Bioactives from Mushroom: Health Attributes and Food Industry Applications
Abstract
:1. Introduction
2. Morphological Features of Trametes versicolor
3. Bioactive Compounds
4. Biological Active Components of Trametes versicolor
5. Health Attributes of Trametes versicolor
5.1. Role of Polysaccharopeptides as Prebiotics
5.2. Antidiabetic and Antiobesity Properties
5.3. Anti-Inflammatory Properties
6. Bioactivity of Trametes versicolor Mushroom Extract
6.1. Anticancerous and Immunomodulatory Activity
Mechanism of Antitumor and Immunomodulatory Effects of PSP
6.2. Antiviral Activity
6.3. The Antiparasitic Activity of Trametes versicolor
6.4. Antimicrobial Activity of Trametes versicolor
6.5. Trametes versicolor Uses in The Food Industry
7. Safety Assessment of Trametes versicolor as Food Supplements
8. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PSK | Polysaccharopeptide Krestin |
PSP | Polysaccharopeptide |
ITS | Internal Transcribed Spacer |
SSF | Solid-state fermentation |
References
- Fogarasi, M.; Socaci, S.A.; Dulf, F.V.; Diaconeasa, Z.M.; Farcas, A.C.; Tofana, M.; Semeniuc, C.A. Bioactive Compounds and Volatile Profiles of Five Transylvanian Wild Edible Mushrooms. Molecules 2018, 23, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, F.S.; Anabela, M.; Isabel, C.F.R.F.; Vasconcelos, M.H.; Patricia, M. Functional foods based on extracts or compounds derived from mushrooms. Trends Food Sci. Technol. 2017, 66, 48–62. [Google Scholar] [CrossRef]
- Stevanovic, J.; Stanimirovic, Z.; Simeunovic, P.; Lakic, N.; Radovic, I.; Sokovic, M.; Griensven, L. The effect of Agaricus brasiliensis extract supplementation on honey bee colonies. An. Acad. Bras. Cienc. 2018, 90, 219–229. [Google Scholar] [CrossRef]
- Glavinic, U.; Stevanovic, J.; Ristanic, M.; Rajkovic, M.; Davitkov, D.; Lakic, N.; Stanimirovic, Z. Potential of Fumagillin and Agaricus blazei Mushroom Extract to Reduce Nosema ceranae in Honey Bees. Insects 2021, 12, 282. [Google Scholar] [CrossRef]
- Garofalo, C.; Osimani, A.; Milanović, V.; Taccari, M.; Cardinali, F.; Aquilanti, L.; Riolo, P.; Ruschioni, S.; Isidoro, N.; Clementi, F. The microbiota of marketed processed edible insects as revealed by high-throughput sequencing. Food Microbiol. 2017, 62, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Mleczek, M.; Rzymski, P.; Budka, A.; Siwulski, M.; Jasińska, A.; Kalač, P.; Poniedziałek, B.; Gąsecka, M.; Niedzielski, P. Elemental characteristics of mushroom species cultivated in China and Poland. J. Food Compos. Anal. 2018, 66, 168–178. [Google Scholar] [CrossRef]
- Koutrotsios, G.; Mountzouris, K.C.; Chatzipavlidis, I.; Zervakis, G.I. Bioconversion of lignocellulosic residues by Agrocybe cylindracea and Pleurotus ostreatus mushroom fungi—Assessment of their effect on the final product and spent substrate properties. Food Chem. 2014, 161, 127–135. [Google Scholar] [CrossRef]
- Nagy, M.; Socaci, S.; Tofana, M.; Biris-Dorhoi, E.S.; ȚIbulcĂ, D.; PetruȚ, G.; Salanta, C.L. Chemical Composition and Bioactive Compounds of Some Wild Edible Mushrooms. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoc. Food Sci. Technol. 2017, 74, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Fogarasi, M.; Diaconeasa, Z.M.; Pop, C.R.; Fogarasi, S.; Semeniuc, C.A.; Fărcaş, A.C.; Țibulcă, D.; Sălăgean, C.-D.; Tofană, M.; Socaci, S.A. Elemental Composition, Antioxidant and Antibacterial Properties of Some Wild Edible Mushrooms from Romania. Agronomy 2020, 10, 1972. [Google Scholar] [CrossRef]
- Ma, L.; Chen, H.; Dong, P.; Lu, X. Anti-inflammatory and anticancer activities of extracts and compounds from the mushroom Inonotus obliquus. Food Chem. 2013, 139, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Nagy, M.; Semeniuc, C.A.; Socaci, S.A.; Pop, C.R.; Rotar, A.M.; Sălăgean, C.D.; Tofană, M. Utilization of brewer’s spent grain and mushrooms in fortification of smoked sausages. Food Sci. Technol. 2017, 37, 315–320. [Google Scholar] [CrossRef] [Green Version]
- Tibulca, D.; Fogarasi, M.; Socaci, S.A.; Fogarasi, S.; Pop, C.; Salagean, D.; Tofana, M.; Michiu, D. Effect of Agaricus Bisporus and Origanum Majorana L Extract on the Shelf-Life and Nutritional Properties of Pork Liver Pate. Stud. Univ. Babes-Bolyai Chem. 2020, 65, 197–208. [Google Scholar] [CrossRef]
- Vlaic, R.A.; Muresan, C.C.; Muste, S.; Muresan, V.; Pop, A.; Petrut, G.; Muresan, A. Boletus Edulis Mushroom Flour-Based Wheat Bread as Innovative Fortified Bakery Product. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoc. Food Sci. Technol. 2019, 76, 46–56. [Google Scholar] [CrossRef] [Green Version]
- Barros, L.; Barreira, J.C.M.; Grangeia, C.; Batista, C.; Cadavez, V.A.P.; Ferreira, I.C.F.R. Beef burger patties incorporated with Boletus edulis extracts: Lipid peroxidation inhibition effects. Eur. J. Lipid Sci. Technol. 2011, 113, 737–743. [Google Scholar] [CrossRef]
- Shavit, E.; Rose, D.; French, A.; Vellinga, E.C.; Schaechter, E.; Wood, M.; Evans, L. Over-the-counter medicinal mushrooms. Fungi 2009, 2, 15–19. [Google Scholar]
- Ramos, M.; Burgos, N.; Barnard, A.; Evans, G.; Preece, J.; Graz, M.; Ruthes, A.C.; Jiménez-Quero, A.; Martínez-Abad, A.; Vilaplana, F.; et al. Agaricus bisporus and its by-products as a source of valuable extracts and bioactive compounds. Food Chem. 2019, 292, 176–187. [Google Scholar] [CrossRef] [Green Version]
- De, D.; Rapior, S.; Hyde, K.; Bahkali, A. Medicinal mushrooms in prevention and control of diabetes mellitus. Fungal Divers. 2012, 56, 1–29. [Google Scholar] [CrossRef]
- Bains, A.; Chawla, P. In vitro bioactivity, antimicrobial and anti-inflammatory efficacy of modified solvent evaporation assisted Trametes versicolor extract. 3 Biotech 2020, 10, 404. [Google Scholar] [CrossRef]
- Prasad, S.; Rathore, H.; Sharma, S.; As, Y. Medicinal Mushrooms as a Source of Novel Functional Food. Int. J. Food Sci. Nutr. Diet. 2015, 4, 221–225. [Google Scholar] [CrossRef]
- Ana, P.M.T.; Susana, R.P.; Ana, M.R.B.X. Biotechnological Applications of Trametes versicolor and their Enzymes. Curr. Biotechnol. 2017, 6, 78–88. [Google Scholar] [CrossRef]
- Oyedepo, T.A.; Morakinyo, A.E. Medicinal Mushrooms. In Herbal Product Development Formulation and Applications; Apple Academic Press Inc.: Palm Bay, FL, USA, 2020; pp. 167–203. [Google Scholar]
- Woehrel, M.L.; Light, W.H. Mushrooms of the Georgia Piedmont and Southern Appalachians: A Reference; University of Georgia Press: Athens, GA, USA, 2017. [Google Scholar]
- Gautam, A.K. Notes on wood rotting fungi from India (1): Trametes versicolor–The Turkey tail. J. New Biol. Rep. 2013, 2, 67–70. [Google Scholar]
- Papagianni, M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol. Adv. 2004, 22, 189–259. [Google Scholar] [CrossRef]
- Singh, S.K.; Yadav, M.C.; Upadhyay, R.C.; Kamal, S.; Rai, R.D.; Tewari, R.P. Molecular characterization of specialty mushroom germplasm of the National Mushroom Repository. Mushroom Res. 2003, 12, 67–78. [Google Scholar]
- Raluca, M.P.; Ion Cosmin, P.; Aida, P.; Veronica, S.C.; Nicolae, L.; Ioana, C.B.; Anca, D.B. Characterization of Trametes versicolor: Medicinal Mushroom with Important Health Benefits. Not. Bot. Horti Agrobot. Cluj-Napoc. 2018, 46, 343–349. [Google Scholar] [CrossRef] [Green Version]
- Flamini, R. Recent Applications of Mass Spectrometry in the Study of Grape and Wine Polyphenols. ISRN Spectrosc. 2013, 2013, 813563. [Google Scholar] [CrossRef]
- Janjušević, L.; Karaman, M.; Šibul, F.; Tommonaro, G.; Iodice, C.; Jakovljević, D.; Pejin, B. The lignicolous fungus Trametes versicolor (L.) Lloyd (1920): A promising natural source of antiradical and AChE inhibitory agents. J. Enzym. Inhib. Med. Chem. 2017, 32, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Jin, M.; Zhou, W.; Jin, C.; Jiang, Z.; Diao, S.; Jin, Z.; Li, G. Anti-inflammatory activities of the chemical constituents isolated from Trametes versicolor. Nat. Prod. Res. 2019, 33, 2422–2425. [Google Scholar] [CrossRef]
- Habibi, E.; Sadat-Ebrahimi, S.E.; Mousazadeh, S.A.; Amanzadeh, Y. Mycochemical Investigation of the Turkey Tail Medicinal Mushroom Trametes versicolor (Higher Basidiomycetes): A Potential Application of the Isolated Compounds in Documented Pharmacological Studies. Int. J. Med. Mushrooms 2015, 17, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Zhou, Z.; Zhang, L. Chapter Eight—An overview of fungal glycan-based therapeutics. In Progress in Molecular Biology and Translational Science; Zhang, L., Ed.; Academic Press: New York, NY, USA, 2019; Volume 163, pp. 135–163. [Google Scholar]
- Dou, H.; Chang, Y.; Zhang, L. Coriolus versicolor polysaccharopeptide as an immunotherapeutic in China. Prog. Mol. Biol. Transl. Sci. 2019, 163, 361–381. [Google Scholar] [CrossRef] [PubMed]
- Zaidman, B.Z.; Yassin, M.; Mahajna, J.; Wasser, S.P. Medicinal mushroom modulators of molecular targets as cancer therapeutics. Appl. Microbiol. Biotechnol. 2005, 67, 453–468. [Google Scholar] [CrossRef]
- El Enshasy, H.A.; Hatti-Kaul, R. Mushroom immunomodulators: Unique molecules with unlimited applications. Trends Biotechnol. 2013, 31, 668–677. [Google Scholar] [CrossRef]
- Singdevsachan, S.K.; Auroshree, P.; Mishra, J.; Baliyarsingh, B.; Tayung, K.; Thatoi, H. Mushroom polysaccharides as potential prebiotics with their antitumor and immunomodulating properties: A review. Bioact. Carbohydr. Diet. Fibre 2016, 7, 1–14. [Google Scholar] [CrossRef]
- Yu, Z.T.; Liu, B.; Mukherjee, P.; Newburg, D.S. Trametes versicolor extract modifies human fecal microbiota composition in vitro. Plant Foods Hum. Nutr. 2013, 68, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Pallav, K.; Dowd, S.E.; Villafuerte, J.; Yang, X.; Kabbani, T.; Hansen, J.; Dennis, M.; Leffler, D.A.; Newburg, D.S.; Kelly, C.P. Effects of polysaccharopeptide from Trametes versicolor and amoxicillin on the gut microbiome of healthy volunteers: A randomized clinical trial. Gut Microbes 2014, 5, 458–467. [Google Scholar] [CrossRef] [Green Version]
- Ramberg, J.E.; Nelson, E.D.; Sinnott, R.A. Immunomodulatory dietary polysaccharides: A systematic review of the literature. Nutr. J. 2010, 9, 54. [Google Scholar] [CrossRef] [Green Version]
- Louis, P.; Hold, G.L.; Flint, H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 2014, 12, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Beverly, E.A.; Miller, C.K.; Wray, L.A. Spousal support and food-related behavior change in middle-aged and older adults living with type 2 diabetes. Health Educ. Behav. 2008, 35, 707–720. [Google Scholar] [CrossRef] [PubMed]
- Guilherme, A.; Virbasius, J.V.; Puri, V.; Czech, M.P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 2008, 9, 367–377. [Google Scholar] [CrossRef] [Green Version]
- Shimokawa, K.; Miwa, R.; Yamada, K.; Uemura, D. Importance of the backbone conformation of (−)-ternatin in its fat-accumulation inhibitory activity against 3T3-L1 adipocytes. Org. Biomol. Chem. 2009, 7, 777–784. [Google Scholar] [CrossRef]
- Shimokawa, K.; Iwase, Y.; Yamada, K.; Uemura, D. Synthesis and inhibitory effect on fat accumulation of (−)-ternatin derivatives modified in the β-OH-D-Leu7 moiety. Org. Biomol. Chem. 2008, 6, 58–60. [Google Scholar] [CrossRef]
- Kobayashi, M.; Kawashima, H.; Takemori, K.; Ito, H.; Murai, A.; Masuda, S.; Yamada, K.; Uemura, D.; Horio, F. Ternatin, a cyclic peptide isolated from mushroom, and its derivative suppress hyperglycemia and hepatic fatty acid synthesis in spontaneously diabetic KK-A(y) mice. Biochem. Biophys. Res. Commun. 2012, 427, 299–304. [Google Scholar] [CrossRef]
- Xian, H.M.; Che, H.; Qin, Y.; Yang, F.; Meng, S.Y.; Li, X.G.; Bai, Y.L.; Wang, L.H. Coriolus versicolor aqueous extract ameliorates insulin resistance with PI3K/Akt and p38 MAPK signaling pathways involved in diabetic skeletal muscle. Phytother. Res. PTR 2018, 32, 551–560. [Google Scholar] [CrossRef]
- Mao, G.H.; Ren, Y.; Feng, W.W.; Li, Q.; Wu, H.Y.; Jin, D.; Zhao, T.; Xu, C.Q.; Yang, L.Q.; Wu, X.Y. Antitumor and immunomodulatory activity of a water-soluble polysaccharide from Grifola frondosa. Carbohydr. Polym. 2015, 134, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.-H.; Kong, J.-N.; Choi, H.-E.; Kong, K.-H. Antioxidant, anti-inflammatory, and anti-allergic activities of the sweet-tasting protein brazzein. Food Chem. 2018, 267, 163–169. [Google Scholar] [CrossRef]
- Bucić-Kojić, A.; Fernandes, F.; Silva, T.; Planinić, M.; Tišma, M.; Šelo, G.; Šibalić, D.; Pereira, D.M.; Andrade, P.B. Enhancement of the anti-inflammatory properties of grape pomace treated by Trametes versicolor. Food Funct. 2020, 11, 680–688. [Google Scholar] [CrossRef]
- Chang, Y.; Zhang, M.; Jiang, Y.; Liu, Y.; Luo, H.; Hao, C.; Zeng, P.; Zhang, L. Preclinical and clinical studies of Coriolus versicolor polysaccharopeptide as an immunotherapeutic in China. Discov. Med. 2017, 23, 207–219. [Google Scholar]
- Pandya, U.; Dhuldhaj, U.; Sahay, N.S. Bioactive mushroom polysaccharides as antitumor: An overview. Nat. Prod. Res. 2019, 33, 2668–2680. [Google Scholar] [CrossRef] [PubMed]
- Saleh, M.H.; Rashedi, I.; Keating, A. Immunomodulatory Properties of Coriolus versicolor: The Role of Polysaccharopeptide. Front. Immunol. 2017, 8, 1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quandt, D.; Fiedler, E.; Boettcher, D.; Marsch, W.C.; Seliger, B. B7-H4 Expression in Human Melanoma: Its Association with Patients’ Survival and Antitumor Immune Response. Clin. Cancer Res. 2011, 17, 3100–3111. [Google Scholar] [CrossRef] [Green Version]
- Voth, R.; Rossol, S.; Gallati, H.; Pracht, I.; Laubenstein, H.P.; Hess, G.; Müller, W.E.; Schröder, H.C.; Jochum, C.; Meyer zum Büschenfelde, K.H. In vivo and in vitro induction of natural killer cells by cloned human tumor necrosis factor. Cancer Immunol. Immunother. 1988, 27, 128–132. [Google Scholar] [CrossRef]
- Sekhon, B.K.; Sze, D.M.-Y.; Chan, W.K.; Fan, K.; Li, G.Q.; Moore, D.E.; Roubin, R.H. PSP activates monocytes in resting human peripheral blood mononuclear cells: Immunomodulatory implications for cancer treatment. Food Chem. 2013, 138, 2201–2209. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.K.; Bao, Y.X.; Wong, E.L.; Leung, P.C.; Fung, K.P.; Lam, C.W. Immunomodulatory activities of Yunzhi and Danshen in post-treatment breast cancer patients. Am. J. Chin. Med. 2005, 33, 381–395. [Google Scholar] [CrossRef]
- Hobbs, C. Medicinal Value of Turkey Tail Fungus Trametes versicolor (L.:Fr.) Pilat (Aphyllophoromycetideae). A Literature Review. Int. J. Med. Mushrooms 2004, 6, 195–218. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.; Arbiser, J.L.; Holmgren, A.; Klein, G.; Klein, E. PSK and Trx80 inhibit B-cell growth in EBV-infected cord blood mononuclear cells through T cells activated by the monocyte products IL-15 and IL-12. Blood 2005, 105, 1606–1613. [Google Scholar] [CrossRef] [Green Version]
- Ng, T.; Wang, H.; Wan, D. Polysaccharopeptide from the Turkey Tail Fungus Trametes versicolor (L.:Fr.) Pilát Inhibits Human Immunodeficiency Virus Type 1 Reverse Transciptase and Protease. Int. J. Med. Mushrooms 2006, 8, 39–43. [Google Scholar] [CrossRef]
- Ibragimova, Z.B.; Makarevich, E.V.; Kosogova, T.A.; Mazurkov, O.Y.; Teplyakova, T.V.; Mazurkova, N.A. Anti-influenza virus activity of aqueous extract of macro- and micromycetes in experiments in vitro and in vivo. Mod. Probl. Sci. Educ. 2012, 4, 1–11. [Google Scholar]
- Teplyakova, T.V.; Psurtseva, N.V.; Kosogova, T.A.; Mazurkova, N.A.; Khanin, V.A.; Vlasenko, V.A. Antiviral activity of polyporoid mushrooms (higher Basidiomycetes) from Altai Mountains (Russia). Int. J. Med. Mushrooms 2012, 14, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Krupodorova, T.; Rybalko, S.; Barshteyn, V. Antiviral activity of Basidiomycete mycelia against influenza type A (serotype H1N1) and herpes simplex virus type 2 in cell culture. Virol. Sin. 2014, 29, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Dong, B.; Feng, Z.; Yu, S.; Bao, Y. A study on immunomodulatory mechanism of Polysaccharopeptide mediated by TLR4 signaling pathway. BMC Immunol. 2015, 16, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Bai, N.; Chang, A.; Zhang, Z.; Yin, J.; Shen, W.; Tian, Y.; Xiang, R.; Liu, C. ATF4 is directly recruited by TLR4 signaling and positively regulates TLR4-trigged cytokine production in human monocytes. Cell. Mol. Immunol. 2013, 10, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Valentín, M.; López, S.; Rivera, M.; Ríos-Olivares, E.; Cubano, L.; Boukli, N.M. Naturally Derived Anti-HIV Polysaccharide Peptide (PSP) Triggers a Toll-Like Receptor 4-Dependent Antiviral Immune Response. J. Immunol. Res. 2018, 2018, 8741698. [Google Scholar] [CrossRef] [PubMed]
- Glavinic, U.; Rajkovic, M.; Vunduk, J.; Vejnovic, B.; Stevanovic, J.; Milenkovic, I.; Stanimirovic, Z. Effects of Agaricus bisporus Mushroom Extract on Honey Bees Infected with Nosema ceranae. Insects 2021, 12, 915. [Google Scholar] [CrossRef]
- Bermudez, J.; Davies, C.; Simonazzi, A.; Real, J.P.; Palma, S. Current drug therapy and pharmaceutical challenges for Chagas disease. Acta Trop. 2016, 156, 1–16. [Google Scholar] [CrossRef]
- Wink, M. Medicinal plants: A source of anti-parasitic secondary metabolites. Molecules 2012, 17, 12771–12791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corrêa, R.C.G.; Peralta, R.M.; Bracht, A.; Ferreira, I.C.F.R. The emerging use of mycosterols in food industry along with the current trend of extended use of bioactive phytosterols. Trends Food Sci. Technol. 2017, 67, 19–35. [Google Scholar] [CrossRef]
- Chan-Bacab, M.J.; Peña-Rodríguez, L.M. Plant natural products with leishmanicidal activity. Nat. Prod. Rep. 2001, 18, 674–688. [Google Scholar] [CrossRef]
- Leliebre-Lara, V.; Monzote Fidalgo, L.; Pferschy-Wenzig, E.-M.; Kunert, O.; Nogueiras Lima, C.; Bauer, R. In Vitro Antileishmanial Activity of Sterols from Trametes versicolor (Bres. Rivarden). Molecules 2016, 21, 1045. [Google Scholar] [CrossRef] [Green Version]
- Fayaz, A.M.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P.T.; Venketesan, R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med. 2009, 6, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Chawla, P.; Kumar, N.; Bains, A.; Dhull, S.B.; Kumar, M.; Kaushik, R.; Punia, S. Gum arabic capped copper nanoparticles: Synthesis, characterization, and applications. Int. J. Biol. Macromol. 2020, 146, 232–242. [Google Scholar] [CrossRef]
- Alves, M.J.; Ferreira, I.C.; Dias, J.; Teixeira, V.; Martins, A.; Pintado, M. A review on antifungal activity of mushroom (basidiomycetes) extracts and isolated compounds. Curr. Top. Med. Chem. 2013, 13, 2648–2659. [Google Scholar] [CrossRef] [Green Version]
- Ng, T.B.; Cheung, R.C.F.; Wong, J.H.; Chan, Y.S.; Dan, X.; Pan, W.; Wang, H.; Guan, S.; Chan, K.; Ye, X.; et al. Fungal proteinaceous compounds with multiple biological activities. Appl. Microbiol. Biotechnol. 2016, 100, 6601–6617. [Google Scholar] [CrossRef] [PubMed]
- Karaman, M.; Jovin, E.; Malbasa, R.; Matavuly, M.; Popović, M. Medicinal and edible lignicolous fungi as natural sources of antioxidative and antibacterial agents. Phytother. Res. PTR 2010, 24, 1473–1481. [Google Scholar] [CrossRef]
- Yamac, M.; Bilgili, F. Antimicrobial Activities of Fruit Bodies and/or Mycelial Cultures of Some Mushroom Isolates. Pharm. Biol. 2006, 44, 660–667. [Google Scholar] [CrossRef]
- Özkök, A.; Koru, Ö.; Sorkun, K. Microbiological Analysis and Antibacterial Effects of Turkish Thyme Honey. Bee World 2016, 93, 98–101. [Google Scholar] [CrossRef]
- Bains, A.; Tripathi, A. Evaluation of antioxidant and anti-inflammatory properties of aqueous extract of wild mushrooms collected from Himachal Pradesh. Asian J. Pharm. Clin. Res. 2017, 10, 467–472. [Google Scholar] [CrossRef] [Green Version]
- Zgurskaya, H.I.; Löpez, C.A.; Gnanakaran, S. Permeability Barrier of Gram-Negative Cell Envelopes and Approaches To Bypass It. ACS Infect. Dis. 2015, 1, 512–522. [Google Scholar] [CrossRef] [Green Version]
- Viswanath, B.; Rajesh, B.; Janardhan, A.; Kumar, A.P.; Narasimha, G. Fungal laccases and their applications in bioremediation. Enzym. Res. 2014, 2014, 163242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Fraatz, M.A.; Müller, J.; Schmitz, H.-J.; Birk, F.; Schrenk, D.; Zorn, H. Aroma Characterization and Safety Assessment of a Beverage Fermented by Trametes versicolor. J. Agric. Food Chem. 2015, 63, 6915–6921. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Kaur, S.; Brar, S.K.; Verma, M. Flocculation and haze removal from crude beer using in-house produced laccase from Trametes versicolor cultured on brewer’s spent grain. J. Agric. Food Chem. 2012, 60, 7895–7904. [Google Scholar] [CrossRef]
- Takemori, T.; Ito, Y.; Ito, M.; Yoshama, M. Flavor and taste improvement of cacao nib by enzymatic treatment. Jpn. Kokai Tokyo Koho JP 1992, 4126037, A2. [Google Scholar]
- Di Fusco, M.; Tortolini, C.; Deriu, D.; Mazzei, F. Laccase-based biosensor for the determination of polyphenol index in wine. Talanta 2010, 81, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Ibarra-Escutia, P.; Gómez, J.J.; Calas-Blanchard, C.; Marty, J.L.; Ramírez-Silva, M.T. Amperometric biosensor based on a high resolution photopolymer deposited onto a screen-printed electrode for phenolic compounds monitoring in tea infusions. Talanta 2010, 81, 1636–1642. [Google Scholar] [CrossRef] [PubMed]
- Attanasio, A.; Diano, N.; Grano, V.; Sicuranza, S.; Rossi, S.; Bencivenga, U.; Fraconte, L.; Di Martino, S.; Canciglia, P.; Mita, D.G. Nonisothermal bioreactors in the treatment of vegetation waters from olive oil: Laccase versus syringic acid as bioremediation model. Biotechnol. Prog. 2005, 21, 806–815. [Google Scholar] [CrossRef]
- Barros, A.B.; Ferrão, J.; Fernandes, T. A safety assessment of Coriolus versicolor biomass as a food supplement. Food Nutr. Res. 2016, 60, 29953. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.Z.; Yang, Q.Y. The antitumor and anti-virus activity of polysaccharopeptide (PSP). Advanced research in PSP. Hong Kong Hong Kong Assoc. Healthc. 1999. [Google Scholar]
- Hor, S.Y.; Ahmad, M.; Farsi, E.; Lim, C.P.; Asmawi, M.Z.; Yam, M.F. Acute and subchronic oral toxicity of Coriolus versicolor standardized water extract in Sprague-Dawley rats. J. Ethnopharmacol. 2011, 137, 1067–1076. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Chisti, Y. Polysaccharopeptides of Coriolus versicolor: Physiological activity, uses, and production. Biotechnol. Adv. 2003, 21, 109–122. [Google Scholar] [CrossRef]
- Ng, T.B.; Chan, W.Y. Polysaccharopeptide from the mushroom Coriolus versicolor possesses analgesic activity but does not produce adverse effects on female reproductive or embryonic development in mice. Gen. Pharmacol. 1997, 29, 269–273. [Google Scholar] [CrossRef]
- Chu, K.K.; Ho, S.S.; Chow, A.H. Coriolus versicolor: A medicinal mushroom with promising immunotherapeutic values. J. Clin. Pharmacol. 2002, 42, 976–984. [Google Scholar] [CrossRef] [PubMed]
- Loomis, T.A.; Hayes, A.W. Loomis’s Essentials of Toxicology, 4th ed.; Loomis, T.A., Hayes, A.W., Eds.; Academic Press: San Diego, CA, USA, 1996; pp. 1–15. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bains, A.; Chawla, P.; Kaur, S.; Najda, A.; Fogarasi, M.; Fogarasi, S. Bioactives from Mushroom: Health Attributes and Food Industry Applications. Materials 2021, 14, 7640. https://doi.org/10.3390/ma14247640
Bains A, Chawla P, Kaur S, Najda A, Fogarasi M, Fogarasi S. Bioactives from Mushroom: Health Attributes and Food Industry Applications. Materials. 2021; 14(24):7640. https://doi.org/10.3390/ma14247640
Chicago/Turabian StyleBains, Aarti, Prince Chawla, Sawinder Kaur, Agnieszka Najda, Melinda Fogarasi, and Szabolcs Fogarasi. 2021. "Bioactives from Mushroom: Health Attributes and Food Industry Applications" Materials 14, no. 24: 7640. https://doi.org/10.3390/ma14247640
APA StyleBains, A., Chawla, P., Kaur, S., Najda, A., Fogarasi, M., & Fogarasi, S. (2021). Bioactives from Mushroom: Health Attributes and Food Industry Applications. Materials, 14(24), 7640. https://doi.org/10.3390/ma14247640