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Abstract: The paper deals with the problem of stress concentration at the weld toe of a plate T-
joint subjected to axial, bending, and shearing loading modes. Theoretical stress concentration
factors were obtained from numerical simulations using the finite element method for several
thousand geometrical cases, where five of the most important geometrical parameters of the joint
were considered to be independent variables. For each loading mode—axial, bending, and shearing—
highly accurate closed form parametric expression has been derived with a maximum percentage
error lower than 2% with respect to the numerical values. Validity of each approximating formula
covers the range of dimensional proportions of welded plate T-joints used in engineering applications.
Two limiting cases are also included in the solutions—when the weld toe radius tends to zero and
the main plate thickness becomes infinite.

Keywords: welded plate Tjoint; stress concentration factor; weld toe; finite element analysis; axial,
bending and shearing load

1. Introduction

Welded T-connections are commonly used engineering structures. Their significant
advantage lies in low costs of production due to the use of simple elements, like tubes
of circular or rectangular cross sections and plates, usually connected by welding. There
are many types of such joints produced in various configurations: as tubular, tubular-
plate, and plate couples. The fatigue failure of welded structural components subjected
to cyclic loads is the most frequent cause of damage, which begins at critical zones where
stress concentration occurs [1]. Various standards and recommendations presented in
References [2-7] are very helpful in designing welded structures.

Stress concentration factor (SCF) values determined for the known geometrical and
loading conditions are of great importance in fatigue design because they enable relat-
ing the loading history to the critical zone of the structure. Some examples of fatigue
analysis in tubular joints applied to various types of structures and devices are given in
References [8—12] where stress concentration plays a key role. Fatigue damage analysis
considering crack initiation and propagation processes in welded T-joints was published in
References [13-15]. Numerous formulas of stress concentration factors for various types
of welded T-joints, based on the finite and boundary element analyses, were presented in
References [16-20].

Some important phenomena associated with welding processes consist of a random
character of key geometrical parameters influencing the SCF value. In such cases, appro-
priate statistic data obtained directly from real structures and regarding changed values
and shapes of weldments are necessary. Examples of such data in the form of histograms
can be found in the literature [21-25]. Various types of the weld face geometry—plane,
convex, or concave—may be obtained during manufacturing, which generally depend on
the welding method, position, and parameters of the process, e.g., welding speed, current,
etc. Some examples of real weld shapes and profiles influencing SCF values in cases of
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as-welded and intentionally improved weld toe zones are also given in References [25-29].
Many techniques have also been developed to improve the endurance limit and reliability
of the structure (grinding, milling, re-melting techniques, etc.) [30]. Each process produces
specific radii influencing local stress concentration.

The application of the known parametric formulas in fatigue design encounters some
difficulties arising from their accuracy, range of validity, and different ways of defining
SCF. On the other hand, assessment of fatigue life requires high accuracy of SCF solutions
and should cover the whole range of values of all key parameters influencing SCFs.

The present study deals with determination of stress concentration factors for non-
load carrying welded plate T-joints subjected to axial, bending and shearing loading modes.
The main objective was to develop highly accurate SCF formulas of a wide ranging validity,
including two limiting cases: when the toe radius p tends to zero and when the main plate
thickness t becomes infinite.

2. Methodology
2.1. General Assumptions

Five key geometrical parameters—op, 4, 6, t, and T—have been selected and considered
as independent variables, where t and T represent the main and attachment plate thickness,
respectively, p is the weld toe radius, 6 indicates the weld angle, and a is the weld throat
thickness defined here as the shortest distance between the joint root and the weld face.
Leg length parameters, i and hy,, characterizing the weld size, are also used in the literature,
e.g., in References [16-18]. Shape and geometrical dimensions of a plate T-joint, as well as
three loading modes considered in the present work, are depicted schematically in Figure 1.
Small circles drawn symmetrically at the weld toe zone indicate locations of the maximum
stresses.
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Figure 1. Geometrical parameters and loading modes of the plate T-joint.

The present analysis considered the following assumptions.

1.  Joint material is linear elastic, isotropic, and homogeneous.

2. Elastic properties of the weld material and the base material, represented by elastic
constants, are the same.

3.  The welded joint is free from residual stresses, structural irregularities, and imperfec-

tions, including lack of penetration defects.

4. Both welds are symmetrical with respect to the axis of the attachment plate, which is
perpendicular to the main plate.

5. Weld faces are plane and contour of the weldment is smooth with a transition toe
radius p > 0.

6. External load — axial, bending, and shearing — is applied at the opposite sides of the
main plate sufficiently far from the welds.

7. Small deformations occur in the whole body.

8.  Five geometrical parameters: p, g, 6, t, and T are considered as independent variables
varying in the following ranges: 0 < p/a <1.3,0<a/t <13,1 < T/a <4, and
30° <0 <60°.

9.  Stress concentration factors for axial, bending, and shearing loads are defined as
Kit = 01max/ 0t Kip = O1max/ b, and Kis = Tmax/ Ts, respectively.
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Theoretical stress concentration factor SCF is valid for linear-elastic, homogeneous,
and isotropic materials as well as bodies of defined geometry, loading and displacement
boundary conditions. Any departure from these assumptions, as material anisotropy or
geometrical irregularities (flaws, imperfections, etc.) may significantly change the stress
distribution in the body, including the maximum stress value at the notch root.

The aim of the work was to obtain SCF approximating formulae covering possible
proportions between geometrical parameters of the T-joint used in engineering practice.
For this reason, the supposed margin for the normalized parameters was very wide. The
weld toe radius p 1.3 times larger than the weld throat may be considered useless for
practical applications, but such a limiting value can guarantee that all smaller radii fall into
the range of application. The second case when a/t—0 may also take place in engineering
applications while a relatively thin plate is welded to a very thick main plate.

2.2. General Approach

The procedure of reaching main objectives of the present study consisted of several
steps. First, conveniently defined new geometrical parameters had to be specified. Due
to the fact that SCF values do not vary when all dimensions of the body proportionally
change, the following normalized non-dimensional quantities were introduced.

p/a

X:p/(era)zp/a+1 1
Y:aﬂa+ﬂ:5%%j 2)
Z=T/a 3)

In this way, four independent variables X, Y, Z, and 6, containing the five key dimen-
sions of the joint, were taken into consideration. The upper weld toe radius, p1, shown in
Figure 1, was chosen as equal to 0.12 and had no influence on stress concentration factors.
The second step consisted of numerical modelling of the joint using the finite element
method, where mutual proportions between the basic joint dimensions systematically
changed. In this way, several thousands of SCF values, covering the assumed range of
validity, were determined. More detailed information on the numerical modelling and SCF
calculating procedures are presented in the next section. The third step of the approach
consisted of choosing a general form of the mathematical representation of SCFs” approxi-
mating functions. An expression applied in the present study was similar to that presented
by the authors in Reference [31], where a cruciform joint of 8 = 45°, subjected to tensile
and bending loads, was analysed. However, the problem considered in the present work
was more general than the previous one because the weld angle 6 varied in the range of
30-60°, increasing the number of variables in the parametric formula. In the numerical
Finite Element Method (FEM) modelling, the weld angle 6 was changed by 2.5° and the
whole calculating procedure, carried out for a given angle, had to be repeated 12 times.
Hence, a general form of the approximating function is given by Equation (4).

Ky =X"P(X,Y,0,Z0)x(X,Y,Z,6,Z), 4)

where a singular term X" accounts for the stress concentration effects when p—0. The
function P(X,Y,0,Zy), represented by polynomials, can be derived from numerical SCF
solutions normalized with respect to the singular term, K;/X" for different X, Y, and 6,
while Z = Zy. Equation (4) indicates that the P function cannot directly relate SCF to Z
because it is derived for a particular, arbitrarily chosen value of Z = Z,. For this reason, the
additional correction function is x(X,Y,Z,0,Z,), satisfying Equation (5),

K(X,Y,Z = Zp,0) =1 ()
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was necessary to account for the relative stiffener thickness on SCF. In other words, the
function x can be interpreted as a multiplier, which enables us to calculate SCF for any
value of Z with respect to the one corresponding to Z, for the known parameters X, Y,
and 6.

The exponent n, denoted as ns for shearing load, is necessary to describe stress
concentration effects when the weld toe radius tends to zero. In References [31,32], it
was proven that the correct  values are the same as the stress field singularity exponents
corresponding to the characteristic angle of the sharp corner [33], into which the weld toe
region is converted while the weld toe radius p tends to zero. According to Reference [32],
numerical values of the exponent n can be calculated for axial and bending load, using
Equation (6),

b —0.636620 — 0.093306>
1+ 0.776356 + 0.0407561-5 — 0.0049962 + 0.1336562>

(6)

which is valid in the range of 0 < 6 < /2 with an accuracy of five significant digits.
For anti-plane deformation produced by the shearing load, the exact value of the

exponent 15 equals:

—0
ns = m (7)

where 0 is in radians.

The next step of the procedure consisted of approximating the P(X,Y,Z,0) function
to the normalized numerical SCF data using the least squares method. After particular
constants (coefficients and exponents) of the P function were determined, the approxi-
mation accuracy was verified. In this way, one part of the solution, where Z = Z;, was
completed. The final step of the present approach consisted of finding unknown coefficients
and exponents of the correction function x(X,Y,Z,0,Z,) accounting for the influence of Z
values on SCFs. After performing the second validation of the full solution including «,
the close form approximating functions for calculating SCFs were determined. The whole
procedure was consecutively repeated for each loading mode.

3. Numerical FEM Modelling and Some SCFs’ Results
3.1. Tensile and Bending Load

Systematic numerical modelling of plate T-joints was carried out by using the Fi-
nite Element Method (FEM) incorporated in the ANSYS 19 Multiphysics program. The
PLANE182 finite elements that were used were defined by four nodes having 2 degrees
of freedom at each node. The elastic material constants were assumed to be similar to
those for steel, where Young’s modulus E = 210 GPa and Poisson’s ratio v = 0.3. However,
according to the theory of elasticity, stress field in the body and SCF values do not depend
on the elastic constants of the material in all cases modeled. Loading and displacement
boundary conditions imposed on one half of the body, as well as its shape, are shown in
Figure 2. According to the principle of de Saint Venant, the minimum length of the main
plate measured from the weld toe was about 4.5¢. This value was confirmed by conducting
preliminary numerical tests.

Approximately 820,000 finite elements were used for each geometrical case of the
modelled T-joint. Special attention was paid to the finite element mesh density at the weld
toe zone, where high values of the stress gradients occur. For this reason, the dimensional
ratio of neighbouring finite elements was about 1.2 and approximately 40 to 70 finite
elements were used along the weld toe circular arc, as described by the radius p. One
example of a finite element mesh is shown in Figure 3.

An example of the solution obtained for the tensile load for the nominal uniform stress
oy =1 MPa applied over the right end of the body is shown in Figure 4. The first principal
stress results offer the most convenient representation because the particular value of the
SCF is directly accessible. Therefore, the nominal stress in all numerical models was always
equal to one.
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Figure 2. Basic geometrical parameters and boundary conditions of the numerical FEM model for
tensile and bending loads.

Figure 3. Example of a finite element mesh for 6 = 45°, while X = 0.25, Y = 0.415,and T/t = 1.

ANSYS
R19.2
I - |
0 0.447027 0.894054 1.34108
0.223513 0.67054 1.11757 1.56459

Figure 4. Distribution of the first principal stress oy for oy = 1 MPa, while 6 =45°, X =0.25, Y = 0.415,and T/t = 1.

In the presented case, the maximum principal stress omax equals 1.56459 MPa, which
is directly seen on the scale below the picture. This value is also interpreted as the stress
concentration factor Kj;.

3.2. Shearing Load

The formulation of two-dimensional problems for the anti-plane state of deformation
is different than for in-plane loading modes. In the case of the anti-plane problem, only one
displacement coordinate W in each point is sufficient to describe deformation of the body
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and W(x,y) may be treated as a scalar potential function ¢(x,y). Therefore, a problem in an
anti-plane state of deformation may be considered as a boundary value problem governed
by Laplace’s equation, represented in Cartesian coordinates by Equation (8).

Y | *Y
Fra ayr 0 ®)
which is valid in the whole body and satisfies boundary conditions along the surrounding
contour. The fact that the same relationship also holds for the temperature field Ttemp(x,y)
in plane steady-state heat conduction problems leads to the conclusion that thermal analogy
may be used to obtain solutions of stress concentration factors for an anti—plane state of
deformation. A more detailed description of this approach can be found in Reference [32]
where SCFs for butt-welded plates subjected to shearing load were determined using FEM.

In the present analysis, the ANSYS 19 Multiphysics program with a Thermal module
and PLANES5S finite element was used. A PLANES5S finite element is defined by four nodes
with a single degree of freedom corresponding to the temperature at each node. Meshing
of the modelled area was the same as in the previous cases for tensile and bending loads
for identical joint geometry. The shape of the modelled body as well as mixed boundary
conditions are shown in Figure 5.

1/2

or =const #0

on

- ﬁ

£=0

Figure 5. Shape and boundary conditions of the numerical FEM model for shearing load.

Nominal uniform heat flux gnom = 1 W/m? was applied over the right-hand edge of
the body, while zero temperature was applied to the left end along the plane of symmetry
of the joint. Since the upper face and the lower face of the joint are free from external
shearing loads, they have to be insulated in the thermal model. It is clear that the shear
stress components, Ty; and Ty, given by Equation (9):

ow oW
W’ TyZ = Gi, (9)

Tz =G
and related to the partial derivatives of the potential function W(x,y) in particular directions,
are proportional to the corresponding heat flux components, g, and g,, represented by
Equation (10).

aTtemp . - _k aTtemp

ox qy = ay (10)

qx = —k
Numerical SCF values were calculated as a ratio of the maximum magnitude of the
temperature gradient | VTtemp | max at the weld toe zone, shown by a small circle in Figure 5,
to the magnitude of the nominal temperature gradient | VTtemp | nom over the right side of
the body. It is well known that SCF values in such cases do not depend on the conductivity
k of the medium. Therefore, the same result is obtained by comparing corresponding heat
flux quantities gmax/gnom- In order to simplify relations between the heat flux and the
magnitude of the temperature gradient, it was convenient to take k =1 W/(Km).
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One example of a steady-state heat conduction solution is shown in Figure 6 for the
nominal heat flux gnom = 1 W/m? applied over the right edge of the main plate. Magnitudes
of the flux g, obtained at each point of the body, make it possible to find directly K;s value
equal 1.54769, which is shown on the scale below the picture.

0.000121

0.221202

0.442284

0.663365

0.884447

1.10553

ANSYS
R19.2

\

|

|

I
1.32661
154769

Figure 6. Heat flux g distribution, interpreted as shearing stress 7 for 75 = 1 MPa, while 8 = 45°, X = 0.25, Y = 0.415 and
T/t=1.

The maximum temperature corresponding to the unit nominal heat flux applied along
the right end of the body was equal to 7.089 K. This temperature value resulted from the
numerical solution of the boundary-value problem with mixed boundary conditions and
was not directly applied over the right edge as a boundary condition.
In subsequent models of T-joints, particular values of X, Y, and 6 were systematically
changed, while the relative stiffener thickness T /a was constant and equal to one (Zy = 1).
One example of such a set of SCF results for a T5joint subjected to shearing load for 8 = 45°
is presented in Table 1.

Table 1. Representation of SCF values for a plate T-joint subjected to shearing load, while § = 45° and T/a = 1.

0 =45° X

Y 0.010 0.018 0.025 0.032 0.050 0.079 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.450 0.500 0.562
0.010 3474 3.093 2886 2750 2500 2266 2154 1966 1.837 1.738 1.657 1588 1.528 1.475 1.427 1.372
0.018 3472 3.092 2885 2749 2500 2265 2154 1966 1.837 1738 1.657 1.588 1.528 1.475 1.427 1.372
0.025 3470 3.091 2884 2749 2499 2265 2154 1966 1.836 1737 1.656 1.588 1.528 1.475 1.426 1.372
0.032 3469 3.090 2884 2748 2499 2265 2154 1966 1.836 1.737 1.656 1588 1.528 1.474 1426 1.371
0.050 3464 3.088 2881 2746 2497 2263 2152 1964 1.835 1736 1.655 1586 1.527 1.473 1.425 1.370
0.079 3455 3.079 2876 2740 2492 2258 2148 1960 1.830 1732 1.652 1.583 1.523 1.470 1.422 1.367
0.100 3453 3.076 2871 2735 2487 2254 2143 1956 1.827 1.729 1.648 1580 1520 1.467 1.419 1.364
0.150 3429 3.053 2849 2715 2468 2237 2127 1941 1813 1715 1.636 1568 1.508 1.456 1.408 1.353
0.200 3389 3.018 2816 2683 2440 2211 2102 1919 1792 1.695 1.616 1549 1491 1439 1.391 1.337
0.250 3335 2970 2771 2.641 2401 2176 2069 1888 1764 1.669 1591 1525 1467 1416 1369 1.316
0.300 3269 2911 2715 2588 2353 2132 2028 1.850 1.729 1.635 1.559 1495 1.438 1.388 1.343 1.291
0.350 3191 2841 2650 2526 2296 2081 1979 1806 1.688 1597 1523 1460 1405 1.357 1.313 1.263
0.400 3.104 2763 2578 2457 2234 2024 1925 1757 1.642 1554 1.483 1422 1369 1.323 1.281 1.233
0.450 3.009 2679 2500 2383 2166 1963 1.867 1705 1594 1509 1440 1.382 1.332 1.288 1.248 1.204
0.500 2911 2592 2418 2304 2095 1.899 1.807 1.650 1543 1462 1396 1341 1294 1252 1216 1.175
0.562 2782 2477 2312 2203 2003 1816 1728 1579 1478 1.402 1341 1290 1247 1210 1.177 1.142
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Similar 12 sets of SCFs’ data were obtained for other weld angles 6 in the range of
30-60° with a step of 2.5°. In this way, 3328 SCF numerical solutions were obtained for each

which means that 9984 cases of different T-joint shapes had to be modelled

and solved for all loading modes.

7

loading mode

SCF Approximation Formulas
4.1. Numerical and Graphical Representation of P Functions

4.

After normalizing each SCF value with respect to a proper singular term X", three

termined in the form of polynomials.
functions, corresponding to the weld angle 6
Figures 7-9. Numerical values of the exponents n

approximating functions Py, Py,
brackets of Equations (Al
from Equations (6) and (7),

Figure 7. Graphical representation of the function P,

Figure 8. Graphical representation of the function P, = Ky, /X" for 6
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Figure 9. Graphical representation of the function Ps = Kys/ X" for 8 = 45°, ng = —0.2 and Zj = 1.

4.2. Validation of the P Functions

Accuracy of the approximating formulas of P functions was verified by comparing
calculated SCFs values to their numerical equivalencies obtained using the finite element
method. General formula, expressed by Equation (4), is now reduced to Equation (11).

K = X"P(X,Y,6,Z0), (11)

where Z = Zy = 1 and « = 1 in the present case. Three examples of such comparisons
are presented in Tables 2—4 for T-joints subjected to tensile, bending, and shearing loads,
respectively, for 6 = 45°.

Table 2. Comparison of Ky values calculated using Equation (A1) (*) to the corresponding FEM
results for various X and Y, while § =45° and T/a = 1.

0 =45° X
Y 0.050 0.100 0.200 0.300 0.400 0.500 0.562
0.050 3.916 3.091 2412 2.070 1.845 1.679 1.593
’ 3.930 * 3.099 * 2419 * 2.075* 1.850 * 1.683 * 1.596 *
0.100 3.848 3.034 2.369 2.033 1.812 1.648 1.562
' 3.854 % 3.039 * 2.372*% 2.035 * 1.813 % 1.647 % 1.561 *
0.200 3.540 2.793 2.183 1.875 1.672 1.520 1.440
’ 3.530 * 2.785* 2177 % 1.870 * 1.668 * 1.517 * 1.439 *
0.300 3.099 2.451 1.927 1.666 1.496 1.371 1.307
’ 3.108 * 2459 * 1.933 * 1.671* 1.500 * 1.374 % 1.309 *
0.400 2.696 2.145 1.708 1.496 1.361 1.263 1.214
' 2.702* 2.150 * 1.711* 1.497 * 1.361 * 1.262 % 1.212%
0.500 2.379 1.910 1.545 1.373 1.265 1.189 1.152
’ 2.374* 1.906 * 1.542 * 1.371* 1.264 * 1.190 * 1.153 *
0.562 2.209 1.784 1.460 1.309 1.216 1.152 1.121

2216* 1.790 * 1.464 * 1.311* 1.218 * 1.152 % 1.121*
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Table 3. Comparison of Ky, values calculated using Equation (A2) (*) to the corresponding FEM
results for various X and Y, while T/a =1 and 6 = 45°.

0 = 45° b'e
Y 0.050 0.100 0.200 0.300 0.400 0.500 0.562
0.050 3.997 3.149 2.455 2.103 1.872 1.700 1.611
' 4010*  3.160*  2463*  2110*  1878*  1706*  1616*
0.100 4.020 3.164 2462 2.104 1.868 1.692 1.601
' 4027*  3171*  2467*  2108*  1.872*  1.695*  1.602*
0200 3.868 3.041 2.358 2.007 1.773 1.5% 1.505
‘ 3856*  3.033*  2351*  2001*  1768*  1593*  1501*
0300 3.494 2.746 2.127 1.806 1.595 1.440 1.357
' 3502*  2753*  2131*  1813*  1602*  1444*  1363*
0.400 3.059 2411 1.873 1.599 1423 1.298 1.236
' 3072*  2416*  1876*  1604*  1428%  1302*  1.240*
0500 2.685 2118 1.659 1.435 1.297 1.204 1.161
‘ 2671*  2106*  1649*  1426*  1290*  1.198*  1.157*
0562 2.469 1.952 1.540 1.346 1.231 1.157 1123
' 2482*  1963*  1548*  1352*  1236*  1l161*  1.126*

Table 4. Comparison of Kis values calculated using Equation (A3) (*) to the corresponding FEM
results for various X and Y, while T/a =1 and 6 = 45°.

0 =45° X
Y 0.050 0.100 0.200 0.300 0.400 0.500 0.562
0.050 2.497 2.152 1.835 1.655 1.527 1.425 1.370
’ 2.486 * 2.143* 1.827 * 1.648 * 1.520 * 1.418 % 1.363 *
0.100 2.487 2.143 1.827 1.648 1.520 1.419 1.364
’ 2474 % 2.133 % 1.818 * 1.640 * 1.513* 1.412* 1.357 *
0.200 2.440 2.102 1.792 1.616 1.491 1.391 1.337
’ 2426 * 2.092 * 1.784 * 1.609 * 1.485 * 1.387 * 1.334 *
0.300 2.353 2.028 1.729 1.559 1.438 1.343 1.291
’ 2.346 * 2.023 * 1.726 * 1.558 * 1.439 * 1.346 * 1.295 *
0.400 2234 1.925 1.642 1.483 1.369 1.281 1.233
’ 2.235* 1.927 * 1.645* 1.486 * 1.375* 1.288 * 1.241*
0.500 2.095 1.807 1.543 1.396 1.294 1.216 1.175
’ 2.091* 1.804 * 1.541 % 1.394 * 1.291 % 1.213* 1.172*
0562 2.003 1.728 1.478 1.341 1.247 1.177 1.142
’ 1.986 * 1.713 * 1.464 * 1.326 * 1.230 * 1.158 * 1.121*

Similar comparisons were made for various weld angles 6 in the range of 30-60°. The

maximum percentage error of the approximation was lower than 2%.

4.3. Determination of the Correction Functions x

Additional FEM modelling was carried out in order to determine the influence of
the relative attachment plate thickness Z = T/a on SCEF, represented mathematically by a
correction function x. Several thousand new cases of a T-joint were modelled and solved
for each loading mode and various proportions of T/a in the range of 1 < T/a < 4.

The general mathematical representation of the correction functions «x in the form of
Equation (12).

K(X,Y,Z,6,Z0) =1+ (ﬁ— \/ZT)) [1 - (31 + BzYz) Xﬂ Exp[—(BsY)! —By] (12)
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was derived, which is similar to the one performed by the authors in Reference [30] for
cruciform welded joints. Particular values of the exponents, m and p, and coefficients B1-By,
were determined for each loading mode using the least squares method. The best fitting of
the functions «¢, xp, and «s, to the numerical FEM SCF results were obtained for m = 1, for
tensile and bending load, and for m = 2 for shearing load, and for p equal to 2.4, 2.6, and
2.0 for tensile, bending, and shearing loads, respectively. Unfortunately, the coefficients
B; depended also on the weld angle 6. Therefore, additional approximations for B; = £;(6)
were necessary. Mathematical representations of the correction functions xt, xp, and «s,
suitable for each loading mode, are given in Appendix A. Some examples of the correction
functions «, xp,, and « for tensile, bending, and shearing loads, respectively, are shown in
Figures 10-12, for arbitrarily chosen parameters: § = 45° and T/a equal to 2 and 4.

1.225

X
1.200 -\<01 o1
Ky 02
1.175 '
1.150 - \\ 0.4
. _\\\\\ 05
\

i

'
it o

1.100 - Xom
L/ 01 T
=~ =40
1075 1 V& a
—
1.050 4 03
04
05
1.025 - T
5—2.0 S\
1.000 . . , —

0 0.05 0.1 0.15 0.2 0.25 Y 0.3 0.35

Figure 10. Correction function «; for tensile load, while 6 = 45°.
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Figure 11. Correction function xy, for the bending load while 6 = 45°.
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Figure 12. Correction function «; for the shearing load while 6 = 45°.

4.4. Validation of SCF Approximation Functions

Accuracy of the SCF approximation functions, given by the Formulas (A1)—-(A3),
containing correction functions «, «},, and s, > 1, was verified for all loading modes and
for the weld angle 6 varying in the range of 30-60°. Some examples of the validation are
presented in Tables 5-7 for arbitrarily chosen angles 6 equal to 30°, 45°, and 55°.

Table 5. Comparison of SCF’s values calculated using Equations (A1)-(A3) (*) to the corresponding FEM results for various
T/a ratios, while 6 = 30°.

0 =30° Kt Ky Kis
pla tla Tla=1 Tla=2 Tla=3 Tla=4 Tla=1 Tla=2 Tla=3 Tla=4 Tla=1 Tla=2 Tla=3 Tla=4
10 3.469 3.588 3.681 3.754 3.556 3.698 3.813 3.907 2.144 2.203 2.258 2.306
3.489 * 3.613 % 3.708 * 3.788 * 3.571* 3.721* 3.836 * 3.933 * 2.156 * 2.224* 2277 * 2.321*
0.05 7 3.378 3.462 3.519 3.557 3.499 3.607 3.687 3.746 2.133 2.186 2.234 2.276
: 3.394*  3471* 3529* 3578* 3506* 3.612*  3.694* 3.763* 2146* 2207*  2.253* 2292*%
4 3.110 3.129 3.136 3.138 3.278 3.314 3.331 3.337 2.092 2.130 2.162 2.186
3.129 * 3.141* 3.151* 3.158 * 3.284 * 3.309 * 3.328 * 3.345* 2.113* 2.154* 2.185* 2212*
10 2.334 2.413 2.474 2.522 2.391 2.485 2.561 2.624 1.705 1.752 1.793 1.833
2.347 * 2426 * 2.487 * 2.538 * 2.400 * 2.498 * 2.574* 2.638 * 1.714 % 1.768 * 1.809 * 1.844 *
0.25 7 2.273 2.328 2.366 2.390 2.352 2.424 2477 2.515 1.696 1.738 1.775 1.808
’ 2.283 * 2.331* 2.368 * 2.399 * 2.356 * 2.425* 2478 * 2.523* 1.706 * 1.754 % 1.791* 1.822 %
4 2.094 2.106 2.110 2.111 2.204 2227 2.238 2242 1.663 1.694 1.718 1.738
2.107 * 2.114* 2.120* 2124 * 2.208 * 2224 * 2.236 * 2246 * 1.680 * 1.712* 1.737 * 1.758 *
10 1.976 2.040 2.090 2.129 2.022 2.098 2.161 2214 1.546 1.588 1.626 1.661
1.987*  2.051* 2101* 2142* 2028* 2109* 2172* 2225* 1.552* 1600* 1.637*  1.668*
05 7 1.925 1.969 1.999 2.019 1.988 2.047 2.090 2.122 1.538 1.575 1.609 1.639
’ 1.934 * 1.972* 2.001 * 2.026 * 1.991 * 2.047 * 2.091 * 2127 * 1.545* 1.588 * 1.621* 1.648 *
4 1.775 1.784 1.787 1.788 1.863 1.881 1.890 1.892 1.508 1.535 1.557 1.575
1.788 * 1.793 * 1.797 * 1.801 * 1.866 * 1.878* 1.888 * 1.896 * 1.522 % 1.551* 1.572* 1.591 *
10 1.687 1.737 1.776 1.807 1.723 1.783 1.832 1.874 1.405 1.442 1.475 1.506
1.696 * 1.748 * 1.788 * 1.821* 1.728 * 1.796 * 1.848 * 1.892 * 1.409 * 1.452 % 1.484 % 1.512 %
1 7 1.643 1.677 1.700 1.715 1.693 1.738 1.772 1.796 1.398 1.430 1.460 1.486
1.652 * 1.682* 1.705* 1.725* 1.695 * 1.741 % 1.777 * 1.807 * 1.403 * 1.441* 1.469 * 1.494 *
4 1.519 1.525 1.527 1.527 1.584 1.597 1.603 1.604 1.371 1.394 1.413 1.429

1.534 *

1.537 * 1.540 * 1.543 * 1.588 * 1.598 * 1.605 * 1.611* 1.383 * 1.408 * 1.427 % 1.443 %
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Table 6. Comparison of SCF’s values calculated using Equations (A1)-(A3) (*) to the corresponding FEM results for various
T /a ratios, while 0 = 45°.

0=45° Kt Ky Kis
pla tla Tla=1 Tla=2 Tla=3 Tla=4 Tla=1 Tla=2 Tla=3 Tla=4 Tla=1 Tla=2 Tla=3 Tla=4

3.940 4.200 4.404 4.565 4.095 4.409 4.670 4.889 2.514 2.632 2.735 2.824
3.938*  4.200*  4.402* 4572*  4.097* 4429*  4.684*  4898* 2502*  2630* 2.728*  2811*%

3.865 4.078 4.229 4.331 4.081 4.364 4.582 4.749 2.504 2.615 2.709 2.789

10

0.05 7 3.853*  4.048* 4.197*  4323* 4.074*  4353* 4568*  4.748*  2490*  2.608* = 2.698*  2774*
4 3.609 3.701 3.740 3.754 3.941 4.107 4.203 4.256 2464 2.554 2.623 2.677

3588*  3.650*  3.697* 3.736* 3921* 4.053*  4.155*  4240* 2451* 2540* 2.608*  2.665*%

10 2.380 2.523 2.636 2.727 2.456 2.630 2.776 2.899 1.829 1.913 1.986 2.049

2.384* 2525* 2634* 2725* 2470* 2651* 2790*  2907*  1.820* 1.911* 1.981*  2.040*

0.25 7 2.335 2.451 2.533 2.589 2.450 2.606 2.727 2.820 1.821 1.900 1.967 2.024
’ 2333* 2436* 2514* 2581* 2451* 2601* 2715* 2812*  1.812* 1.895 * 1.959*  2.013*
4 2.183 2.230 2.250 2.257 2.358 2411 2.492 2.520 1.792 1.855 1.905 1.943

2177*  2.207* 2.230* 2249*  2351* 2447* 2468* 2511* 1.784* 1.846 * 1.894 * 1.935*

10 1.959 2.063 2.147 2.215 2.012 2.140 2.248 2.340 1.603 1.673 1.734 1.789
1.962*  2.066*  2145* 2212*  2.024*  2158* 2262* 2349* 159%* 1.672* 1.730 * 1.780 *

0.5 7 1.922 2.005 2.063 2.104 1.999 2.110 2.199 2.266 1.596 1.662 1.718 1.766
’ 1.920*  1.993*  2.050* 2.097* 2.004* 2113* 2196* 2267*  1.588* 1.658 * 1.711* 1.756 *
4 1.799 1.830 1.842 1.847 1.915 1.976 2.010 2.029 1.571 1.623 1.664 1.696
1.795*  1.814* 1.829 * 1.842 % 1.915* 1.959 * 1.993*  2.022*  1.564* 1.616* 1.655 * 1.689 *

10 1.655 1.726 1.783 1.829 1.690 1.777 1.852 1.916 1.420 1.475 1.524 1.569
1.656*  1.730*% 1.787 * 1.835* 1.699 * 1.798 * 1.874* 1.937*  1.414* 1.475* 1.522* 1.562 *

1 7 1.623 1.676 1.715 1.741 1.673 1.747 1.805 1.851 1.414 1.465 1.510 1.549
1.620*  1.670 % 1.709 * 1.741 % 1.677 * 1.754 % 1.813 * 1.863 * 1.408 * 1.463 * 1.506 * 1.542 %

4 1.520 1.536 1.543 1.544 1.596 1.627 1.646 1.655 1.391 1.431 1.462 1.488

1.517*  1.528* 1.536 * 1.543 * 1.593 * 1.621* 1.642* 1.659*  1.387* 1.428 * 1.458 * 1.484 *

Table 7. Comparison of SCF’s values calculated using Equations (A1)-(A3) (*) to the corresponding FEM results for various
T/a ratios, while 0 = 55°.

0 =55° K K, K,

t b t
pla tla Tla=1 Tla=2 Tla=3 Tla=4 Tla=1 Tla=2 Tla=3 Tla=4 Tla=1 Tla=2 ST/a =3 Tla=4
10 4.005 4.339 4.604 4.816 4.180 4.591 4.939 5.234 2.714 2.875 3.011 3.127
4.026*  4.367*  4.628*  4.848*  4.198* 4.641* 4981* 5267* 2716* 2888*  3.020* 3.132*
0.05 7 3.941 4.225 4.430 4.574 4.193 4.579 4.887 5.129 2.703 2.857 2.983 3.089
’ 3.951*  4216* 4419* 4590* 4.220* 4593*  4.894* 5147* 2703* 2862* 2985*  3.089*
4 3.707 3.849 3.915 3.938 4.115 4.383 4.549 4.649 2.663 2.791 2.890 2.965
3.703*  3.802* 3.879*  3.943* 4.110* 4.336* 4509* 4.656* < 2.659* 2784* 2880* 2961*
10 2.347 2.512 2.646 2.753 2.426 2.631 2.807 2.958 1.878 1.984 2.074 2.154
2.359*  2529*  2.659* 2769*  2437* 2658* < 2.828* 2972* 1.879*  1993*  2.082*  2156*
025 7 2.309 2.448 2.548 2.618 2.423 2.614 2.767 2.889 1.870 1.971 2.055 2.126
: 2.315*  2444* 2543* 2.627* 2429* 2621* 2767* 2891* 1.870* 1976*  2.058* 2.127*%
4 2.175 2.239 2.268 2.278 2.358 2.484 2.562 2.608 1.842 1.926 1.991 2.040
2175*  2219*  2254*  2283* 2356* 2459*  2537* 2603* 1.840* 1923* 1.986*  2.040*
10 1.931 2.046 2.139 2.215 1.984 2.126 2.250 2.356 1.620 1.705 1.778 1.842
1940* 2.059* 2149* 2226* 1991* 2146* 2265* 2366* 1.620* 1.712* 1.782*  1.842*
05 7 1.899 1.993 2.061 2.108 1.974 2.104 2.208 2.291 1.613 1.694 1.761 1.819
’ 1904* 1.991* 2.058* 2114* 1.978* 2108* 2208* 2293* 1612* 1.697* 1762*  1.817*%
4 1.789 1.828 1.845 1.851 1.907 1.986 2.034 2.062 1.589 1.655 1.706 1.745
1.790* 1.817* 1.838* 1.855* 1904* 1.968* 2016* 2057* 1588* 1.653* 1702* 1.745*
10 1.642 1.716 1.777 1.826 1.676 1.768 1.848 1917 1.424 1.486 1.541 1.590
1.648* 1.726* 1786* 1.836* 1.683* 1.787* 1868* 1.935* 1422* 1491* 1544* 1.589*
1 7 1.612 1.670 1.711 1.740 1.661 1.740 1.805 1.856 1.418 1.476 1.526 1.570
1616* 1.670* 1.711* 1746* 1.664* 1.747* 1.811* 1.865* 1416* 1479* 1527*  1.568*
4 1516 1.534 1.542 1.545 1.587 1.627 1.651 1.663 1.396 1.441 1.478 1.507

1.520*  1.532* 1.542 % 1.550 * 1.586 * 1.618* 1.643 * 1.664*  1.396* 1.442 % 1.478 * 1.508 *

Similar validation was made for other weld angles 6 with a step of 2.5°. The maximum
percentage error found for all analysed cases was lower than 2% with respect to the
SCFs’ results obtained numerically using the FEM. Due to the fact that the weld angle
f = 45° is commonly used in engineering applications of such T-joints, extended parametric
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Equations (A1)—(A3) given in Appendix A, were reduced to Equations (A4)-(A6) presented
in Appendix B.

5. Discussion

Several thousand SCF solutions obtained using the FEM as well as corresponding para-
metric Equations (A1)-(A3) of high accuracy and a wide range of validity, made it possible
to draw some more general conclusions regarding the influence of particular geometrical
parameters on SCF. The general rule is that particular characteristic geometrical details of
the joint located closer to the reference point of the maximum stress o1max affect this value
more significantly than others. In order to explain this phenomenon more precisely, three
qualitatively different geometrical cases of a T5joint are shown in Figure 13. Additionally,
some alternative, parametric SCF formulas available in the literature [13,15-17,19] and
related to T-joints are also given in Appendix C.

1max

Figure 13. Characteristic dimensional proportions representing the influence of characteristic geo-

metrical dimensions on SCFE.

In case A, shown in Figure 13, the main plate is relatively thin compared to other
dimensions of the joint, 4 << L, while the magnitude of the weld toe radius p is of the
same order as the plate thickness t5. In such a case, SCF values depend mainly on the
ta/p ratio. For example, when t5 /p changes in the range of 0.8-5.0, Ky; varies from 1.16 to
1.63 and does not depend on the weld angle 6 in the range of 30-60°. Similar behaviour
is observed for to /p in the range of 0.8—4.0, where Ky, varies from 1.16 to 1.66. In case B,
when the weld toe radius p is much smaller than in the previous case and L >> tg, SCF
values should depend on the quantities tg/p and 6.

Equations (A9) and (A12) presented in Appendix C and numerical SCF data shown in
Table 8 confirm such a conclusion.

Table 8. Influence of the weld angle 6 and ¢/p ratio on SCF for L > 4t.

tlp
08 10 15 20 30 40 50 100 200 350 50.0 750 100.0
30° 116 119 127 133 144 153 161 1.89 224 257 281 310 3.33

Ky 45° 116 119 126 133 144 154 163 196 241 287 321 365 401
60° 116 119 126 133 144 154 163 196 244 293 332 385 4.28

30° 116 120 130 137 150 160 1.68 199 235 270 295 327 351
Ky 45° 116 120 129 137 152 165 176 218 272 325 3.65 417 458
60° 116 120 129 137 153 166 179 227 293 3.61 413 483 539

However, accuracy of the formulas given in Appendix C depends on the mathematical
representation chosen by the authors, assumed range of validity, and the accuracy of data
used in approximations. Some comparisons of SCFs obtained from various equations to
the FEM results carried out in the present work are shown in Tables 9 and 10 for 6 = 45°.
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Table 9. Accuracy of Equations (A1) and (A7)-(A10) for a Tjoint subjected to tension, where: 6 = 45°,
h=hp,t=T, h/t=0.75,0.025 < p/t < 0.35, #—out of range.

plt 0.025 0.050 0.075 0.10 0.15 0.25 0.35
FEM 3.002 2417 2.139 1.967 1.757 1.544 1.430
Uand N (A7) 2.885 2202 1.923 1.766 1.588 1.422 1.339
Tsuji (A8) 2426 2.047 1.874 1.769 1.641 1.511 1.440

Kit Monahan (A9) 2.894 2383 #2150 #2009 #1840 #1666 #1571

Brennan et al. (A10) 2.749 2270 #2.055 #1925 #1769 #1611 #1525
(A1) 3.015 2428 2.148 1.975 1.764 1.549 1.433

Table 10. Accuracy of Equations (A2) and (A11)—(A14) for the Tjoint subjected to bending, where:
0=45°, h=hp, t=T,h/t=0.75,0.025 < p/t <0.35, #—out of range.

plt 0.025 0.050 0.075 0.10 0.15 0.25 0.35
FEM 3.434 2.740 2.404 2.195 1.935 1.663 1.516
Uand N (A11) 3.327 2.750 2.444 2.238 1.957 1.625 1.436
K Niu and Glinka (A12) #3.516 #2818 #2503 #2313 #2086 #1855 #1.730
tb Tsuji (A13) 3.471 2.833 2.539 2.359 2.142 1.916 1.792
Brennan et al. (A14) 3.217 2606 #2330 #2164 #1964 #1761 #1.652
(A2) 3.430 2.741 2.408 2.199 1.940 1.669 1.523

In case C, shown in Figure 13, mutual relations between L and {c become important,
especially when the L is much shorter than ¢c. The presence of such a quantity, L/tc, can
be observed directly in Equations (A10) and (A14). In a general case, such an influencing
parameter depends on the thickness of the stiffener, T, leg lengths, weld angle 6, and the
weld toe radius p. Therefore, it seems reasonable to use all these quantities in order to derive
“effective length” of the joint and, as a consequence, reach better SCF approximations than
by a simple use of L. It is also worth noting that SCFs used in Equations (A10) and (A14)
are defined in a different manner than in other formulas presented in this work. They
are related to the maximum longitudinal stress component at the weld toe and not to the
maximum principal stress o1max. Therefore, SCF values obtained from Equations (A10)
and (A14) and shown in Tables 9 and 10, are a few percent underestimated compared with
appropriate FEM results.

Particular data given in Tables 9 and 10 represent only some comparative examples of
SCF values with respect to the FEM results. Therefore, these results cannot be generalised
to assess accuracy of each formula. Some of these results denoted by (#) mean that they
formally lie out of range of validity assumed by the authors. However, in many cases, the
accuracy remains satisfactory.

It may be assumed that the range of validity of the formulas (A8) and (A13), proposed
by Tsuji [17], is similar to that for Equations (A7) and (A11) reported by Ushirokawa and
Nakayama [16].

6. Conclusions

Systematic numerical FEM modelling including more than 22,600 cases of welded
plate T-joints made it possible to derive three approximating SCF’s formulas for axial,
bending, and shearing loads. Five geometrical parameters: p, a, 8, t, and T were considered
as independent variables varying in relatively wide ranges 0 < p/a < 1.3,0<a/t < 1.3,
1< T/a <4, and 30° < 6 < 60° covering dimensional proportions of welded plate T-joints
used in engineering applications. Two limiting cases are also included in the solutions—
when the weld toe radius tends to zero and when the main plate thickness becomes infinite.
The accuracy of the formulas is better than 98% compared with numerical FEM results.
The use of the proper exponents, n and n, corresponding to the stress field singularities
of a sharp corner dependent on the angle 6, was the key condition in obtaining such an
accuracy and range of validity of proposed parametric equations. In the cases of shearing
loads, a plane FEM model based on thermal analogy was successfully used.
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In spite of the fact that SCF alone is not sufficient for calculating fatigue strength of a
structural element, all the parametric formulas given in a closed form may be used as a part
of computer-aided procedures for the fatigue strength assessment of welded plate T-joints.

Presented solutions may be applied as a tool for a computer aided assessment in
fatigue design of welded plate T-joints. Particularly in:

(a) comparative studies of stress concentration in various geometrical forms of welded
THoints, including the use of fictitious values of the weld toe radii,

(b) hot spot method applied in fatigue design of such joints,

(c) weight function method used in fracture mechanics models for crack initiated at the
weld toe,

(d) dealing with the necessity of additional mechanical improvements in the weld toe region.
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Abbreviations

a theoretical weld throat thickness

G shear modulus

h, hy leg lengths defining the weld size

k thermal conductivity

Kt stress concentration factor (SCF)

Kyt stress concentration factor for tensile (axial) load

Ky stress concentration factor for bending load

Kis stress concentration factor for shearing load

m,p exponents dependent on the loading mode

n stress field exponent for a sharp corner for axial and bending load
ng stress field exponent for a sharp corner subjected to shearing load
p regular function represented by polynomials

Py, Py, Ps functions P corresponding to tensile, bending, and shearing load, respectively
q magnitude of the heat flux

Jmax magnitude of the maximum heat flux

Jnom magnitude of the nominal heat flux at the end of the body

t thickness of the main plate

T thickness of the attachment plate

Ttemp temperature

144 displacement component corresponding to the anti—plane shear

X=p/(p+a)

normalized toe radius parameter



Materials 2021, 14, 546

17 of 22

Y=a/(a+1t)
Z=T/a
Zy

VY|

| VY | max
[ VY | hom
0

K

Kt

Kp

Ks

Y(xy)
d¥/on

0

01

0 1max

Ot

0p

Tmax

Ts

Appendix A

normalized weld thickness parameter

normalized attachment plate thickness parameter

arbitrarily chosen reference T/a value

magnitude of the displacement (temperature) gradient
magnitude of the maximum displacement (temperature) gradient
magnitude of the nominal displacement (temperature) gradient
weld angle

correction function for the relative attachment plate thickness T/a
correction function k for tensile (axial) load

correction function k for bending load

correction function « for shearing load

potential function representing temperature or anti—plane displacement
normal derivative at the bounding contour

weld toe radius

first principal stress produced by normal or bending load
maximum value of the first principal stress at the weld toe zone
nominal tensile (axial) stress

nominal bending stress

maximum shear stress at the weld toe due to shearing load
nominal shear stress

Approximating SCFs” Formulas for a Welded Plate T-Joint Subjected to Axial, Bending, and

Shearing Loads

Independent variables: p, a, 6, t, T;

Normalized quantities: X =p/(o +a), Y =a/(a+1); Z=T/a;

Range of validity: 0 < p/a <1.3;0<a/t <1.3;1<T/a <4;30° <8 <60°.
In all formulas, € is expressed in radians.

Exponent of the singular term for:

Axial and bending load:

b —0.636620 — 0.093306>
1+ 0.776350 + 0.04075015 — 0.0049962 + 0.1336562->

Shearing load:

—0

el

Accuracy: maximum percentage error lower than 2% compared to the FEM results
Tensile (axial) load:

where:

Ki = X" (A + ALX + A5X2 + ALX3 + ALXY) g (A1)

Ay = Abg + Ay Y + AlpY? + AfY® + A, Y*
Aby =2.078 — 07120 — 0.0766*
Al =0.132 +0.7180 — 0.4556*
Al, = —18.982 + 12.5856 + 0.3986*
Aly = 55.711 — 54.6426 + 5.3046*
Aly = —47.047 + 53.6040 — 7.1390*
A} = Ajg + ALY + ARY? + AY° + AL Y?
Aly = —0.066 — 0.7896 + 0.8786*
Aly = —0.413 +0.1196 + 0.428¢*
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Al, = 6.193 — 5.4950> — 5.0776*

Aly = —20.187 + 34.7456% + 11.0926*

Aty =16.393 — 27.9860% — 13.1350*
Ab = Ay + AR Y + AbY? 4+ Al Y® + A Y*
Aby = 5.133 — 21.9276 + 24.9446° — 8.229¢*
Al = 2250 — 2.4296% 4 0.8056*
Aby = —5.156 — 6.9616% + 14.0206*
Aby = 0.909 + 92.8786% — 118.3926*
Ab, =16.571 — 147.7116° + 151.1486*
Al = Al + ALY + ALY + ALY + A Y!
ALy = —15.018 + 58.0590 — 60.6166% + 17.5956*
AL = —7.053 +5.1136 — 0.3406*
ALy =14.167 + 8.2810% — 22.4386*

Aly =19.091 — 213.1316° + 226.1746*
Agy = -

146.976 + 316.8150 — 195.9196*
A = Ay + AR Y + AlpY? + A Y° + A Y!
Ay =10.494 — 40.5946 + 41.9956* — 11.9176*
Al =24.260 — 73.1056 + 67.3250> — 17.4276*
Aly = —1.928 — 16.7066% + 18.955¢*
Aly = —86.411 + 181.3830 — 108.2846*
Aly =117.729 — 227.6460 + 117.4886*
ke =1+ (VZ 1) {1~ [(~0.889 +22790 — 0.5396?) + (1270 + 10210 — 7.176?) Y?] X}

Exp{—[(12.94 — 13.94 + 6.576) Y|** — (372 — 4.086 + 1.626%) }
Bending load:

Kuy = X" (4§ + ALX + ABX2 4+ ABX® + AlX* ),

(A2)
where:

Al = Aby+ ALY + ALY+ Al YR + ALY
Aby = 1.833 — 0.3160% — 0.6216° + 0.3946*
Al = —1.282 4+ 6.6360 — 10.4226° + 5.9746*
Ab, = —16.721 — 7.4426% + 54.6680° — 33.3836*
Aby = 50,505 — 118.40762 + 50.9366° + 12.0396*
A, = —43.771 +162.8456% — 140.9016° + 30.2436*
A} = Al + ALY + ARY? + ALY’ + ALY

Aby = 0.015 — 0.8110 — 0.9746% 4 1.7656°
Ay =

0.585 + 0.3196 — 0.0846*
Ab, = —7.287 + 53.6530 — 55.0816° + 0.9476*
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Aby = —5.158 — 77.9650 + 105.0856>
Ab, = 28354 — 41.87462
A3 = AQy+ ARY + ALY + ARY’ + ALY
ALy = 2501 — 11.7226 + 14.7116* — 5.338¢*
Al =20.181 — 60.4846 + 51.0746° — 14.228¢°
AL, = —15.157 — 0.6896% + 35.7416*
Aby = 74171 + 0.4216% — 89.6656*
A, = —108.419 + 93.29662 + 1.3400*
Af = Afy+ ALY + ALY + ALY’ + ALY!
Aby = —21.534 + 82.7960 — 94.7236% 4 18.1516° 4 14.6636*
Al = —12.022 + 42.2476% — 16.989¢*
Al = 68.318 — 111.1226% — 28.4286*
Al = —268.940 + 340.7666* + 18.1906*
A, = 342766 — 505.1986° + 160.9460*
Al = A5+ ALY + AL Y2 - ALY ALY
Aby =30.817 — 118.2090 + 137.5156% — 34.9100° — 14.6726*
Al = 6.060 — 51.2726% + 33.4816*
Ab, = —188.380 + 368.8476 — 453.3250° + 326.318¢*
Al = 534.753 — 856.1750 + 926.2250° — 645.8216*

Al = —690.666 + 1465.076 — 1261.7362 + 396.3706° + 50.4866*

Ky =1+ (\/Z - 1) {1—[(—1.00+2230 — 0.416?) 4 (—2.81 + 37.106 — 21.046%) Y?| X } -

Exp{—[(11.77 — 13200 + 5.776*) Y]** — (3.84 — 4.330 + 1.686°) }

Shearing load:
Kis = X" (A5 + AJX + A3X% + A3X° + A3X4 ),

where:
A} = 1.4361 — 0.09126% + (—0.8777 - 0.008092> Y?

A§ = 0.1147 — 0.64616 + 0.25536° + <0.0581 + 0.109492) Y2
A§ = —0.5070 + 0.42876° + (0.4582 + 0.219992> Y?
A3 = 07581 — 0454467 + (07112 — 0174367 ) 2

Aj = —0.6625 + 0434967 + (11281 — 0501367 ) Y2

(A3)

Ko =1+ (VZ 1) [1 = ((~040+0.670 +0.706) + (~4.17 +18.540 — 6.946?) Y*) X?] -

- Exp [— ((6.26 — 5.746 +2.526) Y)* — (3.84 — 3.310 + 1.2392)}
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Appendix B
Parametric Formulas for Calculating SCFs, while = 45°
Tensile (axial) load:

Kit = X~03264 (40 1+ ALX + ASX2 + AL + A{X* )y (A4)
where:
Al = 1.490 + 0.523Y — 8.946Y? + 14.813Y° — 7.663Y*
Al = —0.352 — 0.177Y + 0.872Y% + 5.466Y° — 5.868Y*
AL =0.167 +1.0580Y — 4.115Y% 4-13.152Y> — 17.032Y*
AL = —0.115 - 3.167Y + 10.737Y? — 26.319Y° 4 27.302Y*
Al = —0.018 + 1.742Y — 5.021Y? + 14.844Y% — 16.359Y*

ke =1+ (\/Z - 1) [1 - (0.568 + 16.2961/2) X} Exp [—(6.0441/)2'4 - 1.554}
Bending load:
Ky = X~03264 (Af 4 ADX + ALX2 4 ABX® + AfX ),y (A5)
where:
Al =1.487 +1.154Y — 7.529Y? + 6.724Y% — 0.075Y*
AY = —0.368 — 0.366Y + 1.236Y% — 1.570Y3 4 2.524Y*
A =0.338 —2.711Y — 1.982Y? + 40.313Y% — 50.359Y*
Al = —0.563 +7.574Y — 11.045Y% — 51.817Y° + 92.375Y*

Al = 0.306 — 6.040Y + 5.853Y2 + 65.308Y° — 107.060Y*

Ky =1+ (\FZ - 1) [1 - (0.499 + 13.350Y2) x} ‘Exp [—(4.962)/)2‘6 - 1.476}
Shearing load:
Kis = X O2(Af + AJX + A3X% + A3X% + A3X* ), (A6)
where:

S =1.380 — 0.883Y?

A = —0.235 + 0.126Y?

AS = —0.243 4 0.594Y?
§ = 0.478 — 0.819Y?

A = —0.394 4 0.819Y

ks =1+ (VZ—1) [1— (0558 +6110Y2) X2|-Exp | - (3.306Y)* — 1.999)]

Appendix C

Alternative Parametric Formulas for Calculating SCF for Plate T-Joints Subjected to Tensile and
Bending Loads

Plate T-joint—axial load
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Ushirokawa and Nakayama (1983). Range of validity: 0.025 < p/t <0.35,20° <0 <
50°, T/t=1,hp/t=0.75.

h/p }0-65 { 1— Exp[—0.90/w/2h] } a7
—2

Ky =14 |zo—+—=

t {Z.S(w/t) 1— Exp[—0.9(7t/2)v/w/2h]
w = (t+2h) +0.3(T + 2hy).

Tsuji (1990): range of validity not precisely defined.

046 [ 1 — Exp[—0.96v/w/2h
K”—1+1.015{28 h/‘)_z} { tp 096V w/2h] }

B(w/t) 1— Exp[—0.9(7t/2)v/w/2h] (48)

w = (t+2h) +03(T + 2hy).
Monahan (1995), range of validity: 0.02 < p/t < 0.066, 30° < §<60°, L/t =2.8.

Ky =1+ 0.388(8)%% (/)04 (A9)
Brennan et al. (2000), range of validity: 0.01 < p/t < 0.066, 30° < 6<60°,0.3 <L/t <4.0
Kyt = 1.027 4 0.271(0)*#6 (0 /£) 04 (L /1)*18 (A10)

Plate T-joint—bending load

Ushirokawa and Nakayama (1983), range of validity: 0.025 < p/t < 0.35,20° < 6<50°,
T/t=1,hy/t=0.75.

=+ T—p/t /D7

1—Exp[—0.96v/w/2h]
"\ 1-Exp[-09(r/2)v/w/2h]

Kp =1+ 1.9\/ Tanh (25, + %) {Tanh {(2’1/ H' } [0~13+0~65<1P/ f>4] .
(A11)

w = (t+2h) +0.3(T + 2h))

Niu and Glinka (1987), range of validity: 0.02 < p/t < 0.066, 30° < 0<60°, T/t =1,
h/t=1.
Ky = 1+ 0.5121(0)%72(p/ )4 (A12)

Tsuji (1990), range of validity not precisely defined.

T+2h —0.431 1-Exp|—0.96vw/2h
Kip =1+ 0629+ 0.058Ln (=22 ) | [~ Tann (5 { 1,Exp[,£,_9<n/z)¢ﬁ]zhj } (A13)

w = (t+2h)+ 0.3(T + Zh,,)
Brennan et al. (2000), range of validity: 0.01 < p/t < 0.066, 30° < 8<60°,0.3 < L/t < 4.0.

Kyt = 1.01 +0.344(0)"3% (p /1) 70468 (L /)02 (A14)
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