Assessment of the Suitability of Elastomeric Bearings Modeling Using the Hyperelasticity and the Finite Element Method
Abstract
:1. Introduction
- The suitability of the neo-Hookean and Yeoh models for usage in elastomer bearings modeling are verified in experiment of bearing compression.
- The procedure for extending the material experimental basis with the test of elastomer bearing compression using the inverse method and finite element modeling is proposed.
- FEM modeling results for different constitutive models and different sets of parameters are estimated, giving an idea of the size of the error and its consequences.
2. Determination of the Hyperelasticity Parameters Based on the Uniaxial Tension Test
2.1. General Form of the Strain Energy Density Function for Incompressible Materials
2.2. Results of Uniaxial Tension Test (UTT) for the Analyzed Bearings Material
2.3. Determination of the Neo-Hookean Model Parameters on the Basis of UTT
2.4. Determination of Yeoh Model Parameters on the Basis of UTT
3. FEM Model and Its Convergence
3.1. FEM Model
3.2. Convergence of the FEM Model
4. Assessment of the Modeling Suitability
4.1. Elastomeric Bearing Compression Test
4.2. Determination of the FEM Model Response with Material Parameters Determined in the UTT
4.3. Comments on Determination of Hyperelasticity Parameters on the Basis of One Experimental Test
5. Idea of Supplementing Material Tests with Testing of the Entire Bearing
5.1. Formulating Inverse Method Analysis for the Neo-Hookean Model
5.2. Formulating Inverse Method Analysis for the Yeoh Model
6. Material Parameters Determined on the Basis of Inverse Analysis—Results and Their Verification
7. Conclusions and Final Remarks
- The use of the Yeoh model, which satisfies all mathematical and physical requirements, always leads to better predictions of the material behavior in the uniaxial tensile test (UTT) and allows for a better representation of the behavior of the compressed elastomeric bearing than the use of the neo-Hookean model. In the case of the Yeoh model with material parameters determined from only one tensile test, the LBCT (Mean Squares Error) projecting error is at a comparable level as in the case of the neo-Hookean model with parameters determined on the basis of UTT and HBCT. Similar results were obtained in the work [40] for PLA materials in tensile tests at different temperatures. Uniaxial tensile tests and comparisons of these two material models were also performed in [8].
- Comparing the graphs in Figure 8 (UTT) with those in Figure 11 (LBCT) and Figure 12 (HBCT), it can be seen that taking HBCT test in the determination of material parameters into account, the good predictions of the Yeoh model based on UTT significantly deteriorated. This means that the Yeoh model may not be sufficient to model elastomeric bearings correctly in the whole range of deformation (in analyzed case bearings are compressed to the average value not crossing 7%). In the case of the neo-Hookean model, the discrepancies in the uniaxial tension test are even bigger (proper predictions up to extensions around 10% when only UTT was used for parameter determination and up to 40% when UTT and HBCT were used).
- The approach used in the article, taking into account the inverse method analysis and FEM modeling, is not automatic and requires verification at each stage (the influence of the FEM mesh, boundary conditions and local excessive deformation of finite elements at the steel–elastomer interface). Nevertheless, it allows us to extend the experimental base needed to determine material parameters in such a way that their application in problems with complex states of stresses, strains and deformations leads to rational results.
- Efficient modeling of elastomeric bearings even for engineering purposes (civil engineering) requires application of the large deformation theory and hyperelastic constitutive models. In such case, it is necessary to perform the UTT on the elastomer. This allows us, on one hand, to determine the scope of application of simplified models such as neo-Hookean, and on the other hand, it can be used to determine the input data for inverse method analysis and validation of more suitable hyperelasticity model.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, W.; Tan, P.; Yuan, Y.; Zhu, H. Experimental and analytical investigation of the influence of compressive load on rate-dependent high-damping rubber bearings. Constr. Build. Mater. 2019, 200, 26–35. [Google Scholar] [CrossRef]
- Falborski, T. Study on Properties of Polymer as a Material for Seismic Isolation Bearings. Ph.D. Dissertation, Institute of Structural Mechanics, Faculty of Civil Engineering, Cracow University of Technology, Krakow, Poland, 2014; p. 224. [Google Scholar]
- Kakolvand, H.; Ghazi, M.; Mehrparvar, B.; Parvizi, S. Experimental and Numerical Study of a New Proposed Seismic Isolator Using Steel Rings (SISR). J. Earthq. Eng. 2020, 1–30. [Google Scholar] [CrossRef]
- Xu, C.; Chi, M.-R.R.; Dai, L.; Jiang, Y.; Guo, Z. Study of Vertical Characteristics with Changes in Prepressure of Rubber Pad Used by High-Speed EMU. Adv. Mater. Sci. Eng. 2020, 2020, 8257286. [Google Scholar] [CrossRef]
- Teng, Y.-C.C.; Chen, K.-S.S. Analysis, design, and control of a novel elastomeric bearing positioning stage. Inventions 2016, 1, 17. [Google Scholar] [CrossRef]
- Waśniewski, G.; Schabowicz, K.; Wróblewski, K.; Kasprzak, T. Identification of physical model of resinous material filling expansion joint in reinforced concrete structures. J. Build. Eng. 2021, 45, 103505. [Google Scholar] [CrossRef]
- Gajewski, M.; Szczerba, R.; Jemioło, S. Modelling of Elastomeric Bearings with Application of Yeoh Hyperelastic Material Model. Procedia Eng. 2015, 111, 220–227. [Google Scholar] [CrossRef] [Green Version]
- Esmail, J.F.; Mohamedmeki, M.Z.; Ajeel, A.E. Using the uniaxial tension test to satisfy the hyperelastic material simulation in ABAQUS. IOP Conf. Ser. Mater. Sci. Eng. 2020, 888, 12065. [Google Scholar] [CrossRef]
- Nazali, N.N.M.; Anirad, N.A.A.; Manan, N.F.A. The Mechanical Properties of Mimic Skin. Appl. Mech. Mater. 2020, 899, 73–80. [Google Scholar] [CrossRef]
- Jemioło, S.; Gajewski, M. Hipersprężystoplastyczność, 1st ed.; Oficyna Wydawnicza Politechniki Warszawskiej: Warszawa, Poland, 2014; ISBN 978-83-7814-337-6. [Google Scholar]
- Herianto; Irawan, W.; Ritonga, A.S.; Prastowo, A. Design and fabrication in the loop of soft pneumatic actuators using fused deposition modelling. Sens. Actuators A Phys. 2019, 298, 111556. [Google Scholar] [CrossRef]
- Rezende, R.C.; Greco, M.; Lalo, D.F. Numerical analysis of an elastomeric bearing pad by hyperelastic models. Rev. Constr. 2020, 19, 301–310. [Google Scholar] [CrossRef]
- Gajewski, M.; Kowalewski, Ł. Inverse analysis and DIC as tools to determine material parameters in isotropic metal plasticity models with isotropic strain hardening. Mater. Test. 2016, 58, 818–825. [Google Scholar] [CrossRef]
- Mohamedmeki, Z.M.; Esmail, F.J.; Ajeel, E.A. Fatigue life analysis of laminated elastomeric bearing pad. Mater. Today Proc. 2021, 42, 2361–2368. [Google Scholar] [CrossRef]
- Ogden, R.W. Non-Linear Elastic Deformations, Dover Civil and Mechanical Engineering; Dover Publications: Chichester, UK, 1997; ISBN 9780486696485. [Google Scholar]
- Bonet, J.; Wood, R.D. Nonlinear Continuum Mechanics for Finite Element Analysis; Cambridge University Press: Cambridge, UK, 2008; ISBN 9780511755446. [Google Scholar]
- Green, A.E.; Zerna, W. Non-Linear Elastic Deformations; Horwood: Chichester, UK, 1968. [Google Scholar]
- Holzapfel, G. Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science. Meccanica 2002, 37, 489–490. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, L.T. A General Approach to Derive Stress and Elasticity Tensors for Hyperelastic Isotropic and Anisotropic Biomaterials. Int. J. Comput. Methods 2018, 15, 1850028. [Google Scholar] [CrossRef]
- Hibbit, D.; Karlsson, B.; Sorensen, P. ABAQUS: Theory Manual; Version 6; Dassault Systèmes: Pawtucket, RI, USA, 2002. [Google Scholar]
- Hibbit, D.; Karlsson, B.; Sorensen, P. ABAQUS: Standard User’s Manual; Version 6; Dassault Systèmes: Pawtucket, RI, USA, 2001. [Google Scholar]
- de Borst, R.; Crisfield, M.A.; Remmers, J.J.C.; Verhoosel, C.V. Non-Linear Finite Element Analysis of Solids and Structures, 2nd ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2012; ISBN 9780470666449. [Google Scholar]
- Zienkiewicz, O.C.; Taylor, R. The Finite Element Method for Solid and Structural Mechanics, 7th ed.; Zienkiewicz, O.C., Taylor, R.L., Fox, D., Eds.; Butterworth-Heinemann: Oxford, UK, 2014; ISBN 978-1-85617-634-7. [Google Scholar]
- Jemioło, S.; Franus, A.Ł. Izotropowe Modele Konstytutywne Hipersprężystości. Wyznaczanie Parametrów Materiałowych i Implementacja Numeryczna; Zakład Wytrzymałości Materiałów, Teorii Sprężystości i Plastyczności, Wydział Inżynierii Lądowej Politechniki Warszawskiej: Warszawa, Poland, 2019; ISBN 978-83-7814-865-4. [Google Scholar]
- Jemioło, S. Relacje Konstytutywne Hipersprężystości; Committee of Civil Engineering Polish Academy of Sciences: Warsaw, Poland, 2016; ISBN 978-83-938648-8-1. [Google Scholar]
- ISO 37. Rubber, Vulcanize or Thermoplastic—Determination of Tensile Stress-Strain Properties; International Organization for Standardization: Geneva, Switzerland, 2017. [Google Scholar]
- Greco, M.; Peixoto, D.H.N. Comparative assessments of strain measures for nonlinear analysis of truss structures at large deformations. Eng. Comput. 2021. [Google Scholar] [CrossRef]
- Korobeynikov, S.N. Objective Symmetrically Physical Strain Tensors, Conjugate Stress Tensors, and Hill’s Linear Isotropic Hyperelastic Material Models. J. Elast. 2019, 136, 159–187. [Google Scholar] [CrossRef]
- Beex, L.A.A. Fusing the Seth–Hill strain tensors to fit compressible elastic material responses in the nonlinear regime. Int. J. Mech. Sci. 2019, 163, 105072. [Google Scholar] [CrossRef] [Green Version]
- Wolfram Mathematica. Available online: https://www.wolfram.com/mathematica (accessed on 12 July 2021).
- Betomax Polska, S.A. Łożyska Konstrukcyjne: Elastomerowe; Chodor-Projekt: Końskie, Poland, 2013; Available online: https://betomax.pl (accessed on 11 February 2015).
- Harish, A.B.; Wriggers, P. Modeling of two-body abrasive wear of filled elastomers as a contact-induced fracture process. Tribol. Int. 2019, 138, 16–31. [Google Scholar] [CrossRef]
- Hotała, E.; Skotny, Ł. Experimental investigations on the stability of stiffened cylindrical shells of steel silos. J. Constr. Steel Res. 2014, 96, 81–94. [Google Scholar] [CrossRef]
- Miller, K.; Joldes, G.; Lance, D.; Wittek, A. Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Commun. Numer. Methods Eng. 2007, 23, 121–134. [Google Scholar] [CrossRef]
- Zhang, J. A direct Jacobian total Lagrangian explicit dynamics finite element algorithm for real-time simulation of hyperelastic materials. Int. J. Numer. Methods Eng. 2021, 122, 5744–5772. [Google Scholar] [CrossRef]
- Jemioło, S. Studium Hipersprężystych Własności Materiałów Izotropowych—Modelowanie i Implementacja Numeryczna; Warsaw University of Technology Publishing House: Warsaw, Poland, 2002. [Google Scholar]
- Cooreman, S.; Lecompte, D.; Sol, H.; Vantomme, J.; Debruyne, D. Elasto-plastic material parameter identification by inverse methods: Calculation of the sensitivity matrix. Int. J. Solids Struct. 2007, 44, 4329–4341. [Google Scholar] [CrossRef] [Green Version]
- Wojciechowski, J.; Gajewski, M.; Ajdukiewicz, C. Deformacje i wytrzymałość materiałów i elementów konstrukcji; Oficyna Wydawnicza PW: Warsaw, Poland, 2013; pp. 93–98. [Google Scholar]
- Treloar, L.R.G. Stress-Strain Data for Vulcanized Rubber under Various Types of Deformation. Rubber Chem. Technol. 1944, 17, 813–825. [Google Scholar] [CrossRef]
- Choi, N.-Y.; Shin, B.-C.; Zhang, S.-U. A Comparative Study of the Linear-elastic and Hyperelastic Models for Degradation of PLA Prepared using Fused Filament Fabrication. Korean Soc. Manuf. Process Eng. 2020, 19, 1–7. [Google Scholar] [CrossRef]
1.00 | 1.01 | 1.05 | 1.10 | 1.20 | 1.30 | 1.40 | 1.50 | 1.60 | 1.70 | 1.80 | 1.90 | 2.00 | 2.20 | 2.40 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(MPa) | 0.00 | 0.07 | 0.26 | 0.44 | 0.71 | 0.95 | 1.18 | 1.43 | 1.69 | 1.97 | 2.27 | 2.60 | 2.95 | 3.74 | 4.59 |
Height of the Bearing: LB, HB | |
---|---|
Dimensions in plane | |
Dimensions of reinforcing steel plates | mm) |
Height of the inner layers of the elastomer | |
Height of the steel layers | |
Elastomer cover: top (bottom), side | |
Number of reinforcing steel plates: LB; HB |
Number of Finite Elements | Number of Nodes | Vertical Reaction Force in Support | Error | Time of the Analysis * | |
---|---|---|---|---|---|
(-) | (-) | (kN) | (%) | (s) | |
Coarse mesh (M0) | 20,095 | 26,002 | −55.6 | 13.7 | 455 |
Medium mesh (M1) | 63,007 | 55,263 | −51.8 | 6.0 | 752 |
Detailed mesh (M2) | 117,912 | 102,595 | −50.8 | 3.9 | 1820 |
Very detailed mesh (M3) | 312,809 | 280,902 | −49.4 | 1.1 | 7724 |
Model Parameters | Norm MSE | |
---|---|---|
(MPa) | (-) | |
neo-Hookean model parameters determined from the UTT | ||
Yeoh model parameters determined from the UTT | ||
neo-Hookean model parameters determined from HBCT and UTT | ||
Yeoh model parameters determined from HBCT and UTT | ||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajewski, M.D.; Miecznikowski, M. Assessment of the Suitability of Elastomeric Bearings Modeling Using the Hyperelasticity and the Finite Element Method. Materials 2021, 14, 7665. https://doi.org/10.3390/ma14247665
Gajewski MD, Miecznikowski M. Assessment of the Suitability of Elastomeric Bearings Modeling Using the Hyperelasticity and the Finite Element Method. Materials. 2021; 14(24):7665. https://doi.org/10.3390/ma14247665
Chicago/Turabian StyleGajewski, Marcin Daniel, and Mikołaj Miecznikowski. 2021. "Assessment of the Suitability of Elastomeric Bearings Modeling Using the Hyperelasticity and the Finite Element Method" Materials 14, no. 24: 7665. https://doi.org/10.3390/ma14247665
APA StyleGajewski, M. D., & Miecznikowski, M. (2021). Assessment of the Suitability of Elastomeric Bearings Modeling Using the Hyperelasticity and the Finite Element Method. Materials, 14(24), 7665. https://doi.org/10.3390/ma14247665