Kinetics Study of Al Extraction from Desilicated Coal Fly Ash by NaOH at Atmospheric Pressure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Analysis
2.3. Experiments
2.4. Experimental Data Evaluation
3. Results and Discussion
3.1. Characterization of the Raw CFA and DCFA
3.2. The Effect of Leaching Parameters on the Mullite Dissolution
3.3. Kinetic Study
3.4. Solid Residue Characterization
4. Conclusions
- To extract mullite at atmospheric pressure, preliminary desilication at a high L:S ratio is necessary in order to accept DSP formation and expose the surface of mullite particles.
- According to the response surfaces obtained by the SANN method, at T = 120 °C, L:S ratio = 20, τ = 60 min, CNa2O = 400 g L−1, and CAl2O30 = 0 g L−1, the Al extraction degree is 84%. A very low extraction degree is observed at the same parameters but CAl2O30 = 390 g L−1. It indicates low solubility of mullite at a given temperature.
- The kinetics analysis by a shrinking core model (SCM) has showed that the surface chemical reaction controls the leaching process rate at T < 110 °C, and, at T > 110 °C after 15 min of leaching, the process is limited by diffusion through the product layer, which can be represented by titanium compounds. The apparent Ea was 92.0 kJ/mol.
- The unleached mullite in the solid residue is represented by individual acicular particles, as well as agglomerates with high alumina content and low porosity surface. The whole extraction efficiency of Si and Al after desilication and mullite leaching was more than 97% and 84%, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, Z.T.; Xia, M.S.; Sarker, P.K.; Chen, T. A review of the alumina recovery from coal fly ash, with a focus in China. Fuel 2013, 120, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Ma, S.; Shen, S.; Xie, Z.; Zheng, S.; Zhang, Y. Research and industrialization progress of recovering alumina from fly ash: A concise review. Waste Manag. 2017, 60, 375–387. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Cheng, S.; Zhu, F.; Tan, X.; Li, W.; Zhang, P.; Miao, S. Digesting high-aluminum coal fly ash with concentrated sulfuric acid at high temperatures. Hydrometallurgy 2018, 180, 41–48. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, S.; Zhang, H.; Cheng, F. Novel extraction of valuable metals from circulating fluidized bed-derived high-alumina fly ash by acid–alkali–based alternate method. J. Clean. Prod. 2019, 230, 302–313. [Google Scholar] [CrossRef]
- Bai, G.-H.; Teng, W.; Wang, X.-G.; Qin, J.-G.; Xu, P.; Li, P.-C. Alkali desilicated coal fly ash as substitute of bauxite in lime-soda sintering process for aluminum production. Trans. Nonferrous Met. Soc. China 2010, 20, s169–s175. [Google Scholar] [CrossRef]
- Bazhin, V.Y.; Beloglazov, I.; Feshchenko, R. Deep conversion and metal content of Russian coals. Eurasian Min. 2016, 2, 28–32. [Google Scholar] [CrossRef]
- Ding, J.; Ma, S.; Xie, Z.; Wang, X.; Zheng, S.; Zhang, Y. Formation mechanism of an undesirable by-product in the mild hydro-chemical process for the extraction of alumina from fly ash and its mitigation. Hydrometallurgy 2019, 186, 292–300. [Google Scholar] [CrossRef]
- Liu, G.; Liu, Y.; Zhang, T. Approaches to improve alumina extraction based on the phase transformation mechanism of recovering alkali and extracting alumina by the calcification-carbonization method. Hydrometallurgy 2019, 189, 105123. [Google Scholar] [CrossRef]
- Zong, Y.; Li, F.; Chen, W.; Liu, Z. Extraction of alumina from high-alumina coal ash using an alkaline hydrothermal method. SN Appl. Sci. 2019, 1, 783. [Google Scholar] [CrossRef] [Green Version]
- Bai, G.; Qiao, Y.; Shen, B.; Chen, S. Thermal decomposition of coal fly ash by concentrated sulfuric acid and alumina extraction process based on it. Fuel Process. Technol. 2011, 92, 1213–1219. [Google Scholar] [CrossRef]
- Rampou, M.; Ndlovu, S.; Shemi, A. Purification of Coal Fly Ash Leach Liquor for Alumina Recovery Using an Integrated Precipitation and Solvent Extraction Process. J. Sustain. Met. 2017, 3, 782–792. [Google Scholar] [CrossRef]
- Rui, H.; Zhang, L.; Li, L.; Zhu, L. Solvent extraction of lithium from hydrochloric acid leaching solution of high-alumina coal fly ash. Chem. Phys. Lett. 2021, 771, 138510. [Google Scholar] [CrossRef]
- Shemi, A.; Mpana, R.; Ndlovu, S.; van Dyk, L.; Sibanda, V.; Seepe, L. Alternative techniques for extracting alumina from coal fly ash. Miner. Eng. 2012, 34, 30–37. [Google Scholar] [CrossRef]
- Kumar, A.; Agrawal, S.; Dhawan, N. Processing of Coal Fly Ash for the Extraction of Alumina Values. J. Sustain. Met. 2020, 6, 294–306. [Google Scholar] [CrossRef]
- Gong, B.; Tian, C.; Xiong, Z.; Zhao, Y.; Zhang, J. Mineral changes and trace element releases during extraction of alumina from high aluminum fly ash in Inner Mongolia, China. Int. J. Coal Geol. 2016, 166, 96–107. [Google Scholar] [CrossRef]
- Guo, Y.; Li, J.; Yan, K.; Cao, L.; Cheng, F. A prospective process for alumina extraction via the co-treatment of coal fly ash and bauxite red mud: Investigation of the process. Hydrometallurgy 2019, 186, 98–104. [Google Scholar] [CrossRef]
- Shemi, A.; Ndlovu, S.; Sibanda, V.; van Dyk, L. Extraction of alumina from coal fly ash using an acid leach-sinter-acid leach technique. Hydrometallurgy 2015, 157, 348–355. [Google Scholar] [CrossRef]
- Shi, Y.; Jiang, K.-X.; Zhang, T.-A. Cleaner extraction of alumina from coal fly ash: Baking-electrolysis method. Fuel 2020, 273, 117697. [Google Scholar] [CrossRef]
- Sun, L.; Luo, K.; Fan, J.; Lu, H. Experimental study of extracting alumina from coal fly ash using fluidized beds at high temperature. Fuel 2017, 199, 22–27. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, P.; Chen, J.; Li, L.; Li, M. Effect of Temperature on Phase and Alumina Extraction Efficiency of the Product from Sintering Coal Fly Ash with Ammonium Sulfate. Chin. J. Chem. Eng. 2014, 22, 1363–1367. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Y.; Cheng, F.; Wang, M.; Wang, X. Role of additives in improved thermal activation of coal fly ash for alumina extraction. Fuel Process. Technol. 2013, 110, 114–121. [Google Scholar] [CrossRef]
- Liu, D.; Fang, L.; Guo, Y.; Yan, K.; Yao, C.; Cheng, F. Effects of calcium oxide and ferric oxide on the process of alumina extraction of coal fly ash activated by sodium carbonate. Hydrometallurgy 2018, 179, 149–156. [Google Scholar] [CrossRef]
- Li, S.; Bo, P.; Kang, L.; Guo, H.; Gao, W.; Qin, S. Activation Pretreatment and Leaching Process of High-Alumina Coal Fly Ash to Extract Lithium and Aluminum. Metals 2020, 10, 893. [Google Scholar] [CrossRef]
- Yan, F.; Jiang, J.; Liu, N.; Gao, Y.; Meng, Y.; Li, K.; Chen, X. Green synthesis of mesoporous γ-Al2O3 from coal fly ash with simultaneous on-site utilization of CO2. J. Hazard. Mater. 2018, 359, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Tanvar, H.; Chauhan, S.; Dhawan, N. Extraction of aluminum values from fly ash. Mater. Today Proc. 2018, 5, 17055–17063. [Google Scholar] [CrossRef]
- Shoppert, A.A.; Loginova, I.V.; Chaikin, L.I.; Rogozhnikov, D.A. Alkali Fusion-Leaching Method For Comprehensive Processing Of Fly Ash. KnE Mater. Sci. 2017, 2, 89. [Google Scholar] [CrossRef] [Green Version]
- Valeev, D.; Shoppert, A.; Mikhailova, A.; Kondratiev, A. Acid and Acid-Alkali Treatment Methods of Al-Chloride Solution Obtained by the Leaching of Coal Fly Ash to Produce Sandy Grade Alumina. Metals 2020, 10, 585. [Google Scholar] [CrossRef]
- Wang, P.; Liu, H.; Zheng, F.; Liu, Y.; Kuang, G.; Deng, R.; Li, H. Extraction of Aluminum from Coal Fly Ash Using Pressurized Sulfuric Acid Leaching with Emphasis on Optimization and Mechanism. JOM 2021, 73, 2643–2651. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, X.; Li, L.; Wang, Y.; Li, M. Kinetics of extracting alumina by leaching coal fly ash with ammonium hydrogen sulfate solution. Chem. Pap. 2019, 73, 2289–2295. [Google Scholar] [CrossRef]
- Tripathy, A.; Behera, B.; Aishvarya, V.; Sheik, A.; Dash, B.; Sarangi, C.; Tripathy, B.; Sanjay, K.; Bhattacharya, I. Sodium fluoride assisted acid leaching of coal fly ash for the extraction of alumina. Miner. Eng. 2018, 131, 140–145. [Google Scholar] [CrossRef]
- Zhang, X.; Du, T.; Jia, H. Efficient Activation of Coal Fly Ash for Silica and Alumina Leaches and the Dependence of Pb(II) Removal Capacity on the Crystallization Conditions of Al-MCM-41. Int. J. Mol. Sci. 2021, 22, 6540. [Google Scholar] [CrossRef]
- Zhang, J.-B.; Li, S.-P.; Li, H.-Q.; He, M.-M. Acid Activation for Pre-Desilicated High-Alumina Fly Ash. Fuel Process. Technol. 2016, 151, 64–71. [Google Scholar] [CrossRef]
- Smith, P. The processing of high silica bauxites—Review of existing and potential processes. Hydrometallurgy 2009, 98, 162–176. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, Z.; Zhao, Q.; Cheng, F. Novel process of alumina extraction from coal fly ash by pre-desilicating—Na2CO3 activation—Acid leaching technique. Hydrometallurgy 2017, 169, 418–425. [Google Scholar] [CrossRef]
- Panek, R.; Wdowin, M.; Franus, W.; Czarna-Juszkiewicz, D.; Stevens, L.; Deng, H.; Liu, J.; Sun, C.; Liu, H.; Snape, C. Fly ash-derived MCM-41 as a low-cost silica support for polyethyleneimine in post-combustion CO2 capture. J. CO2 Util. 2017, 22, 81–90. [Google Scholar] [CrossRef]
- Yan, F.; Jiang, J.; Tian, S.; Liu, Z.; Shi, J.; Li, K.; Chen, X.; Xu, Y. A Green and Facile Synthesis of Ordered Mesoporous Nanosilica Using Coal Fly Ash. ACS Sustain. Chem. Eng. 2016, 4, 4654–4661. [Google Scholar] [CrossRef]
- Ju, T.; Jiang, J.; Meng, Y.; Yan, F.; Xu, Y.; Gao, Y.; Aihemaiti, A. An Investigation of the Effect of Ultrasonic Waves on the Efficiency of Silicon Extraction from Coal Fly Ash. Ultrason. Sonochem. 2020, 60, 104765. [Google Scholar] [CrossRef]
- Czarna-Juszkiewicz, D.; Kunecki, P.; Panek, R.; Madej, J.; Wdowin, M. Impact of Fly Ash Fractionation on the Zeolitization Process. Materials 2020, 13, 1035. [Google Scholar] [CrossRef] [Green Version]
- Kunecki, P.; Panek, R.; Wdowin, M.; Bień, T.; Franus, W. Influence of the fly ash fraction after grinding process on the hydrothermal synthesis efficiency of Na-A, Na-P1, Na-X and sodalite zeolite types. Int. J. Coal Sci. Technol. 2020, 8, 291–311. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, X.; Guo, Y.; Cheng, F. Extraction of Valuable Metals and Preparation of Mesoporous Materials from Circulating Fluidized Bed-Derived Fly Ash via an Acid–Alkali-Based Alternate Method. ACS Omega 2020, 5, 31295–31305. [Google Scholar] [CrossRef]
- Aphane, M.E.; Doucet, F.J.; Kruger, R.A.; Petrik, L.; Van Der Merwe, E.M. Preparation of Sodium Silicate Solutions and Silica Nanoparticles from South African Coal Fly Ash. Waste Biomass Valorization 2019, 11, 4403–4417. [Google Scholar] [CrossRef]
- Liu, C.; Ma, S.; Ding, J.; Luo, Y.; Zheng, S.; Zhang, Y. Kinetics of Decomposition of Mullite and Corundum in Coal Fly Ash under Highly Alkaline Condition. Trans. Nonferrous Met. Soc. China 2019, 29, 868–875. [Google Scholar] [CrossRef]
- Ding, J.; Ma, S.; Zheng, S.; Zhang, Y.; Xie, Z.; Shen, S.; Liu, Z. Study of extracting alumina from high-alumina PC fly ash by a hydro-chemical process. Hydrometallurgy 2016, 161, 58–64. [Google Scholar] [CrossRef]
- Myerson, A.S. Handbook of Industrial Crystallization; Butterworth-Heinemann: Oxford, UK, 2002; ISBN 978-0-08-053351-3. [Google Scholar]
- Loginova, I.V.; Shoppert, A.A.; Chaikin, L.I. Extraction of Rare-Earth Metals during the Systematic Processing of Diaspore-Boehmite Bauxites. Metallurgist 2016, 60, 198–203. [Google Scholar] [CrossRef]
- Taleb, K.; Markovski, J.; Milosavljević, M.; Marinović-Cincović, M.; Rusmirović, J.; Ristić, M.; Marinković, A. Efficient arsenic removal by cross-linked macroporous polymer impregnated with hydrous iron oxide: Material performance. Chem. Eng. J. 2015, 279, 66–78. [Google Scholar] [CrossRef]
- Bialik, M.; Sedin, P.; Theliander, H. Boiling Point Rise Calculations in Sodium Salt Solutions. Ind. Eng. Chem. Res. 2008, 47, 1283–1287. [Google Scholar] [CrossRef]
- Levenspiel, O. Chemical Reaction Engineering, 3rd ed.; Wiley: New York, NY, USA, 1999; ISBN 978-0-471-25424-9. [Google Scholar]
- Gok, O.; Anderson, C.G.; Cicekli, G.; Cocen, E.I. Leaching kinetics of copper from chalcopyrite concentrate in nitrous-sulfuric acid. Physicochem. Probl. Miner. Process. 2014, 50, 399–413. [Google Scholar] [CrossRef]
- Li, X.-B.; Wang, Y.-L.; Zhou, Q.-S.; Qi, T.-G.; Liu, G.-H.; Peng, Z.-H.; Wang, H.-Y. Transformation of hematite in diasporic bauxite during reductive Bayer digestion and recovery of iron. Trans. Nonferrous Met. Soc. China 2017, 27, 2715–2726. [Google Scholar] [CrossRef]
Size Fraction | Main Components, wt. % | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | CaO | Fe2O3 | TiO2 | MgO | Na2O | K2O | LOI | C | |
Raw CFA | 62.94 | 23.98 | 1.59 | 3.45 | 1.11 | 0.43 | 0.72 | 0.93 | 3.99 | 1.60 |
−50 µm | 33.44 | 47.58 | 2.98 | 8.65 | 1.96 | 0.59 | 0.63 | 0.15 | 4.01 | 3.29 |
+50–71 µm | 33.51 | 47.70 | 2.97 | 8.45 | 1.85 | 0.57 | 0.62 | 0.17 | 4.10 | 3.75 |
+71 µm | 34.51 | 46.10 | 2.97 | 6.39 | 1.50 | 0.46 | 1.18 | 0.18 | 6.51 | 5.05 |
Phase | Content % |
---|---|
Mullite | 78.4 |
Quartz | 10.7 |
Magnetite | 7.3 |
Hematite | 3.6 |
Total | 100 |
Spectrum | O | Si | Al | Ca | Fe | Ti | Mg | Phase |
---|---|---|---|---|---|---|---|---|
1 | 48.9 | 28.7 | 19.8 | 0.3 | 1.2 | - | 0.5 | Mullite covered by A-S 1 |
2 | 37.3 | 23.3 | 37.7 | - | - | 1.0 | - | Mullite |
3 | 42.3 | 17.1 | 40.6 | - | - | - | - | Mullite |
4 | 28.4 | 2.2 | 6.6 | 1.7 | 56.7 | 2.0 | 1.2 | Magnetite |
Time (min) | Temperature (°C) | L:S Ratio (mL/g) | r0 (μm) | CNa2O (g L−1) | CAl2O30 (g L−1) | Al Extraction (%) | Si Extraction (%) |
---|---|---|---|---|---|---|---|
10 | 120 | 20 | 48 | 400 | 0 | 48.00 | 60.40 |
30 | 120 | 20 | 48 | 400 | 0 | 66.82 | 78.11 |
40 | 120 | 20 | 48 | 400 | 0 | 76.07 | 83.77 |
60 | 120 | 20 | 48 | 400 | 0 | 84.04 | 88.22 |
30 | 120 | 10 | 48 | 400 | 0 | 48.30 | 60.00 |
22.5 | 120 | 15 | 48 | 400 | 0 | 54.20 | 66.00 |
40 | 110 | 20 | 48 | 400 | 0 | 55.80 | 66.59 |
60 | 110 | 20 | 48 | 400 | 0 | 67.00 | 76.00 |
15 | 100 | 20 | 48 | 400 | 0 | 26.70 | 33.85 |
60 | 100 | 20 | 48 | 400 | 0 | 45.79 | 60.40 |
45 | 120 | 20 | 48 | 330 | 0 | 59.40 | 66.59 |
10 | 120 | 20 | 48 | 330 | 0 | 38.90 | 51.20 |
20 | 120 | 20 | 48 | 330 | 0 | 46.70 | 59.43 |
60 | 120 | 20 | 48 | 330 | 0 | 66.10 | 76.51 |
10 | 120 | 20 | 48 | 360 | 0 | 39.90 | 53.40 |
30 | 120 | 20 | 48 | 360 | 0 | 59.81 | 74.10 |
60 | 120 | 20 | 48 | 360 | 0 | 74.04 | 82.51 |
10 | 120 | 15 | 48 | 400 | 0 | 39.90 | 53.10 |
60 | 120 | 15 | 48 | 400 | 0 | 74.04 | 81.05 |
10 | 120 | 10 | 48 | 400 | 0 | 28.50 | 35.10 |
60 | 120 | 10 | 48 | 400 | 0 | 58.10 | 73.20 |
10 | 110 | 20 | 48 | 400 | 0 | 28.63 | 35.20 |
10 | 100 | 20 | 48 | 400 | 0 | 20.40 | 30.40 |
30 | 100 | 20 | 48 | 400 | 0 | 37.60 | 52.30 |
60 | 100 | 20 | 48 | 400 | 0 | 45.70 | 58.67 |
10 | 120 | 20 | 87 | 400 | 0 | 37.30 | 49.12 |
30 | 120 | 20 | 87 | 400 | 0 | 58.20 | 73.60 |
60 | 120 | 20 | 87 | 400 | 0 | 67.80 | 81.30 |
30 | 120 | 20 | 65 | 400 | 0 | 63.40 | 77.50 |
30 | 120 | 20 | 65 | 400 | 190 | 28.13 | 46.87 |
30 | 120 | 20 | 65 | 400 | 380 | 19.62 | 37.18 |
10 | 120 | 20 | 65 | 400 | 190 | 16.50 | 35.05 |
40 | 120 | 20 | 65 | 400 | 190 | 33.40 | 49.80 |
60 | 120 | 20 | 65 | 400 | 190 | 44.52 | 50.20 |
10 | 120 | 20 | 65 | 400 | 380 | 9.91 | 29.70 |
40 | 120 | 20 | 65 | 400 | 380 | 22.24 | 39.51 |
60 | 120 | 20 | 65 | 400 | 380 | 26.40 | 44.87 |
Main Components, wt. % | |||||||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | CaO | Fe2O3 | TiO2 | MgO | Na2O | K2O | LOI | C |
15.56 | 28.4 | 6.28 | 26.28 | 8.60 | 0.53 | 0.1 | 0.01 | 11.86 | 10.67 |
Spectrum | O | Si | Al | Ca | Fe | Ti | Mg | C | Phase |
---|---|---|---|---|---|---|---|---|---|
1 | 28.4 | 2.2 | 6.6 | 1.7 | 56.7 | 2.0 | 1.1 | - | Magnetite + Mullite |
2 | 18.3 | 0.4 | 1.9 | - | 77.0 | 0.4 | 0.9 | - | Magnetite |
3 | 57.4 | 10.0 | 28.8 | 0.7 | 1.9 | 1.3 | - | - | Mullite |
4 | 22.1 | - | 3.8 | - | 70.8 | - | 2.2 | - | Magnetite |
5 | 20.9 | - | 2.8 | - | 72.9 | - | 2.0 | - | Magnetite |
6 | 18.5 | 0.4 | 2.5 | 0.4 | 74.6 | - | 2.6 | - | Magnetite |
7 | 21.7 | 2.0 | 6.0 | 0.8 | 2.8 | 1.3 | - | 65.1 | C |
8 | 43.0 | 5.2 | 18.7 | 1.4 | 27.2 | 0.7 | 3.2 | - | Magnetite + Mullite |
9 | 44.8 | 34.0 | 13.9 | 1.3 | 3.5 | 2.5 | - | - | Mullite + Quartz |
10 | 45.7 | 11.5 | 42.3 | - | - | - | - | - | Mullite |
11 | 35.6 | - | 5.5 | - | 54.4 | - | 3.9 | - | Magnetite |
Product | Specific Surface Area (BET) (m2 g−1) | Total Pore Volume (cm3 g−1) | Pore Diameter (nm) |
---|---|---|---|
DCFA | 15.70 | 25 | 37.6 |
Solid residue | 16.28 | 33 | 33.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shoppert, A.; Loginova, I.; Valeev, D. Kinetics Study of Al Extraction from Desilicated Coal Fly Ash by NaOH at Atmospheric Pressure. Materials 2021, 14, 7700. https://doi.org/10.3390/ma14247700
Shoppert A, Loginova I, Valeev D. Kinetics Study of Al Extraction from Desilicated Coal Fly Ash by NaOH at Atmospheric Pressure. Materials. 2021; 14(24):7700. https://doi.org/10.3390/ma14247700
Chicago/Turabian StyleShoppert, Andrei, Irina Loginova, and Dmitry Valeev. 2021. "Kinetics Study of Al Extraction from Desilicated Coal Fly Ash by NaOH at Atmospheric Pressure" Materials 14, no. 24: 7700. https://doi.org/10.3390/ma14247700
APA StyleShoppert, A., Loginova, I., & Valeev, D. (2021). Kinetics Study of Al Extraction from Desilicated Coal Fly Ash by NaOH at Atmospheric Pressure. Materials, 14(24), 7700. https://doi.org/10.3390/ma14247700