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Abstract: Laser melting deposition (LMD) has recently gained attention from the industrial sec-
tors due to producing near-net-shape parts and repairing worn-out components. However, LMD
remained unexplored concerning the melt pool dynamics and fluid flow analysis. In this study,
computational fluid dynamics (CFD) and analytical models have been developed. The concepts of the
volume of fluid and discrete element modeling were used for computational fluid dynamics (CFD)
simulations. Furthermore, a simplified mathematical model was devised for single-layer deposition
with a laser beam attenuation ratio inherent to the LMD process. Both models were validated with
the experimental results of Ti6Al4V alloy single track depositions on Ti6Al4V substrate. A close
correlation has been found between experiments and modelling with a few deviations. In addition,
a mechanism for tracking the melt flow and involved forces was devised. It was simulated that
the LMD involves conduction-mode melt flow only due to the coaxial addition of powder particles.
In front of the laser beam, the melt pool showed a clockwise vortex, while at the back of the laser
spot location, it adopted an anti-clockwise vortex. During printing, a few partially melted particles
tried to enter into the molten pool, causing splashing within the melt material. The melting regime,
mushy area (solid + liquid mixture) and solidified region were determined after layer deposition.
This research gives an in-depth insight into the melt flow dynamics in the context of LMD printing.

Keywords: 3D printing; laser melting deposition; computational fluid dynamics model; analytical
model; melt flow; marangoni force; recoil pressure

1. Introduction

Additive manufacturing (AM) provides customized designs, reduces preparation
time, and produces complicated shapes. Many advanced technological applications [1],
aerospace [2], biomedicine [3,4] and architecture [5,6] have grabbed interest in it. Laser
additive manufacturing (LAM) is a subtype of additive manufacturing (AM) that fuses the
powder particles with a laser beam to generate high-quality metallic parts [7]. LAM has
the quickest annual growth of all AM methods and is used in various industries, includ-
ing automobile, space, healthcare and energy [8–13]. Laser metal deposition (LMD) is a
sub-branch of AM with various applications, including surface treatment and coatings [14],
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the production of functionally graded materials [15] and restoration of broken parts [16].
One additional benefit of employing the LMD methodology is its short production period
and reduced waste of materials, opposite to conventional manufacturing techniques [17].
Furthermore, Paul et al. [18–21] demonstrated that worn-out metallic components restored
using LMD presented outstanding structural characteristics and longer in-service time than
traditional processes. In the LMD process, utilizing the carrier gases, metal microparticles
having a diameter of approximately 30–100 µm are deposited onto the substrate. Simul-
taneously, a laser beam was applied to melt the metallic powder particles, thus yielding
the continuous layers. Liu et al. [22] and Wang et al. [23] reported the volume and shape
of the formed tracks governed the result of a sample’s production. In the LMD method,
various input variables exist, including beam power, scan speed, and powder flow rate,
which can significantly affect the process, and consequently, the integrity of the finished
objects [24,25]. Process parameters optimization can be time-consuming and expensive
due to the hit-and-trial technique usually implemented to determine the operating condi-
tions [26]. Post-characterization techniques such as scanning electron microscopy, electron
backscatter diffraction (EBSD) and x-ray computed tomography (XCT) are not capable of
providing information about heat and fluid flow [27].

An effective tool for in-situ monitoring the LMD process is via “operando” monitoring,
which is usually achieved using photodetector or thermal infrared imaging. However,
even these techniques will not expose the internal liquid fluid dynamics and temperature
distribution throughout the process. The thermal-imaging fails to collect the fluid metal’s
surface heat accurately due to emissivity alternation drastically during the phase transfor-
mation [19]. A more beneficial way to enhance the LMD-ed part’s quality is integrating
multi-physics mathematical simulations in the processing. LMD is defined by the countless
physical processes such as thermal heat transfer, particle melting followed by solidification,
evaporative heat transfer, particles interaction, beam energy density and material interac-
tion, thermo-capillarity phenomena and recoil pressures. Using a verified mathematical
method, one can investigate the effect of overall flow and heat transfer economically. Two
different computational methods have been applied in the literature: one set of models
is specifically designed for layers’ deposition. In contrast, the other has been applied to
simulate thermo-mechanical phenomena within the layers. The latter has been employed
to analyze stress concentration, strain, and the ultimate deflection of a part corresponding
to its nomenclature. Kovacevic et al. [28] and Buca et al. [29] observed the influence of
laser scanning speeds on the intensity of the final stress concentration by developing a
thermo-mechanical finite element (FE) model. The model was able to estimate results close
to the experimental ones with a few deviations due to the exclusion of fluid flow in the
developed model. Hao et al. [30] designed a simulation model to examine the thermal
fields using inverse method calibration, using conduction-based modelling. Nonetheless,
Marimuthu et al. [31] found that pure conduction models are not trustworthy without a
complex anisotropic enhanced conductivity. As a result, many scientists have included
fluid dynamics calculations in their simulations [32–34]. Gan et al. [35,36] developed a
Computational Fluid Dynamics (CFD) framework to model the clad morphologies for
single and multi-layers for the direct energy deposition process. The model forecasted the
resultant microstructure (single and multi-layers) in various steel alloys. The Marangoni
force and pressures owing to interfacial tension were also considered in their study. For
Ni-based super-alloy IN713-LC, Raza et al. [37] determined that with optimum laser power
and scanning speed, one can get the highest relative density parts with almost no cracks.
Dezfoli et al. [38] developed a simulation framework consisting of a 3D finite element
model and a cellular automaton model for predicting the epitaxial grain growth in the
single-track LPBF processing of IN718.

In a recent study, Rong et al. [39] employed a coupling stage configuration and fluid
volume approach to simulate the free surface using the Finite Volume Method (FVM).
Roy et al. [40] came up with hydrodynamic and thermal modelling of the mechanism.
They conducted a dimensionless investigation on the influence of the Marangoni force on
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the melt pool morphology. As per Kleijn et al. [28], a major impact on the melt pool is indeed
the Marangoni force. Almost all previous papers that dealt with powder motion overlooked
the metal powder and assumed the Gaussian distribution of powder mass sufficient to
model the particles [35,36,39,40]. Numerous studies on molten metal have only explored
the movement of the particles, ignoring the movement and temperature distribution within
the melt pool [41–44]. A research effort was carried out by Sojka et al. [44], who employed
CFD-Discrete Phase Method (DPM) to simulate the laser cladding. Kovalev et al. [45,46]
presented a model that analyzed the powder trajectories and flows simultaneously. The
impact of the particles over the molten pool was also selectively considered in their research
since fluid dynamics was not considered. Instead, a surface development scenario was
used to determine the deposited shapes [46]. Both Ishimito et al. [47] and Li et al. [48]
utilized a similar model to the fluid dynamics. They also explained the velocity of the
metal powder and melt pool movements during the layer deposition.

In this research, mathematical and computational fluid dynamics (CFD) models for
the single-layer deposition of Ti6Al4V alloy were proposed. A simplified mathematical
model has been presented for analytical modelling to calculate the single layer dimensions
deposited on the substrate using the primary operating conditions. In the case of CFD mod-
elling, the volume of fluid (VOF) and discrete element modelling have been incorporated.
The results attained by both models were compared with the single-layer depositions of
Ti6Al4V attained via LMD experiments. Furthermore, in the LMD process, a mechanism
for detecting the flow behavior within the whole melt pool has been developed. The melt
pool’s overall flow behavior was also revealed. The driving elements of liquid flow and
fundamental processes have been explored throughout the melt pool. Besides, the mass
flow rate explains the equivalent flow caused by the Marangoni effect.

2. Modelling

This section has been divided into two parts: (a) analytical modelling and (b) compu-
tational fluid dynamics (CFD) modelling.

2.1. Analytical Modelling

When determining the geometry of the deposited layer, the following assumptions
were taken into consideration:

1. The gravitational effect during the powder particle flow is neglected. This assumption
is reasonable as the time of flight of powder particles across the laser beam interaction
zone is very short, equivalent to 25% of standoff distance [49].

2. Powder particle impact forces on the geometrical properties of the clad are ignored.
The capillary action was disregarded during the 3D printing in the analytical modeling.
Powder flow is considered stable with constant thermo-physical properties.

3. For analytical modelling, the boundary conditions for heat losses by convection and
radiations have been ignored, while laser energy losses have been considered via
laser beam absorption coefficient.

Here, the Beer-Lambert law has been applied to express the powder deposition in the
case of a translating laser beam as:

moC∗∆T
πtor2

p

[
J

sm2

]
= Ioe−αℵh

[
W
m2

]
(1)

Here, mo is the mass printed on the substrate as a result of melting, C* is modified
heat capacity of the powder material, ∆T the thermal gradient from room temperature to
an elevated temperature, to is the laser-material interaction time, rp is the focused laser
beam spot size, Io the laser beam intensity interacted with the material, α is the laser beam
absorption fraction, h the height along the universal z-axis in the LMD process and ℵ is the
gloom of the particles being added with the beam. The term ℵ can be altered spatially by
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overlapping powder and beam interaction, thus causing the laser’s beam to be attenuated
and calculated as [50]:

ℵ =
Mp

πr2
pnvp

, (2)

where Mp can be described as the powder flow rate, rpn is the nozzle radius of powder outlet,
and vp is speed of the powder debits. Using mathematical formalism, C* is expressed:

C∗ =
L f

T(y, t)− To
+ C. (3)

Here, Lf is the fusion enthalpy of debits, C is the powder material heat capacity,
To is expressed as ambient temperature, while T(y,t) is the one-dimensional transient
temperature. The intensity of a Gaussian laser beam having laser power (P) is written
as [51]:

Io =
2∀1P
πr2

p
. (4)

In the LMD printing, laser energy density is utilized and dispersed through the debits
as they pass by the laser intensity, thus causing laser energy diminution (∀1) at substrate.
In the previous studies of the authors [52], an analytical formula was deduced to estimate
∀1, as:

∀1 =
3Mp∀20.25(SOD)

4πr2
ppρpvpr2

p
. (5)

In Equation (5), ∀2 is powder utilization efficiency during the deposition process,
and rpp and ρp are the powder particles’ mean radius and density, respectively. In LMD
printing, the final deposited powder layer mass (mo) is affected by the laser beam speed
(Vs), laser-material interaction (to) and final printed layer (L), as:

mo = m
Vsto

L
. (6)

Here, m is the powder mass passing under the laser beam. The thermal gradient (∆T)
is defined as:

∆T = T(y, t)− To, (7)

After substituting the Equations (2)–(7), rearranging, and applying natural log, one
can get the following expression:

h =

∣∣∣∣∣∣∣∣−
πr2

pnvp

αMp
ln

mVsto

( L f
T(y,t)−To

+ C
)
(T(y, t)− To)

2
(

3Mp∀20.25(SOD)

4πr2
ppρpvpr2

p

)
∀1PL


∣∣∣∣∣∣∣∣. (8)

The h value can be estimated if T(y,t) is known. Iacobescu [53] presented an analytical
solution to determine T(y,t) in the laser welding; however, this solution has been modified
for the LMD process. Two new factors have been introduced in the T(y,t) solution: (a) ∀1
and (b) ℵ.

T(y, t) = To+
√

3
2ρsCs

√
π

Q∀1
√
ℵ√

12αt+r2
p
exp
[
− y2

4αt

+
y2r2

p

4αt{12αt+r2
p}

]
er f

[
12αt−yrp+r2

p

2
√
ℵαt{12αt+r2

p}

]

+exp
[
− y2

4αt +
y2r2

p

4αt{12αt+r2
p}

]
er f

[
12αt+yrp+r2

p

2
√
ℵαt(12αt+r2

p)

] (9)
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In Equation (9), ρs is the substrate’s density, Cs is the heat capacity of substrate, Q
is the thermal energy per unit area, α is the material’s thermal diffusivity, t is the total
laser-substrate interaction time, tp is the waiting time between two depositions, erf is an
error function that occurred when integrating a normalized distribution [54] and n is the
number of layers deposited on a substrate. Considering an elliptical shape of the deposited
layer, if h is known, the width (w) and depth (d) of a single layer are determined as [52]:

w =
4∀2Mp

πhVsρp
. (10)

d =
[∀2(1− ∀1)(PL−Vs)]−

[
∀2MpLC∗

][
π
6 ρswLC∗s

] . (11)

In Equation (11), L is the length of the deposited layer and C∗s is the modified specific
heat of substrate, defined as:

C∗s =
L f s

Tms − To
+ Cs. (12)

2.2. Numerical Modelling: CFD

Following steps were implemented for CFD modeling:

• Initially, many particles fall concurrently with the translating laser scanning head.
Here, the debits are heated and melted, resulting in a layer formation. The elastic real
contact force for powder particles is measured using an interactive approach based on
the Hertz–Mindlin formalism [55]. Simultaneously, the damping factor accounts for
mechanical energy dissipation [56–58].

• Elastic materials have natural contact and damping forces that overlap in the perpen-
dicular plane between interacting particles. The mass and Young’s modulus of the
given material are considered equivalent. No micro-slip technique is used to handle
the elastic contact force [55].

• The FS-DEM module from Flow Science, USA was utilized to conduct the deposition
of Ti6Al4V powder particles on Ti6Al4V substrate. Discrete micro-particles were
used to deposit the powder layer. Figure 1a,b illustrate an evaluation of powder
debits distribution obtained by the scanning electron microscopy (SEM, Carl Zeiss,
Oberkochen, Germany) and software (Flow 3D by Flow Science, Santa Fe, NM, USA),
correspondingly. Ti6Al4V particulates were between 50–130 µm, as shown by SEM in
Figure 2a, and the computed particle size distribution obtained from the numerical
model is shown using Figure 2b.

• The rapid melting leading to solidification of a specific material in the LMD process
influences the thermo-physical properties of a given material. Temperature-dependent
thermo-physical characteristics of Ti6Al4V with phase shifts were chosen for the
CFD model.

• The boundary conditions for heat losses such as convection and radiation were intro-
duced via the Energy balance equation for CFD simulations.

The CFD work environment was built and executed using the FLOW-3D CFD module
and specific sub-processes. During LMD printing, the melting flow is incompressible
Newtonian, and the variation in mass owing to vaporization is omitted. Speed and
temperature profile fields were computed via solving balance-of-mass, linear momentum,
and energy balance partial differential equations within the fusion zone. Additionally, an
aggregated body approximation-based energy balance formula was used to calculate the
heat of the metal powder.
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2.2.1. Motion Equations

To find the velocity and pressure fields, a composite system solving the mass balance
and momentum equations were employed [59]:

→
∇·
→
V = 0. (13)

ρ

[
∂
∂t

(→
V
)
+
→
V·
→
∇
(→

V
)]

= −
→
∇p +

→
∇·
[

µ

(→
∇
→
V +

→
∇
→
V

T)
− 2

3 δij
→
∇·
→
V
]

−C1(1− fliquid)
2

C2+ f 3
liquid

→
V − ρ

→
g β
(

T − Tliquid

)
.

(14)

In Equation (14), the second term is linked to viscous shear stresses, while C1 and C2
are the constants related to drag forces found during solidification [60]. The final term in
Equation (14) is tied to buoyancy. Free surfaces of the fluid are tracked by using the VOF
approach [61]. Equation (15) uses the fluid fraction F to describe how much fluid is inside
a computational cell:

ρ
∂

∂t
(F) +

→
V·
→
∇(F) = 0. (15)
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A zero F value signifies the cell is without fluid, and a unity F value suggests the cell
is filled with the fluid. Additionally, a moderate F reveals the fluid interface’s location. Free
surfaces are influenced by three temperature-related surface tractions when operating at
high temperatures:

τcapillary =
(

σre f − γ
[

T − Tre f

])
k. (16)

τMarangoni = γ

[→
∇T −

(→
∇T·→n

)
→
n
]

, (17)

τrecoil = 0.54P0 exp

[
∆Hlv

Rv·Tboiling
.
[

1−
Tboiling

T

]]
→
n . (18)

where the surface tension reference (σref) shows the sensitivity of surface tension with
respect to temperature. Equations (16)–(18) have been taken from Refs. [58,62,63]. The
curvature and the normal vector can be obtained via the subscript n in the exposed liquid:

→
n =

−
→
∇F∣∣∣∣→∇F
∣∣∣∣ . (19)

Surface tension and rebound pressure operate on the liquid metal perpendicularly to
each other. In contrast, the Marangoni effect works on the opposite side of the free surface,
as shown in Equation (17).

2.2.2. Energy Balance Equation

Solving the energy balance equation is necessary to identify the heat within the weld
zone, and its fusion expressed as:

ρ

[
∂

∂t
(h) +

→
V·
→
∇(h)

]
=
→
∇·
[

k
→
∇T
]

, (20)

The fluid velocity vector V is influenced by the metal density (ρ) and thermal conduc-
tivity (k) as shown in Equation (20). The metallic material’s enthalpy (h) is specified as a
function of temperature:

h(T) = hre f +
∫ T

Tre f

Cp·dT + fliq·∆Hsl , (21)

where ∆Hsl is the latent heat of fusion, href is the enthalpy, and Cp is the specific heat
capacity. In this study, the relationship between temperature and melting/solidification is
taken as linear [64,65], expressed as:

1

(T − Tsolid)/
(

Tliquid − Tsolid

)
;

0

; T ≥ Tliquid
Tsolid < T < Tliquid

; T ≤ Tsoluid

, (22)

Equation (22) is denoted by the subscripts solid and liquid, which signifies the solid
and liquid phases, respectively. In the case of phase evolution, k, Cp and ρ are obtained
using a rule of mixture [66]:

k = fsolksol + fliqkliq. (23)

Cp =
fsolidρsolidCp,solid + fliquidρliquidCp,liquid

fsolidρsolid + fliquidρliquid
. (24)
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2.2.3. Powder Debits

It is necessary to calculate another set of the energy balance equations based on the
lumped body approximation to determine the temperature of the powder particle [67]:

ρ = fsolid·ρsolid + fliquid·ρliquid. (25)

mpCp
dTp

dt
= hp Ap

[
Tsr − Tp

]
+ εpηAp

[
T4

sr − T4
p

]
+ A′pq′′laser. (26)

where mp is the powder mass, Ap is the surface area of a single powder particle, and
hp and εp are the convection heat transfer constant and emissivity of the debit material,
respectively. Furthermore, Tsr is the ambient temperature (= 25 ◦C), η is Stefan-Boltzmann
constant and q′′laser is the laser energy intensity responsible for melting. Here, the mass flow
rate (

.
m) is calculated as:

.
m =

∫
ρ ·→v d

→
A. (27)

Here,
→
v is velocity and ρ is density. Simulation values were supposed for width

and height to reflect a close change with experimental results and do not contain real
measurements in the simulations. Simulation values for mass flow rate are assumed based
on the results obtained in single CFD visualization.

3. Materials and Methods

For validations, LMD equipment from KR30HA, Germany, having a Yb: YAG laser
source, was utilized to deposit single tracks of Ti6Al4V powder particles on Ti6Al4V sub-
strate samples. In one of the recent studies by Chioibasu et al. [68], Ti6Al4V implants
were manufactured by the LMD process. To print these prototypes, Ti6Al4V substrate
was utilized. The metallographic investigations and X-ray diffraction data exposed an
unusual biphasic α+β structure. The in-vitro tests performed on the manufactured Ti6Al4V
samples in osteoblast-like cell cultures up to 7 days showed that the material deposited by
laser melting is cytocompatible. For this study, single tracks of Ti6Al4V were deposited on
Ti6Al4V substrate. The laser spot size was 800 µm with super-Gaussian energy distribution
within the spot. Each of the three parameters—scanning velocity, debit flow rate and
power—was adjusted to classify the final layer’s thickness and width. The baseplate (sub-
strate) geometry were: length = 100 mm, width = 100 mm and thickness = 10 mm. Table 1
displays the operating conditions for nine single-track experiments of Ti6Al4V depositions.

Table 1. Ti6Al4V single layer depositions using LMD set-up.

Specimen
Number

Power
(W)

Scanning Velocity
(m/s)

Debit Flow Rate
(g/min)

Helium/Argon Gases
(bar)

01 700 0.005 3.0

3.0/7.0

02 700 0.015 3.0
03 700 0.025 3.0
04 500 0.005 2.0
05 500 0.005 3.0
06 500 0.005 5.0
07 500 0.015 5.0
08 700 0.015 5.0
09 900 0.015 5.0

Table 2 collects the thermo-physical properties of Ti6Al4V material.
The deposited layers’ height and width were measured and documented to compare

the experimental results with simulation models. Figure 2a shows the nine single tracks
of Ti6Al4V deposited on Ti6Al4V substrate, while a cross-section of a typically deposited
layer is presented in Figure 2b. In Figure 2a, N.P. shows the single scan carried out without
coaxial powder addition to identify a clear difference on single layer dimensions in the
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case of with and without powder material. To determine the deposited layer’s height and
width, all the samples were prepared according to the cross-section provided in Figure 2b,
and the dimensions were recorded using optical microscopy.

Table 2. Thermo-physical properties of Ti6Al4V (data from Ref. [69]).

Sr. No. Property Name Value (Unit)

1 Density 4.4 × 103 kg/m3

2 Poisson’s ratio 0.31
3 Young’s Modulus 110 GPa
4 Latent heat of fusion 360 kJ/kg
5 Melting temperature 1878 K
6 Specific heat 553 J/kgK
7 Thermal conductivity 7.1 W/mK
8 Thermal expansion 8.7 × 10−6 /K

4. Results and Discussions

Figure 3a–d show the melt pool states generated at time intervals of (a) 0.03 s, (b) 0.08 s,
(c) 0.15 s, and (d) 0.28 s, as well as the cooling of the deposited material from melting to
ambient temperature (d). It can be demonstrated that, as the temperature rises, the density
of the material rapidly decreases due to the heat capacity and latent heat, thus increasing
the fluid volume. It is important to note that the volume increases dramatically due to
a drop in density, resulting in surface tension declination. It is the differential in surface
tension that influences the melt pool dimensions. When the surface tension between two
ends of a liquid is developed, a strong pull-force is generated from the high to the low
surface tension end, known as the “Marangoni effect.” Due to surface tension differences,
a large pulling force is generated from one end to another. Figures show that when the
layer is printed on the substrate, heat begins to dissipate from the deposited layer to the
substrate, causing a change in the density of the substrate.
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Two types of melt flow patterns have been observed during laser-material interaction:
(a) conduction region (CR) and (b) depression region (DR) [70,71]. For CR, a melt pool is
formed when a substance is heated to its melting point using laser energy that exceeds the
rate at which heat is dissipated. In the DR, laser energy from the heating source concentrates
to such a high degree that the material’s melting and boiling points are exceeded. Because
of the material’s vaporization, the melt pool experiences a rebound pressure, resulting in
the DR. The DR is also categorized as “keyhole.” This research has only found evidence of
CR formation. The LMD deposition technique involves the addition of powder particles
simultaneously. The powder particles use a considerable fraction of the laser beam energy
to change their phase from solid to liquid. In turn, it reduces the net amount of laser energy
arriving at the substrate, resulting in only conduction-mode melt flow [52,72]. Figure 4a–d
exhibits the section view of the LMD-ed layer, and CR melt-pool can be observed. In the
Ti6Al4V deposition on a Ti6Al4V substrate, the simulations were carried out using a power
equal to 900 W, scanning velocity equal to 0.015 m/s, and a debit feeding rate equal to
5.0 g/min. In laser additive manufacturing, five driving forces, including Marangoni force,
recoil pressure of vaporization, a shear force due to high-speed vapor cloud, hydraulic
pressure, buoyancy force [72]. Marangoni force” flows the material from an elevated
to a low thermal domain [73–75]. The recoil pressure of “vaporization” implements a
compression, internally, transverse to the face experiencing the evaporation [76,77]. Shear
force can be produced by a “high-speed vapor cloud” due to resistance at the gas-liquid
interface [78]. ”Hydraulic pressure” can transmit energy in two ways: hydrostatic and
hydrodynamic pressures [79–81]. The “buoyancy force” forces the molten substance to
follow the density gradient [79,82,83]. Besides, convection is the primary mode of heat
transport in the molten pool controlled by the primary operating conditions [84–86]. The
above-defined forces are responsible for defining the melt flow patterns.
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Figure 5a–d compiles the evolution of thermal distribution during the printing of
Ti6Al4V layer on Ti6Al4V substrate. During LMD additive manufacturing, a 1900 K
temperature was achieved. During deposition, the material temperature dropped from
melting to ambient temperature due to the printed layer’s heat losses, resulting in layer
deposition. It is essential to emphasize that the extreme layer area is in contact with ambient
air, which is responsible for the heat elimination from the deposited layer’s top.
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Figure 6a–d display the evolution of thermal distribution inside the deposited layer
cross-section at 0.03 s, 0.08 s, 0.15 s and 0.20 s periods. The results have been presented at
laser beam location during layer printing at different time domains. The deposited layer’s
height, width, and depth can be identified during the deposition. From Figure 6c, it can be
observed that a droplet of molten material was eliminated from the previously deposited
layer. In LMD, the debits involve two kinds of heatings (a) in-flight and (b) inside the
generated molted pool [72]. During deposition, in-flight heated particles, a few partially
melted, try to enter into the molten pool generated via a laser beam within the base plate.
Upon ejecting from the powder nozzle output, the debits are focused on the molten pool,
thus adopting a Gaussian shape. However, they experience collisions that increase the
powder particles’ chances to fall onto the previously deposited layer. This phenomenon
causes splashing within the melt material during the LMD deposition process.

Figure 7a,b show a comparison among experiments, CFD simulation and analytical
simulation results in the case of layer height and width of Ti6Al4V LMD-ed layers. A close
link between experiments and CFD modelling was determined with a 1–3% mean absolute
deviation. However, the analytical model showed results with 9–12% variation. A higher
deviation value is due to the negligence of surface tension and the 40% powder utilization
efficiency applied during analytical simulations. A much-reduced error value demonstrates
the dependability of the CFD and analytical models for the LMD process estimation.
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Figure 7. A comparison for (a) height and (b) width in the case of Ti6Al4V experiments and simulations.

The cross-sections for liquid and solid transformations at various periods 0.03 s, 0.08 s,
0.15 s and 0.20 s are shown in Figure 8a–d. Conduction, convection and radiation are
responsible for heat elimination from the LMD printed layer. The heat inside the metallic
material causes conduction. Three regions have been recognized in Figure 8: (a) molten
regime, (b) mushy (solid + liquid mixture) area and (c) solidified regime [72]. The molten
and mushy areas are critical for elaborating the microstructure formation and mechanical-
physical qualities.

Ti6Al4V deposited layer’s velocity vectors were studied at various time intervals as
shown in Figure 9a–d. Here, the color code is used to distinguish the melt pool densi-
ties. As the laser beam starts irradiating the base plate with the simultaneously powder
debits feeding, the melt material is forced to move backwards due to recoil pressure and
Marangoni effect. A reaction force was produced at the laser-surface periphery due to
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velocity vectors. When the beam moves away from the heated region, the molten region,
which is in direct contact with the air, begins to cool, resulting in a significant surge in
surface tension. It can be analyzed here that the velocity trajectories near the surface are
dragging the liquid higher.
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5. Conclusions

In this paper, analytical and CFD models have been developed for the single-layer
deposition of Ti6Al4V alloy. For CFD modelling, the volume of fluid (VOF) and discrete
element modelling approaches have been utilized, while simplified mathematical equations
have been deduced in the case of an analytical model. Furthermore, a methodology has
been designed to identify the generated molten pool’s flow pattern and its dynamics. In
addition, the factors that drive liquid flow and fundamental processes have been identified.
Experiments have been performed for single-layer deposition of Ti6Al4V using LMD
equipment. Experiments and simulations have been found to have a close connection with
a deviation of 1–3% for CFD modelling and 9–12% for analytical modelling. Based on the
current investigation, the following conclusions have been drawn:

• In laser additive manufacturing, there are two melt flow patterns: (a) conduction
region (CR) and (b) depression region (DR). However, only CR melt flow has been
simulated in the LMD deposition process.

• The simulation results showed that the molten material droplet was eliminated from
the deposited layer. During printing, a few partially melted in-flight heated particles
try to enter into the molten pool, thus, causing splashing within the melt material.

• The density of a given substance rapidly lowers as the temperature rises due to the
material’s heat capacity and latent heat, thus elevating the fluid volume. The surface
tension (ST) differential is critical in determining the melt flow pattern. A variation in
ST causes the development of a “Marangoni” force.

• It was simulated that heat escapes through conduction, convection and radiation
when the layer is deposited. The melt regime, mushy area and solidified regime were
identified in LMD printing. Due to recoil pressure and the Marangoni effect, melt
flow is compelled to flow backward when the laser energy commences the substrate
irradiation. As the beam moves forward, melt flow is dragged along by the increased
capillary action.

• By simulations, it has been found that analytical models are more efficient than
CFD ones. However, they give results with a higher deviation (9–12%) than the
experimental values and cannot show an in-depth melt flow field. On the other hand,
CFD models can yield an in-detail melt flow field with accuracy up to 1–3% compared
to the experimental analyses at the cost of much higher computational time.
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