stress–strain curve could be generated from the recorded data.
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In order to characterize the effects of the refined microstructures on wear resistance,
four specimens subjected to various cyclic heat treatment conditions were machined
according to the geometry dimensions exhibited in Figure 6. Moreover, these specimens
were prepared for wear tests carried on a UTM-5 (Beijing FHJR Scientific Technology Co.,
Ltd, Beijing, China) wear-testing machine. The procedures of the wear tests refer to the
ASTM standard G99 [29]. A schematic illustration of the wear tests is shown in Figure 7.
First, the wear specimen of 65Mn low-alloy steel (lower testing ring) was placed on the
lower working platform and positioned by tow pins. The upper testing ring, including
Cu-based powder metallurgy material and a 65Mn steel plate, was mounted on the upper
working platform. The lower testing ring was driven by the working platform with a
rotating speed of 850 r/min. Following that, the upper testing ring was pressed slowly
with a load of 280 N until the upper and lower testing rings made contact completely. At
this time, severe friction and wear behaviors occurred between the upper and lower testing
rings and the pressure was held until the wear test finished. The friction coefficient and
wear loss were characterized to evaluate the wear resistance of 65Mn low-alloy steel with
different refined microstructures.
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4. Microstructures of Specimens Subjected to Cyclic Heat Treatment
4.1. Effects of Cyclic Quenching Temperature on Microstructures

To analyze the effect of cyclic quenching temperature on microstructure evolution, the
specimens were subjected to a single quenching treatment with a fixed holding time of
5 min under the four different quenching temperatures of 790 ◦C, 810 ◦C, 830 ◦C, 850 ◦C
and 870 ◦C. Correspondingly, the microstructures and grain size distributions under these
cyclic quenching conditions were obtained, as shown in Figure 8a–e. It can be observed,
from Figure 8, that the austenite grains were refined significantly through cyclic heat
treatment compared with those subjected to solid solution treatment. The average grain
size at the cyclic quenching temperatures was measured as 25.4 µm, 13.4 µm, 23.0 µm, 28.7
µm and 34.2 µm and, correspondingly, the grain refinement degrees were calculated as
59.9%, 78.9%, 63.7%, 54.7% and 46.1%, respectively.

Figure 9 exhibits the variations in average grain size and grain refinement degree
with cyclic quenching temperatures. It can be seen that, with the increase in cyclic quench-
ing temperature, the average grain size first decreased and then increased, while grain
refinement demonstrated an opposite tendency. During the cyclic heat treatment of 65Mn
low-alloy steel, the phase transformation between martensite and austenite occurred, with
the generation of micro defects such as dislocation and twin, thus provoking the increase
in stored energy. Afterwards, the recrystallized grains generated and then grew in the high
stored-energy regions. As the quenching temperature increased from 790 ◦C to 810 ◦C, the
grain refinement degree increased and grain size distribution became more homogeneous.
This is attributable to the fact that, with the increase in quenching temperature, more
potential nucleation sites were activated during the austenitization process. In addition, the
driving force for the martensite-to-austenite transformation increased at a higher quench-
ing temperature, which accelerated the recrystallization process and broke the structure
inheritance. Hence, grain refinement was more sufficient with the increase in quenching
temperature. However, once the cyclic quenching temperature exceeded 810 ◦C, due to
the high grain boundary mobility provided by the elevated temperature, grain growth
dominated and the newly formed recrystallized grains intended to grow in size. There-
fore, grain size increased significantly; meanwhile, the grain refinement degree decreased
with the further increase in the temperature. In conclusion, the microstructures of 65Mn
low-alloy steel could be significantly refined and the grain refinement degree reached the
maximum at 810 ◦C. Thus, the optimal cyclic quenching temperature was determined as
810 ◦C.
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Figure 8. Microstructures and grain size distributions of specimens subjected to single quenching
treatment under different cyclic quenching temperatures: (a,a’) 790 ◦C; (b,b’) 810 ◦C; (c,c’) 830 ◦C;
(d,d’) 850 ◦C; (e,e’) 870 ◦C.
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4.2. Effects of Cyclic Quenching Times on Microstructures

Figure 10a–d illustrates the microstructures and grain size distributions of the speci-
mens subjected to four different cyclic quenching times of one, two, three and four times
at the fixed optimal cyclic quenching temperature of 810 ◦C with a fixed holding time of
5 min. It can be seen, from Figure 10, that, with the increase in cyclic quenching times, the
austenite grains were refined and uniformly distributed in the microstructures. The average
grain size at the cyclic quenching times were measured as 13.4 µm, 7.1 µm, 6.4 µm and
6.2 µm, respectively. The corresponding grain refinement degrees of the microstructures
were calculated as 78.9%, 88.8%, 89.9% and 90.2%, respectively. From the variations in
average grain size and grain refinement degree with cycle quenching times in Figure 11,
with the increase in cyclic quenching times, the average grain size gradually decreased
and the grain refinement degree increased. The reason underlying this trend is that, after
the 65Mn low-alloy steel cyclic quenched once, the austenite grains were refined, which
was accompanied by the breaking of martensite, as well as the increase in dislocations.
The stored energy was higher in comparison with that of the microstructures after solid
solution treatment and the driving force for recrystallization increased. With the increase in
cyclic quenching times, the cyclic phase transformation between martensite and austenite
occurred continuously in the microstructures, resulting in the increase in stored energy
and driving force and further promoting grain refinement. Nevertheless, it is worthy
to emphasize that, when the cyclic quenching times exceeded three times, the austenite
grains were refined inconspicuously. Therefore, the average grain size decreased with
the increase in cyclic quenching times, while the grain refinement degree first increased
and then flattened out. The optimal cyclic quenching times for 65Mn low-alloy steel were
determined to be four times.
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5. Mechanical Performance Improvement through Refined Microstructures
5.1. Hardness

To analyze the effect of grain refinement on the hardness performance of 65Mn low-
alloy steel, the hardness of the specimens subjected to cyclic heat treatment was charac-
terized. Under the quenching temperatures of 790 ◦C, 810 ◦C, 830 ◦C, 850 ◦C and 870 ◦C,
the hardness values of the specimens were measured as 57.0 HRC, 58.4 HRC, 56.6 HRC,
61.0 HRC and 62.1 HRC, respectively. Figure 12 exhibits the relationship among hardness,
average grain size and cyclic quenching temperature. In Figure 12, we can see that a
non-liner relationship between hardness and average grain size was observed. As the
quenching temperature lowered below 830 ◦C, grain refinement strengthening was the
primary reason for hardness improvement. However, when the quenching temperature
exceeded 830 ◦C, with the increase in the temperature, more and more carbide particles,
precipitated from the matrix during solid solution treatment, redissolved into austenite
during the heating and holding process and the carbon content of austenite was raised.
This led to the enrichment of carbon content in martensite after quenching. It is well known
that the hardness improvement of martensite mainly results from the lattice distortion of
martensite, with a higher carbon content making the distortion severer. Thus, the hard-
ness was further improved under relatively a higher quenching temperature. This result
also suggests that, once the quenching temperature of 65Mn low-alloy steel exceeded a
certain threshold, the hardness was less affected by grain refinement, while it was mainly
related to the quenching temperature. It can also explain why the hardness of the specimen
after solid solution treatment was measured as 63.0 HRC, although the grain size was
coarse. Therefore, the hardness of the specimens after cyclic phase transformation heat
treatment was not only related to refined grain size but also associated with the quenching
temperature.
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Similarly, under the cyclic quenching times of one, two, three and four times, the
hardness values of the specimens were measured as 58.4 HRC, 60.7 HRC, 61.1 HRC,
62.7 HRC, respectively. The relationship among average grain size, hardness and cyclic
quenching times is demonstrated in Figure 13. It can be seen, from Figure 13, that, with the
increase in cycle quenching times, the hardness increased continuously with the decrease
in average grain size. This is mainly due to the fact that, at the same optimal cyclic
quenching temperature, grain refinement was prominently increased with the increase in
cyclic quenching times.
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5.2. Tensile Properties

The tensile properties of 65Mn low-alloy steel subjected to cyclic heat treatment under
conditions #1, #2 and #3 were characterized, where #1 represents the tensile specimen sub-
jected to solid solution treatment, #2 represents the specimen subjected to single quenching
treatment under the temperature of 810 ◦C and #3 represents the specimen subjected to four
time cyclic quenching treatment at the temperature of 810 ◦C. Figure 14 shows the obtained
true stress–strain curves of the tensile specimens under the temperatures of 400 ◦C and
600 ◦C with a fixed strain rate of 1 s−1. It was found that these tensile specimens exhibited
obvious plastic deformation behaviors. Meanwhile, owing to the significant difference in
the refined microstructures, different heat treatment conditions had a strong influence on
tensile properties. In order to better describe the tensile property difference under these
heat treatment conditions, tensile strength and elongation were obtained from the stress–
strain curves in Figure 14 and their relationships with average grain size are exhibited
in Figure 15. It is noted that, at the temperatures of 400 ◦C and 600 ◦C, both the tensile
strength and elongation increased with grain refinement. Comparing the tensile property
of the specimen subjected to cyclic heat treatment with that of the specimen subjected
to solid solution treatment, the tensile strength increased significantly from 979 MPa to
1216 MPa at 400 ◦C and the elongation also increased remarkably from 58.3% to 72% at
600 ◦C.
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5.3. Wear Resistance

The wear resistance of 65Mn low-alloy steel subjected to cyclic heat treatment under
conditions #1, #2, #3 and #4 and were characterized, where conditions #1, #2 and #3 are
the same as those mentioned in Section 5.2 and #4 represents the test specimen subjected
to single quenching treatment under the cyclic quenching temperature of 830 ◦C. As an
important indicator of wear-resistance performance, the friction coefficient varying with
time of the test specimens subjected to heat treatment under conditions #1, #2, #3 and #4
are demonstrated in Figure 16. Generally, to a more stable friction coefficient corresponded
better wear-resistance performance of the materials. A common feature in Figure 16 can be
observed. All the friction coefficient variation in the studied specimens fluctuated greatly
and gradually tended to be stable over time. This is mainly because, in the early running-in
period, due to the unstable contact between the upper and lower testing rings, severe
fluctuation in the speed of the lower testing ring appeared; further, as time passed, once the
upper and lower testing rings made contact steadily, the friction coefficient also reached
a stable value. In addition, by comparing the effect of various average grain sizes on the
friction coefficient in Figure 16, it can be clearly seen that the fluctuation period of the
friction coefficient decreased significantly with grain refinement in the running-in process
and the amplitude in the stable period was also shortened. The results also indicate that the
grain refinement microstructures achieved by cyclic phase transformation heat treatment
could significantly improve the wear-resistance performance of 65Mn low-alloy steel.
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Additionally, the wear loss of the test specimens subjected to heat treatment under
conditions #1, #2, #3 and #4 were also measured to characterize the wear resistance of
65Mn low-alloy steel. The wear-loss values corresponding to #1, #2, #4 and #3 were mea-
sured as 52 mg, 46 mg, 11 mg and 9 mg, respectively. Moreover, the relationship between
wear loss and average grain size is depicted in Figure 17. It was found that wear loss
decreased with grain refinement. Comparing the wear loss of the specimen subjected to
cyclic phase transformation heat treatment with that of the specimen subjected to solid
solution treatment, it can be clearly noted that wear loss decreased significantly from 52 mg
to 9 mg. Such phenomenon indicates that the wear resistance of 65Mn low-alloy steel
could be significantly enhanced by the refined microstructures obtained by cyclic phase
transformation heat treatment. In addition, as can be seen from Figure 17, the relationship
between wear loss and hardness is non-linear. According to reference [2], the wear process
of 65Mn steel against Cu-based powder metallurgy material can be summarized by the
following stages: the interface matching of asperities, the plastic deformation of the as-
perities and the fracture process of the asperities. For the test specimens subjected to heat
treatment under conditions #1 and #2, both the values of wear loss and average grain size
were relatively high, although the hardness of the specimen under condition #1 was much
higher than that of the specimen under condition #2. This is because the fracture resistance
of the specimens with coarse grain size was feeble and more asperities tended to break
up in the wear process, thus resulting in the increase in wear loss. For the test specimens
subjected to heat treatment under conditions #2, #4 and #3, with decrease in the average
grain size, the wear-loss value decreased continually. This is attributable to the fact that,
when the grain size was refined through cyclic heat treatment, the strength and ductility of
specimens were improved synchronously. Correspondingly, the fracture resistance of the
asperities was enhanced and wear resistance was also improved. It is worth noting that the
wear loss of the specimens under conditions of #2, #4 and #3 decreased with the increase
in hardness. This phenomenon can be explained by the fact that high hardness values
could effectively restrain the plastic deformation of the asperities, thus avoiding the stress
concentration and local crack propagation in the asperities. As a result, the wear resistance
was further improved with the decrease in average grain size and increase in hardness. In
short, the wear resistance of 65Mn low-alloy steel was affected by the synthesis reaction of
grain refinement and hardness. Higher hardness and refined grain size contributed to the
wear-resistance improvement of 65Mn low-alloy steel.
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6. Conclusions

(1) The effects of cyclic quenching temperatures and quenching times on variations
in average grain size were analyzed. With the increase in cyclic quenching temperature,
the average grain size first decreased and then increased. With the increase in cyclic
quenching times, the average grain size gradually decreased. The optimal cyclic quenching
temperature and quenching times were determined to be 810 ◦C and four times.

(2) The relationships between hardness and average grain size varying with cyclic heat
treatment parameters were revealed. With the increase in quenching temperature, hardness
increased with grain refinement when the temperature was lower than 830 ◦C. Once the
temperature exceeded 830 ◦C, hardness increased with the increase in temperature, owing
to the enrichment of carbon content in martensite. With the increase in cyclic quenching
times, hardness continuously increased with the strengthening of grain refinement.

(3) The tensile properties of 65Mn low-alloy steel subjected to various cyclic heat treat-
ment conditions were characterized. The results indicate that grain refinement obtained
from cyclic heat treatment could significantly improve the tensile strength and elongation
simultaneously.

(4) The wear resistance of 65Mn low-alloy steel subjected to various cyclic heat treat-
ment conditions were characterized by analyzing the friction coefficient and wear loss.
It is shown that the fluctuation period and amplitude of friction coefficient decreased
significantly with grain refinement. The relationships among wear loss, hardness and
average grain size were revealed. It is shown that the wear resistance of 65Mn low-alloy
steel was affected by the synthesis reaction of grain refinement and hardness and improved
wear resistance was obtained with higher hardness and refined grain size.
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