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Abstract: The paper deals with the problem of stress concentration at the weld toe of a plate T-
joint subjected to axial, bending, and shearing loading modes. Theoretical stress concentration
factors were obtained from numerical simulations using the finite element method for several
thousand geometrical cases, where five of the most important geometrical parameters of the joint
were considered to be independent variables. For each loading mode—axial, bending, and shearing—
highly accurate closed form parametric expression has been derived with a maximum percentage
error lower than 2% with respect to the numerical values. Validity of each approximating formula
covers the range of dimensional proportions of welded plate T-joints used in engineering applications.
Two limiting cases are also included in the solutions—when the weld toe radius tends to zero and
the main plate thickness becomes infinite.

Keywords: welded plate T-joint; stress concentration factor; weld toe; finite element analysis; axial,
bending and shearing load

1. Introduction

Welded T-connections are commonly used engineering structures. Their significant
advantage lies in low costs of production due to the use of simple elements, like tubes
of circular or rectangular cross sections and plates, usually connected by welding. There
are many types of such joints produced in various configurations: as tubular, tubular-
plate, and plate couples. The fatigue failure of welded structural components subjected
to cyclic loads is the most frequent cause of damage, which begins at critical zones where
stress concentration occurs [1]. Various standards and recommendations presented in
References [2–7] are very helpful in designing welded structures.

Stress concentration factor (SCF) values determined for the known geometrical and
loading conditions are of great importance in fatigue design because they enable relat-
ing the loading history to the critical zone of the structure. Some examples of fatigue
analysis in tubular joints applied to various types of structures and devices are given in
References [8–12] where stress concentration plays a key role. Fatigue damage analysis
considering crack initiation and propagation processes in welded T-joints was published in
References [13–15]. Numerous formulas of stress concentration factors for various types
of welded T-joints, based on the finite and boundary element analyses, were presented in
References [16–20].

Some important phenomena associated with welding processes consist of a random
character of key geometrical parameters influencing the SCF value. In such cases, appro-
priate statistic data obtained directly from real structures and regarding changed values
and shapes of weldments are necessary. Examples of such data in the form of histograms
can be found in the literature [21–25]. Various types of the weld face geometry—plane,
convex, or concave—may be obtained during manufacturing, which generally depend on
the welding method, position, and parameters of the process, e.g., welding speed, current,
etc. Some examples of real weld shapes and profiles influencing SCF values in cases of
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as-welded and intentionally improved weld toe zones are also given in References [25–29].
Many techniques have also been developed to improve the endurance limit and reliability
of the structure (grinding, milling, re-melting techniques, etc.) [30]. Each process produces
specific radii influencing local stress concentration.

The application of the known parametric formulas in fatigue design encounters some
difficulties arising from their accuracy, range of validity, and different ways of defining
SCF. On the other hand, assessment of fatigue life requires high accuracy of SCF solutions
and should cover the whole range of values of all key parameters influencing SCFs.

The present study deals with determination of stress concentration factors for non-
load carrying welded plate T-joints subjected to axial, bending and shearing loading modes.
The main objective was to develop highly accurate SCF formulas of a wide ranging validity,
including two limiting cases: when the toe radius ρ tends to zero and when the main plate
thickness t becomes infinite.

2. Methodology
2.1. General Assumptions

Five key geometrical parameters—ρ, a, θ, t, and T—have been selected and considered
as independent variables, where t and T represent the main and attachment plate thickness,
respectively, ρ is the weld toe radius, θ indicates the weld angle, and a is the weld throat
thickness defined here as the shortest distance between the joint root and the weld face.
Leg length parameters, h and hp, characterizing the weld size, are also used in the literature,
e.g., in References [16–18]. Shape and geometrical dimensions of a plate T-joint, as well as
three loading modes considered in the present work, are depicted schematically in Figure 1.
Small circles drawn symmetrically at the weld toe zone indicate locations of the maximum
stresses.
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Figure 1. Geometrical parameters and loading modes of the plate T-joint.

The present analysis considered the following assumptions.

1. Joint material is linear elastic, isotropic, and homogeneous.
2. Elastic properties of the weld material and the base material, represented by elastic

constants, are the same.
3. The welded joint is free from residual stresses, structural irregularities, and imperfec-

tions, including lack of penetration defects.
4. Both welds are symmetrical with respect to the axis of the attachment plate, which is

perpendicular to the main plate.
5. Weld faces are plane and contour of the weldment is smooth with a transition toe

radius ρ > 0.
6. External load – axial, bending, and shearing – is applied at the opposite sides of the

main plate sufficiently far from the welds.
7. Small deformations occur in the whole body.
8. Five geometrical parameters: ρ, a, θ, t, and T are considered as independent variables

varying in the following ranges: 0 < ρ/a ≤ 1.3, 0 < a/t ≤ 1.3, 1 ≤ T/a ≤ 4, and
30◦ ≤ θ ≤ 60◦.

9. Stress concentration factors for axial, bending, and shearing loads are defined as
Ktt = σ1max/σt, Ktb = σ1max/σb, and Kts = τmax/τs, respectively.
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Theoretical stress concentration factor SCF is valid for linear-elastic, homogeneous,
and isotropic materials as well as bodies of defined geometry, loading and displacement
boundary conditions. Any departure from these assumptions, as material anisotropy or
geometrical irregularities (flaws, imperfections, etc.) may significantly change the stress
distribution in the body, including the maximum stress value at the notch root.

The aim of the work was to obtain SCF approximating formulae covering possible
proportions between geometrical parameters of the T-joint used in engineering practice.
For this reason, the supposed margin for the normalized parameters was very wide. The
weld toe radius ρ 1.3 times larger than the weld throat may be considered useless for
practical applications, but such a limiting value can guarantee that all smaller radii fall into
the range of application. The second case when a/t→0 may also take place in engineering
applications while a relatively thin plate is welded to a very thick main plate.

2.2. General Approach

The procedure of reaching main objectives of the present study consisted of several
steps. First, conveniently defined new geometrical parameters had to be specified. Due
to the fact that SCF values do not vary when all dimensions of the body proportionally
change, the following normalized non-dimensional quantities were introduced.

X = ρ/(ρ + a) =
ρ/a

ρ/a + 1
(1)

Y = a/(a + t) =
a/t

a/t + 1
(2)

Z = T/a (3)

In this way, four independent variables X, Y, Z, and θ, containing the five key dimen-
sions of the joint, were taken into consideration. The upper weld toe radius, ρ1, shown in
Figure 1, was chosen as equal to 0.1a and had no influence on stress concentration factors.
The second step consisted of numerical modelling of the joint using the finite element
method, where mutual proportions between the basic joint dimensions systematically
changed. In this way, several thousands of SCF values, covering the assumed range of
validity, were determined. More detailed information on the numerical modelling and SCF
calculating procedures are presented in the next section. The third step of the approach
consisted of choosing a general form of the mathematical representation of SCFs’ approxi-
mating functions. An expression applied in the present study was similar to that presented
by the authors in Reference [31], where a cruciform joint of θ = 45◦, subjected to tensile
and bending loads, was analysed. However, the problem considered in the present work
was more general than the previous one because the weld angle θ varied in the range of
30–60◦, increasing the number of variables in the parametric formula. In the numerical
Finite Element Method (FEM) modelling, the weld angle θ was changed by 2.5◦ and the
whole calculating procedure, carried out for a given angle, had to be repeated 12 times.
Hence, a general form of the approximating function is given by Equation (4).

Kt = XnP(X, Y, θ, Z0)κ(X, Y, Z, θ, Z0), (4)

where a singular term Xn accounts for the stress concentration effects when ρ→0. The
function P(X,Y,θ,Z0), represented by polynomials, can be derived from numerical SCF
solutions normalized with respect to the singular term, Kt/Xn for different X, Y, and θ,
while Z = Z0. Equation (4) indicates that the P function cannot directly relate SCF to Z
because it is derived for a particular, arbitrarily chosen value of Z = Z0. For this reason, the
additional correction function is κ(X,Y,Z,θ,Z0), satisfying Equation (5),

κ(X, Y, Z = Z0, θ) = 1 (5)
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was necessary to account for the relative stiffener thickness on SCF. In other words, the
function κ can be interpreted as a multiplier, which enables us to calculate SCF for any
value of Z with respect to the one corresponding to Z0, for the known parameters X, Y,
and θ.

The exponent n, denoted as ns for shearing load, is necessary to describe stress
concentration effects when the weld toe radius tends to zero. In References [31,32], it
was proven that the correct n values are the same as the stress field singularity exponents
corresponding to the characteristic angle of the sharp corner [33], into which the weld toe
region is converted while the weld toe radius ρ tends to zero. According to Reference [32],
numerical values of the exponent n can be calculated for axial and bending load, using
Equation (6),

n =
−0.63662θ − 0.09330θ2

1 + 0.77635θ + 0.04075θ1.5 − 0.00499θ2 + 0.13365θ2.5 (6)

which is valid in the range of 0 ≤ θ ≤ π/2 with an accuracy of five significant digits.
For anti-plane deformation produced by the shearing load, the exact value of the

exponent ns equals:

ns =
−θ

θ + π
(7)

where θ is in radians.
The next step of the procedure consisted of approximating the P(X,Y,Z0,θ) function

to the normalized numerical SCF data using the least squares method. After particular
constants (coefficients and exponents) of the P function were determined, the approxi-
mation accuracy was verified. In this way, one part of the solution, where Z = Z0, was
completed. The final step of the present approach consisted of finding unknown coefficients
and exponents of the correction function κ(X,Y,Z,θ,Z0) accounting for the influence of Z
values on SCFs. After performing the second validation of the full solution including κ,
the close form approximating functions for calculating SCFs were determined. The whole
procedure was consecutively repeated for each loading mode.

3. Numerical FEM Modelling and Some SCFs’ Results
3.1. Tensile and Bending Load

Systematic numerical modelling of plate T-joints was carried out by using the Fi-
nite Element Method (FEM) incorporated in the ANSYS 19 Multiphysics program. The
PLANE182 finite elements that were used were defined by four nodes having 2 degrees
of freedom at each node. The elastic material constants were assumed to be similar to
those for steel, where Young’s modulus E = 210 GPa and Poisson’s ratio ν = 0.3. However,
according to the theory of elasticity, stress field in the body and SCF values do not depend
on the elastic constants of the material in all cases modeled. Loading and displacement
boundary conditions imposed on one half of the body, as well as its shape, are shown in
Figure 2. According to the principle of de Saint Venant, the minimum length of the main
plate measured from the weld toe was about 4.5t. This value was confirmed by conducting
preliminary numerical tests.

Approximately 820,000 finite elements were used for each geometrical case of the
modelled T-joint. Special attention was paid to the finite element mesh density at the weld
toe zone, where high values of the stress gradients occur. For this reason, the dimensional
ratio of neighbouring finite elements was about 1.2 and approximately 40 to 70 finite
elements were used along the weld toe circular arc, as described by the radius ρ. One
example of a finite element mesh is shown in Figure 3.

An example of the solution obtained for the tensile load for the nominal uniform stress
σt = 1 MPa applied over the right end of the body is shown in Figure 4. The first principal
stress results offer the most convenient representation because the particular value of the
SCF is directly accessible. Therefore, the nominal stress in all numerical models was always
equal to one.
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In the presented case, the maximum principal stress σ1max equals 1.56459 MPa, which
is directly seen on the scale below the picture. This value is also interpreted as the stress
concentration factor Ktt.

3.2. Shearing Load

The formulation of two-dimensional problems for the anti-plane state of deformation
is different than for in-plane loading modes. In the case of the anti-plane problem, only one
displacement coordinate W in each point is sufficient to describe deformation of the body
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and W(x,y) may be treated as a scalar potential function ψ(x,y). Therefore, a problem in an
anti-plane state of deformation may be considered as a boundary value problem governed
by Laplace’s equation, represented in Cartesian coordinates by Equation (8).

∂2Ψ
∂x2 +

∂2Ψ
∂y2 = 0, (8)

which is valid in the whole body and satisfies boundary conditions along the surrounding
contour. The fact that the same relationship also holds for the temperature field Ttemp(x,y)
in plane steady-state heat conduction problems leads to the conclusion that thermal analogy
may be used to obtain solutions of stress concentration factors for an anti–plane state of
deformation. A more detailed description of this approach can be found in Reference [32]
where SCFs for butt-welded plates subjected to shearing load were determined using FEM.

In the present analysis, the ANSYS 19 Multiphysics program with a Thermal module
and PLANE55 finite element was used. A PLANE55 finite element is defined by four nodes
with a single degree of freedom corresponding to the temperature at each node. Meshing
of the modelled area was the same as in the previous cases for tensile and bending loads
for identical joint geometry. The shape of the modelled body as well as mixed boundary
conditions are shown in Figure 5.
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Nominal uniform heat flux qnom = 1 W/m2 was applied over the right-hand edge of
the body, while zero temperature was applied to the left end along the plane of symmetry
of the joint. Since the upper face and the lower face of the joint are free from external
shearing loads, they have to be insulated in the thermal model. It is clear that the shear
stress components, τxz and τyz, given by Equation (9):

τxz = G
∂W
∂x

; τyz = G
∂W
∂y

, (9)

and related to the partial derivatives of the potential function W(x,y) in particular directions,
are proportional to the corresponding heat flux components, qx and qy, represented by
Equation (10).

qx = −k
∂Ttemp

∂x
; qy = −k

∂Ttemp

∂y
. (10)

Numerical SCF values were calculated as a ratio of the maximum magnitude of the
temperature gradient |∇Ttemp|max at the weld toe zone, shown by a small circle in Figure 5,
to the magnitude of the nominal temperature gradient |∇Ttemp|nom over the right side of
the body. It is well known that SCF values in such cases do not depend on the conductivity
k of the medium. Therefore, the same result is obtained by comparing corresponding heat
flux quantities qmax/qnom. In order to simplify relations between the heat flux and the
magnitude of the temperature gradient, it was convenient to take k = 1 W/(Km).
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One example of a steady-state heat conduction solution is shown in Figure 6 for the
nominal heat flux qnom = 1 W/m2 applied over the right edge of the main plate. Magnitudes
of the flux q, obtained at each point of the body, make it possible to find directly Kts value
equal 1.54769, which is shown on the scale below the picture.
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The maximum temperature corresponding to the unit nominal heat flux applied along
the right end of the body was equal to 7.089 K. This temperature value resulted from the
numerical solution of the boundary-value problem with mixed boundary conditions and
was not directly applied over the right edge as a boundary condition.

In subsequent models of T-joints, particular values of X, Y, and θ were systematically
changed, while the relative stiffener thickness T/a was constant and equal to one (Z0 = 1).
One example of such a set of SCF results for a T-joint subjected to shearing load for θ = 45◦

is presented in Table 1.

Table 1. Representation of SCF values for a plate T-joint subjected to shearing load, while θ = 45◦ and T/a = 1.

θ = 45◦ X
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0.018 3.472 3.092 2.885 2.749 2.500 2.265 2.154 1.966 1.837 1.738 1.657 1.588 1.528 1.475 1.427 1.372
0.025 3.470 3.091 2.884 2.749 2.499 2.265 2.154 1.966 1.836 1.737 1.656 1.588 1.528 1.475 1.426 1.372
0.032 3.469 3.090 2.884 2.748 2.499 2.265 2.154 1.966 1.836 1.737 1.656 1.588 1.528 1.474 1.426 1.371
0.050 3.464 3.088 2.881 2.746 2.497 2.263 2.152 1.964 1.835 1.736 1.655 1.586 1.527 1.473 1.425 1.370
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0.150 3.429 3.053 2.849 2.715 2.468 2.237 2.127 1.941 1.813 1.715 1.636 1.568 1.508 1.456 1.408 1.353
0.200 3.389 3.018 2.816 2.683 2.440 2.211 2.102 1.919 1.792 1.695 1.616 1.549 1.491 1.439 1.391 1.337
0.250 3.335 2.970 2.771 2.641 2.401 2.176 2.069 1.888 1.764 1.669 1.591 1.525 1.467 1.416 1.369 1.316
0.300 3.269 2.911 2.715 2.588 2.353 2.132 2.028 1.850 1.729 1.635 1.559 1.495 1.438 1.388 1.343 1.291
0.350 3.191 2.841 2.650 2.526 2.296 2.081 1.979 1.806 1.688 1.597 1.523 1.460 1.405 1.357 1.313 1.263
0.400 3.104 2.763 2.578 2.457 2.234 2.024 1.925 1.757 1.642 1.554 1.483 1.422 1.369 1.323 1.281 1.233
0.450 3.009 2.679 2.500 2.383 2.166 1.963 1.867 1.705 1.594 1.509 1.440 1.382 1.332 1.288 1.248 1.204
0.500 2.911 2.592 2.418 2.304 2.095 1.899 1.807 1.650 1.543 1.462 1.396 1.341 1.294 1.252 1.216 1.175
0.562 2.782 2.477 2.312 2.203 2.003 1.816 1.728 1.579 1.478 1.402 1.341 1.290 1.247 1.210 1.177 1.142



Materials 2021, 14, 546 8 of 22

Similar 12 sets of SCFs’ data were obtained for other weld angles θ in the range of
30–60◦ with a step of 2.5◦. In this way, 3328 SCF numerical solutions were obtained for each
loading mode, which means that 9984 cases of different T-joint shapes had to be modelled
and solved for all loading modes.

4. SCF Approximation Formulas
4.1. Numerical and Graphical Representation of P Functions

After normalizing each SCF value with respect to a proper singular term Xn, three
approximating functions Pt, Pb, and Ps, corresponding to each loading mode, were de-
termined in the form of polynomials. Their mathematical representation is shown in
brackets of Equations (A1)–(A3) given in Appendix A. Graphical representations of these
functions, corresponding to the weld angle θ = 45◦ for three loading modes, are shown in
Figures 7–9. Numerical values of the exponents n = −0.3264 and ns = −0.2 were obtained
from Equations (6) and (7), respectively, for θ = π/4.

Materials 2021, 14, x FOR PEER REVIEW 9 of 24 
 

 

4. SCF Approximation Formulas 
4.1. Numerical and Graphical Representation of P Functions 

After normalizing each SCF value with respect to a proper singular term nX , three 
approximating functions Pt, Pb, and Ps, corresponding to each loading mode, were deter-
mined in the form of polynomials. Their mathematical representation is shown in brackets 
of Equations (A1), (A2), and (A3) given in Appendix A. Graphical representations of these 
functions, corresponding to the weld angle θ = 45° for three loading modes, are shown in 
Figures 7–9. Numerical values of the exponents n = −0.3264 and ns = −0.2 were obtained 
from Equations (6) and (7), respectively, for θ = π/4. 

 

Figure 7. Graphical representation of the function n
t ttP K X=  for θ = 45°, n = −0.3264 and Z0 = 1. 

 

Figure 8. Graphical representation of the function n
b tbP K X=  for θ = 45°, n = −0.3264 and Z0 = 1. 

Figure 7. Graphical representation of the function Pt = Ktt/Xn for θ = 45◦, n = −0.3264 and Z0 = 1.

Materials 2021, 14, x FOR PEER REVIEW 9 of 24 
 

 

4. SCF Approximation Formulas 
4.1. Numerical and Graphical Representation of P Functions 

After normalizing each SCF value with respect to a proper singular term nX , three 
approximating functions Pt, Pb, and Ps, corresponding to each loading mode, were deter-
mined in the form of polynomials. Their mathematical representation is shown in brackets 
of Equations (A1), (A2), and (A3) given in Appendix A. Graphical representations of these 
functions, corresponding to the weld angle θ = 45° for three loading modes, are shown in 
Figures 7–9. Numerical values of the exponents n = −0.3264 and ns = −0.2 were obtained 
from Equations (6) and (7), respectively, for θ = π/4. 

 

Figure 7. Graphical representation of the function n
t ttP K X=  for θ = 45°, n = −0.3264 and Z0 = 1. 

 

Figure 8. Graphical representation of the function n
b tbP K X=  for θ = 45°, n = −0.3264 and Z0 = 1. 

Figure 8. Graphical representation of the function Pb = Ktb/Xn for θ = 45◦, n = −0.3264 and Z0 = 1.



Materials 2021, 14, 546 9 of 22Materials 2021, 14, x FOR PEER REVIEW 10 of 24 
 

 

 

Figure 9. Graphical representation of the function sn
s tsP K X=  for θ = 45°, ns = −0.2 and Z0 = 1. 

4.2. Validation of the P Functions 
Accuracy of the approximating formulas of P functions was verified by comparing 

calculated SCFs values to their numerical equivalencies obtained using the finite element 
method. General formula, expressed by Equation (4), is now reduced to Equation (11). 

( )0, , , ,n
tK X P X Y Zθ=  (11)

where Z = Z0 = 1 and κ = 1 in the present case. Three examples of such comparisons are 
presented in Tables 2–4 for T-joints subjected to tensile, bending, and shearing loads, re-
spectively, for θ = 45°. 

Table 2. Comparison of Ktt values calculated using Equation (A1) (*) to the corresponding FEM results for various X and 
Y, while θ = 45° and T/a = 1. 

θ = 45° X 
Y 0.050 0.100 0.200 0.300 0.400 0.500 0.562 

0.050 3.916  3.930 * 3.091  3.099 * 2.412  2.419 * 2.070  2.075 * 1.845  1.850 * 1.679  1.683 * 1.593  1.596 * 
0.100 3.848  3.854 * 3.034  3.039 * 2.369  2.372 * 2.033  2.035 * 1.812  1.813 * 1.648  1.647 * 1.562  1.561 * 
0.200 3.540  3.530 * 2.793  2.785 * 2.183  2.177 * 1.875  1.870 * 1.672  1.668 * 1.520  1.517 * 1.440  1.439 * 
0.300 3.099  3.108 * 2.451  2.459 * 1.927  1.933 * 1.666  1.671 * 1.496  1.500 * 1.371  1.374 * 1.307  1.309 * 
0.400 2.696  2.702 * 2.145  2.150 * 1.708  1.711 * 1.496  1.497 * 1.361  1.361 * 1.263  1.262 * 1.214  1.212 * 
0.500 2.379  2.374 * 1.910  1.906 * 1.545  1.542 * 1.373  1.371 * 1.265  1.264 * 1.189  1.190 * 1.152  1.153 * 
0.562 2.209  2.216 * 1.784  1.790 * 1.460  1.464 * 1.309  1.311 * 1.216  1.218 * 1.152  1.152 * 1.121  1.121 * 

Table 3. Comparison of Ktb values calculated using Equation (A2) (*) to the corresponding FEM results for various X and 
Y, while T/a = 1 and θ = 45°. 

θ = 45° X 
Y 0.050 0.100 0.200 0.300 0.400 0.500 0.562 

0.050 3.997  4.010 * 3.149  3.160 * 2.455  2.463 * 2.103  2.110 * 1.872  1.878 * 1.700  1.706 * 1.611  1.616 * 
0.100 4.020  4.027 * 3.164  3.171 * 2.462  2.467 * 2.104  2.108 * 1.868  1.872 * 1.692  1.695 * 1.601  1.602 * 
0.200 3.868  3.856 * 3.041  3.033 * 2.358  2.351 * 2.007  2.001 * 1.773  1.768 * 1.596  1.593 * 1.505  1.501 * 
0.300 3.494  3.502 * 2.746  2.753 * 2.127  2.131 * 1.806  1.813 * 1.595  1.602 * 1.440  1.444 * 1.357  1.363 * 
0.400 3.059  3.072 * 2.411  2.416 * 1.873  1.876 * 1.599  1.604 * 1.423  1.428 * 1.298  1.302 * 1.236  1.240 * 
0.500 2.685  2.671 * 2.118  2.106 * 1.659  1.649 * 1.435  1.426 * 1.297  1.290 * 1.204  1.198 * 1.161  1.157 * 
0.562 2.469  2.482 * 1.952  1.963 * 1.540  1.548 * 1.346  1.352 * 1.231  1.236 * 1.157  1.161 * 1.123  1.126 * 

Figure 9. Graphical representation of the function Ps = Kts/Xns for θ = 45◦, ns = −0.2 and Z0 = 1.

4.2. Validation of the P Functions

Accuracy of the approximating formulas of P functions was verified by comparing
calculated SCFs values to their numerical equivalencies obtained using the finite element
method. General formula, expressed by Equation (4), is now reduced to Equation (11).

Kt = XnP(X, Y, θ, Z0), (11)

where Z = Z0 = 1 and κ = 1 in the present case. Three examples of such comparisons
are presented in Tables 2–4 for T-joints subjected to tensile, bending, and shearing loads,
respectively, for θ = 45◦.

Table 2. Comparison of Ktt values calculated using Equation (A1) (*) to the corresponding FEM
results for various X and Y, while θ = 45◦ and T/a = 1.

θ = 45◦ X
Y 0.050 0.100 0.200 0.300 0.400 0.500 0.562

0.050 3.916
3.930 *

3.091
3.099 *

2.412
2.419 *

2.070
2.075 *

1.845
1.850 *

1.679
1.683 *

1.593
1.596 *

0.100 3.848
3.854 *

3.034
3.039 *

2.369
2.372 *

2.033
2.035 *

1.812
1.813 *

1.648
1.647 *

1.562
1.561 *

0.200 3.540
3.530 *

2.793
2.785 *

2.183
2.177 *

1.875
1.870 *

1.672
1.668 *

1.520
1.517 *

1.440
1.439 *

0.300 3.099
3.108 *

2.451
2.459 *

1.927
1.933 *

1.666
1.671 *

1.496
1.500 *

1.371
1.374 *

1.307
1.309 *

0.400 2.696
2.702 *

2.145
2.150 *

1.708
1.711 *

1.496
1.497 *

1.361
1.361 *

1.263
1.262 *

1.214
1.212 *

0.500 2.379
2.374 *

1.910
1.906 *

1.545
1.542 *

1.373
1.371 *

1.265
1.264 *

1.189
1.190 *

1.152
1.153 *

0.562 2.209
2.216 *

1.784
1.790 *

1.460
1.464 *

1.309
1.311 *

1.216
1.218 *

1.152
1.152 *

1.121
1.121 *
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Table 3. Comparison of Ktb values calculated using Equation (A2) (*) to the corresponding FEM
results for various X and Y, while T/a = 1 and θ = 45◦.

θ = 45◦ X
Y 0.050 0.100 0.200 0.300 0.400 0.500 0.562

0.050 3.997
4.010 *

3.149
3.160 *

2.455
2.463 *

2.103
2.110 *

1.872
1.878 *

1.700
1.706 *

1.611
1.616 *

0.100 4.020
4.027 *

3.164
3.171 *

2.462
2.467 *

2.104
2.108 *

1.868
1.872 *

1.692
1.695 *

1.601
1.602 *

0.200 3.868
3.856 *

3.041
3.033 *

2.358
2.351 *

2.007
2.001 *

1.773
1.768 *

1.596
1.593 *

1.505
1.501 *

0.300 3.494
3.502 *

2.746
2.753 *

2.127
2.131 *

1.806
1.813 *

1.595
1.602 *

1.440
1.444 *

1.357
1.363 *

0.400 3.059
3.072 *

2.411
2.416 *

1.873
1.876 *

1.599
1.604 *

1.423
1.428 *

1.298
1.302 *

1.236
1.240 *

0.500 2.685
2.671 *

2.118
2.106 *

1.659
1.649 *

1.435
1.426 *

1.297
1.290 *

1.204
1.198 *

1.161
1.157 *

0.562 2.469
2.482 *

1.952
1.963 *

1.540
1.548 *

1.346
1.352 *

1.231
1.236 *

1.157
1.161 *

1.123
1.126 *

Table 4. Comparison of Kts values calculated using Equation (A3) (*) to the corresponding FEM
results for various X and Y, while T/a = 1 and θ = 45◦.

θ = 45◦ X
Y 0.050 0.100 0.200 0.300 0.400 0.500 0.562

0.050 2.497
2.486 *

2.152
2.143 *

1.835
1.827 *

1.655
1.648 *

1.527
1.520 *

1.425
1.418 *

1.370
1.363 *

0.100 2.487
2.474 *

2.143
2.133 *

1.827
1.818 *

1.648
1.640 *

1.520
1.513 *

1.419
1.412 *

1.364
1.357 *

0.200 2.440
2.426 *

2.102
2.092 *

1.792
1.784 *

1.616
1.609 *

1.491
1.485 *

1.391
1.387 *

1.337
1.334 *

0.300 2.353
2.346 *

2.028
2.023 *

1.729
1.726 *

1.559
1.558 *

1.438
1.439 *

1.343
1.346 *

1.291
1.295 *

0.400 2.234
2.235 *

1.925
1.927 *

1.642
1.645 *

1.483
1.486 *

1.369
1.375 *

1.281
1.288 *

1.233
1.241 *

0.500 2.095
2.091 *

1.807
1.804 *

1.543
1.541 *

1.396
1.394 *

1.294
1.291 *

1.216
1.213 *

1.175
1.172 *

0.562 2.003
1.986 *

1.728
1.713 *

1.478
1.464 *

1.341
1.326 *

1.247
1.230 *

1.177
1.158 *

1.142
1.121 *

Similar comparisons were made for various weld angles θ in the range of 30–60◦. The
maximum percentage error of the approximation was lower than 2%.

4.3. Determination of the Correction Functions κ

Additional FEM modelling was carried out in order to determine the influence of
the relative attachment plate thickness Z = T/a on SCF, represented mathematically by a
correction function κ. Several thousand new cases of a T-joint were modelled and solved
for each loading mode and various proportions of T/a in the range of 1 ≤ T/a ≤ 4.

The general mathematical representation of the correction functions κ in the form of
Equation (12).

κ(X, Y, Z, θ, Z0) = 1 +
(√

Z−
√

Z0

)[
1−

(
B1 + B2Y2

)
Xm
]

Exp
[
−(B3Y)p − B4

]
(12)
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was derived, which is similar to the one performed by the authors in Reference [30] for
cruciform welded joints. Particular values of the exponents, m and p, and coefficients B1-B4,
were determined for each loading mode using the least squares method. The best fitting of
the functions κt, κb and κs, to the numerical FEM SCF results were obtained for m = 1, for
tensile and bending load, and for m = 2 for shearing load, and for p equal to 2.4, 2.6, and
2.0 for tensile, bending, and shearing loads, respectively. Unfortunately, the coefficients
Bi depended also on the weld angle θ. Therefore, additional approximations for Bi = fi(θ)
were necessary. Mathematical representations of the correction functions κt, κb, and κs,
suitable for each loading mode, are given in Appendix A. Some examples of the correction
functions κt, κb, and κs for tensile, bending, and shearing loads, respectively, are shown in
Figures 10–12, for arbitrarily chosen parameters: θ = 45◦ and T/a equal to 2 and 4.
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4.4. Validation of SCF Approximation Functions

Accuracy of the SCF approximation functions, given by the Formulas (A1)–(A3),
containing correction functions κt, κb, and κs, > 1, was verified for all loading modes and
for the weld angle θ varying in the range of 30–60◦. Some examples of the validation are
presented in Tables 5–7 for arbitrarily chosen angles θ equal to 30◦, 45◦, and 55◦.

Table 5. Comparison of SCF’s values calculated using Equations (A1)–(A3) (*) to the corresponding FEM results for various
T/a ratios, while θ = 30◦.

θ = 30◦ Ktt Ktb Kts
ρ/a t/a T/a = 1 T/a = 2 T/a = 3 T/a = 4 T/a = 1 T/a = 2 T/a = 3 T/a = 4 T/a = 1 T/a = 2 T/a = 3 T/a = 4

0.05

10 3.469
3.489 *

3.588
3.613 *

3.681
3.708 *

3.754
3.788 *

3.556
3.571 *

3.698
3.721 *

3.813
3.836 *

3.907
3.933 *

2.144
2.156 *

2.203
2.224 *

2.258
2.277 *

2.306
2.321 *

7 3.378
3.394 *

3.462
3.471 *

3.519
3.529 *

3.557
3.578 *

3.499
3.506 *

3.607
3.612 *

3.687
3.694 *

3.746
3.763 *

2.133
2.146 *

2.186
2.207 *

2.234
2.253 *

2.276
2.292 *

4 3.110
3.129 *

3.129
3.141 *

3.136
3.151 *

3.138
3.158 *

3.278
3.284 *

3.314
3.309 *

3.331
3.328 *

3.337
3.345 *

2.092
2.113 *

2.130
2.154 *

2.162
2.185 *

2.186
2.212 *

0.25

10 2.334
2.347 *

2.413
2.426 *

2.474
2.487 *

2.522
2.538 *

2.391
2.400 *

2.485
2.498 *

2.561
2.574 *

2.624
2.638 *

1.705
1.714 *

1.752
1.768 *

1.793
1.809 *

1.833
1.844 *

7 2.273
2.283 *

2.328
2.331 *

2.366
2.368 *

2.390
2.399 *

2.352
2.356 *

2.424
2.425 *

2.477
2.478 *

2.515
2.523 *

1.696
1.706 *

1.738
1.754 *

1.775
1.791 *

1.808
1.822 *

4 2.094
2.107 *

2.106
2.114 *

2.110
2.120 *

2.111
2.124 *

2.204
2.208 *

2.227
2.224 *

2.238
2.236 *

2.242
2.246 *

1.663
1.680 *

1.694
1.712 *

1.718
1.737 *

1.738
1.758 *

0.5

10 1.976
1.987 *

2.040
2.051 *

2.090
2.101 *

2.129
2.142 *

2.022
2.028 *

2.098
2.109 *

2.161
2.172 *

2.214
2.225 *

1.546
1.552 *

1.588
1.600 *

1.626
1.637 *

1.661
1.668 *

7 1.925
1.934 *

1.969
1.972 *

1.999
2.001 *

2.019
2.026 *

1.988
1.991 *

2.047
2.047 *

2.090
2.091 *

2.122
2.127 *

1.538
1.545 *

1.575
1.588 *

1.609
1.621 *

1.639
1.648 *

4 1.775
1.788 *

1.784
1.793 *

1.787
1.797 *

1.788
1.801 *

1.863
1.866 *

1.881
1.878 *

1.890
1.888 *

1.892
1.896 *

1.508
1.522 *

1.535
1.551 *

1.557
1.572 *

1.575
1.591 *

1

10 1.687
1.696 *

1.737
1.748 *

1.776
1.788 *

1.807
1.821 *

1.723
1.728 *

1.783
1.796 *

1.832
1.848 *

1.874
1.892 *

1.405
1.409 *

1.442
1.452 *

1.475
1.484 *

1.506
1.512 *

7 1.643
1.652 *

1.677
1.682 *

1.700
1.705 *

1.715
1.725 *

1.693
1.695 *

1.738
1.741 *

1.772
1.777 *

1.796
1.807 *

1.398
1.403 *

1.430
1.441 *

1.460
1.469 *

1.486
1.494 *

4 1.519
1.534 *

1.525
1.537 *

1.527
1.540 *

1.527
1.543 *

1.584
1.588 *

1.597
1.598 *

1.603
1.605 *

1.604
1.611 *

1.371
1.383 *

1.394
1.408 *

1.413
1.427 *

1.429
1.443 *
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Table 6. Comparison of SCF’s values calculated using Equations (A1)–(A3) (*) to the corresponding FEM results for various
T/a ratios, while θ = 45◦.

θ= 45◦ Ktt Ktb Kts
ρ/a t/a T/a = 1 T/a = 2 T/a = 3 T/a = 4 T/a = 1 T/a = 2 T/a = 3 T/a = 4 T/a = 1 T/a = 2 T/a = 3 T/a = 4

0.05

10 3.940
3.938 *

4.200
4.200 *

4.404
4.402 *

4.565
4.572 *

4.095
4.097 *

4.409
4.429 *

4.670
4.684 *

4.889
4.898 *

2.514
2.502 *

2.632
2.630 *

2.735
2.728 *

2.824
2.811 *

7 3.865
3.853 *

4.078
4.048 *

4.229
4.197 *

4.331
4.323 *

4.081
4.074 *

4.364
4.353 *

4.582
4.568 *

4.749
4.748 *

2.504
2.490 *

2.615
2.608 *

2.709
2.698 *

2.789
2.774 *

4 3.609
3.588 *

3.701
3.650 *

3.740
3.697 *

3.754
3.736 *

3.941
3.921 *

4.107
4.053 *

4.203
4.155 *

4.256
4.240 *

2.464
2.451 *

2.554
2.540 *

2.623
2.608 *

2.677
2.665 *

0.25

10 2.380
2.384 *

2.523
2.525 *

2.636
2.634 *

2.727
2.725 *

2.456
2.470 *

2.630
2.651 *

2.776
2.790 *

2.899
2.907 *

1.829
1.820 *

1.913
1.911 *

1.986
1.981 *

2.049
2.040 *

7 2.335
2.333 *

2.451
2.436 *

2.533
2.514 *

2.589
2.581 *

2.450
2.451 *

2.606
2.601 *

2.727
2.715 *

2.820
2.812 *

1.821
1.812 *

1.900
1.895 *

1.967
1.959 *

2.024
2.013 *

4 2.183
2.177 *

2.230
2.207 *

2.250
2.230*

2.257
2.249 *

2.358
2.351 *

2.411
2.447 *

2.492
2.468 *

2.520
2.511 *

1.792
1.784 *

1.855
1.846 *

1.905
1.894 *

1.943
1.935 *

0.5

10 1.959
1.962 *

2.063
2.066 *

2.147
2.145 *

2.215
2.212 *

2.012
2.024 *

2.140
2.158 *

2.248
2.262 *

2.340
2.349 *

1.603
1.596 *

1.673
1.672 *

1.734
1.730 *

1.789
1.780 *

7 1.922
1.920 *

2.005
1.993 *

2.063
2.050 *

2.104
2.097 *

1.999
2.004 *

2.110
2.113 *

2.199
2.196 *

2.266
2.267 *

1.596
1.588 *

1.662
1.658 *

1.718
1.711 *

1.766
1.756 *

4 1.799
1.795 *

1.830
1.814 *

1.842
1.829 *

1.847
1.842 *

1.915
1.915 *

1.976
1.959 *

2.010
1.993 *

2.029
2.022 *

1.571
1.564 *

1.623
1.616 *

1.664
1.655 *

1.696
1.689 *

1

10 1.655
1.656 *

1.726
1.730 *

1.783
1.787 *

1.829
1.835 *

1.690
1.699 *

1.777
1.798 *

1.852
1.874 *

1.916
1.937 *

1.420
1.414 *

1.475
1.475 *

1.524
1.522 *

1.569
1.562 *

7 1.623
1.620 *

1.676
1.670 *

1.715
1.709 *

1.741
1.741 *

1.673
1.677 *

1.747
1.754 *

1.805
1.813 *

1.851
1.863 *

1.414
1.408 *

1.465
1.463 *

1.510
1.506 *

1.549
1.542 *

4 1.520
1.517 *

1.536
1.528 *

1.543
1.536 *

1.544
1.543 *

1.596
1.593 *

1.627
1.621 *

1.646
1.642 *

1.655
1.659 *

1.391
1.387 *

1.431
1.428 *

1.462
1.458 *

1.488
1.484 *

Table 7. Comparison of SCF’s values calculated using Equations (A1)–(A3) (*) to the corresponding FEM results for various
T/a ratios, while θ = 55◦.

θ = 55◦ Ktt Ktb Kts
ρ/a t/a T/a = 1 T/a = 2 T/a = 3 T/a = 4 T/a = 1 T/a = 2 T/a = 3 T/a = 4 T/a = 1 T/a = 2 T/a = 3 T/a = 4

0.05

10 4.005
4.026 *

4.339
4.367 *

4.604
4.628 *

4.816
4.848 *

4.180
4.198 *

4.591
4.641 *

4.939
4.981 *

5.234
5.267 *

2.714
2.716 *

2.875
2.888 *

3.011
3.020 *

3.127
3.132 *

7 3.941
3.951 *

4.225
4.216 *

4.430
4.419 *

4.574
4.590 *

4.193
4.220 *

4.579
4.593 *

4.887
4.894 *

5.129
5.147 *

2.703
2.703 *

2.857
2.862 *

2.983
2.985 *

3.089
3.089 *

4 3.707
3.703 *

3.849
3.802 *

3.915
3.879 *

3.938
3.943 *

4.115
4.110 *

4.383
4.336 *

4.549
4.509 *

4.649
4.656 *

2.663
2.659 *

2.791
2.784 *

2.890
2.880 *

2.965
2.961 *

0.25

10 2.347
2.359 *

2.512
2.529 *

2.646
2.659 *

2.753
2.769 *

2.426
2.437 *

2.631
2.658 *

2.807
2.828 *

2.958
2.972 *

1.878
1.879 *

1.984
1.993 *

2.074
2.082 *

2.154
2.156 *

7 2.309
2.315 *

2.448
2.444 *

2.548
2.543 *

2.618
2.627 *

2.423
2.429 *

2.614
2.621 *

2.767
2.767 *

2.889
2.891 *

1.870
1.870 *

1.971
1.976 *

2.055
2.058 *

2.126
2.127 *

4 2.175
2.175 *

2.239
2.219 *

2.268
2.254 *

2.278
2.283 *

2.358
2.356 *

2.484
2.459 *

2.562
2.537 *

2.608
2.603 *

1.842
1.840 *

1.926
1.923 *

1.991
1.986 *

2.040
2.040 *

0.5

10 1.931
1.940 *

2.046
2.059 *

2.139
2.149 *

2.215
2.226 *

1.984
1.991 *

2.126
2.146 *

2.250
2.265 *

2.356
2.366 *

1.620
1.620 *

1.705
1.712 *

1.778
1.782 *

1.842
1.842 *

7 1.899
1.904 *

1.993
1.991 *

2.061
2.058 *

2.108
2.114 *

1.974
1.978 *

2.104
2.108 *

2.208
2.208 *

2.291
2.293 *

1.613
1.612 *

1.694
1.697 *

1.761
1.762 *

1.819
1.817 *

4 1.789
1.790 *

1.828
1.817 *

1.845
1.838 *

1.851
1.855 *

1.907
1.904 *

1.986
1.968 *

2.034
2.016 *

2.062
2.057 *

1.589
1.588 *

1.655
1.653 *

1.706
1.702 *

1.745
1.745 *

1

10 1.642
1.648 *

1.716
1.726 *

1.777
1.786 *

1.826
1.836 *

1.676
1.683 *

1.768
1.787 *

1.848
1.868 *

1.917
1.935 *

1.424
1.422 *

1.486
1.491 *

1.541
1.544 *

1.590
1.589 *

7 1.612
1.616 *

1.670
1.670 *

1.711
1.711 *

1.740
1.746 *

1.661
1.664 *

1.740
1.747 *

1.805
1.811 *

1.856
1.865 *

1.418
1.416 *

1.476
1.479 *

1.526
1.527 *

1.570
1.568 *

4 1.516
1.520 *

1.534
1.532 *

1.542
1.542 *

1.545
1.550 *

1.587
1.586 *

1.627
1.618 *

1.651
1.643 *

1.663
1.664 *

1.396
1.396 *

1.441
1.442 *

1.478
1.478 *

1.507
1.508 *

Similar validation was made for other weld angles θ with a step of 2.5◦. The maximum
percentage error found for all analysed cases was lower than 2% with respect to the
SCFs’ results obtained numerically using the FEM. Due to the fact that the weld angle
θ = 45◦ is commonly used in engineering applications of such T-joints, extended parametric
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Equations (A1)–(A3) given in Appendix A, were reduced to Equations (A4)–(A6) presented
in Appendix B.

5. Discussion

Several thousand SCF solutions obtained using the FEM as well as corresponding para-
metric Equations (A1)–(A3) of high accuracy and a wide range of validity, made it possible
to draw some more general conclusions regarding the influence of particular geometrical
parameters on SCF. The general rule is that particular characteristic geometrical details of
the joint located closer to the reference point of the maximum stress σ1max affect this value
more significantly than others. In order to explain this phenomenon more precisely, three
qualitatively different geometrical cases of a T-joint are shown in Figure 13. Additionally,
some alternative, parametric SCF formulas available in the literature [13,15–17,19] and
related to T-joints are also given in Appendix C.
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In case A, shown in Figure 13, the main plate is relatively thin compared to other
dimensions of the joint, tA << L, while the magnitude of the weld toe radius ρ is of the
same order as the plate thickness tA. In such a case, SCF values depend mainly on the
tA/ρ ratio. For example, when tA/ρ changes in the range of 0.8–5.0, Ktt varies from 1.16 to
1.63 and does not depend on the weld angle θ in the range of 30–60◦. Similar behaviour
is observed for tA/ρ in the range of 0.8–4.0, where Ktb varies from 1.16 to 1.66. In case B,
when the weld toe radius ρ is much smaller than in the previous case and L >> tB, SCF
values should depend on the quantities tB/ρ and θ.

Equations (A9) and (A12) presented in Appendix C and numerical SCF data shown in
Table 8 confirm such a conclusion.

Table 8. Influence of the weld angle θ and t/ρ ratio on SCF for L > 4t.

θ
t/ρ

0.8 1.0 1.5 2.0 3.0 4.0 5.0 10.0 20.0 35.0 50.0 75.0 100.0

Ktt

30◦ 1.16 1.19 1.27 1.33 1.44 1.53 1.61 1.89 2.24 2.57 2.81 3.10 3.33
45◦ 1.16 1.19 1.26 1.33 1.44 1.54 1.63 1.96 2.41 2.87 3.21 3.65 4.01
60◦ 1.16 1.19 1.26 1.33 1.44 1.54 1.63 1.96 2.44 2.93 3.32 3.85 4.28

Ktb

30◦ 1.16 1.20 1.30 1.37 1.50 1.60 1.68 1.99 2.35 2.70 2.95 3.27 3.51
45◦ 1.16 1.20 1.29 1.37 1.52 1.65 1.76 2.18 2.72 3.25 3.65 4.17 4.58
60◦ 1.16 1.20 1.29 1.37 1.53 1.66 1.79 2.27 2.93 3.61 4.13 4.83 5.39

However, accuracy of the formulas given in Appendix C depends on the mathematical
representation chosen by the authors, assumed range of validity, and the accuracy of data
used in approximations. Some comparisons of SCFs obtained from various equations to
the FEM results carried out in the present work are shown in Tables 9 and 10 for θ = 45◦.
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Table 9. Accuracy of Equations (A1) and (A7)–(A10) for a T-joint subjected to tension, where: θ = 45◦,
h = hp, t = T, h/t = 0.75, 0.025 ≤ ρ/t ≤ 0.35, #—out of range.

ρ/t 0.025 0.050 0.075 0.10 0.15 0.25 0.35

Ktt

FEM 3.002 2.417 2.139 1.967 1.757 1.544 1.430
U and N (A7) 2.885 2.202 1.923 1.766 1.588 1.422 1.339

Tsuji (A8) 2.426 2.047 1.874 1.769 1.641 1.511 1.440
Monahan (A9) 2.894 2.383 # 2.150 # 2.009 # 1.840 # 1.666 # 1.571

Brennan et al. (A10) 2.749 2.270 # 2.055 # 1.925 # 1.769 # 1.611 # 1.525
(A1) 3.015 2.428 2.148 1.975 1.764 1.549 1.433

Table 10. Accuracy of Equations (A2) and (A11)–(A14) for the T-joint subjected to bending, where:
θ = 45◦, h = hp, t = T, h/t = 0.75, 0.025 ≤ ρ/t ≤ 0.35, #—out of range.

ρ/t 0.025 0.050 0.075 0.10 0.15 0.25 0.35

Ktb

FEM 3.434 2.740 2.404 2.195 1.935 1.663 1.516
U and N (A11) 3.327 2.750 2.444 2.238 1.957 1.625 1.436

Niu and Glinka (A12) # 3.516 # 2.818 # 2.503 # 2.313 # 2.086 # 1.855 # 1.730
Tsuji (A13) 3.471 2.833 2.539 2.359 2.142 1.916 1.792

Brennan et al. (A14) 3.217 2.606 # 2.330 # 2.164 # 1.964 # 1.761 # 1.652
(A2) 3.430 2.741 2.408 2.199 1.940 1.669 1.523

In case C, shown in Figure 13, mutual relations between L and tC become important,
especially when the L is much shorter than tC. The presence of such a quantity, L/tC, can
be observed directly in Equations (A10) and (A14). In a general case, such an influencing
parameter depends on the thickness of the stiffener, T, leg lengths, weld angle θ, and the
weld toe radius ρ. Therefore, it seems reasonable to use all these quantities in order to derive
“effective length” of the joint and, as a consequence, reach better SCF approximations than
by a simple use of L. It is also worth noting that SCFs used in Equations (A10) and (A14)
are defined in a different manner than in other formulas presented in this work. They
are related to the maximum longitudinal stress component at the weld toe and not to the
maximum principal stress σ1max. Therefore, SCF values obtained from Equations (A10)
and (A14) and shown in Tables 9 and 10, are a few percent underestimated compared with
appropriate FEM results.

Particular data given in Tables 9 and 10 represent only some comparative examples of
SCF values with respect to the FEM results. Therefore, these results cannot be generalised
to assess accuracy of each formula. Some of these results denoted by (#) mean that they
formally lie out of range of validity assumed by the authors. However, in many cases, the
accuracy remains satisfactory.

It may be assumed that the range of validity of the formulas (A8) and (A13), proposed
by Tsuji [17], is similar to that for Equations (A7) and (A11) reported by Ushirokawa and
Nakayama [16].

6. Conclusions

Systematic numerical FEM modelling including more than 22,600 cases of welded
plate T-joints made it possible to derive three approximating SCF’s formulas for axial,
bending, and shearing loads. Five geometrical parameters: ρ, a, θ, t, and T were considered
as independent variables varying in relatively wide ranges 0 < ρ/a ≤ 1.3, 0 < a/t ≤ 1.3,
1 ≤ T/a ≤ 4, and 30◦ ≤ θ ≤ 60◦ covering dimensional proportions of welded plate T-joints
used in engineering applications. Two limiting cases are also included in the solutions—
when the weld toe radius tends to zero and when the main plate thickness becomes infinite.
The accuracy of the formulas is better than 98% compared with numerical FEM results.
The use of the proper exponents, n and ns, corresponding to the stress field singularities
of a sharp corner dependent on the angle θ, was the key condition in obtaining such an
accuracy and range of validity of proposed parametric equations. In the cases of shearing
loads, a plane FEM model based on thermal analogy was successfully used.
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In spite of the fact that SCF alone is not sufficient for calculating fatigue strength of a
structural element, all the parametric formulas given in a closed form may be used as a part
of computer-aided procedures for the fatigue strength assessment of welded plate T-joints.

Presented solutions may be applied as a tool for a computer aided assessment in
fatigue design of welded plate T-joints. Particularly in:

(a) comparative studies of stress concentration in various geometrical forms of welded
T-joints, including the use of fictitious values of the weld toe radii,

(b) hot spot method applied in fatigue design of such joints,
(c) weight function method used in fracture mechanics models for crack initiated at the

weld toe,
(d) dealing with the necessity of additional mechanical improvements in the weld toe region.
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Abbreviations

a theoretical weld throat thickness
G shear modulus
h, hp leg lengths defining the weld size
k thermal conductivity
Kt stress concentration factor (SCF)
Ktt stress concentration factor for tensile (axial) load
Ktb stress concentration factor for bending load
Kts stress concentration factor for shearing load
m, p exponents dependent on the loading mode
n stress field exponent for a sharp corner for axial and bending load
ns stress field exponent for a sharp corner subjected to shearing load
P regular function represented by polynomials
Pt, Pb, Ps functions P corresponding to tensile, bending, and shearing load, respectively
q magnitude of the heat flux
qmax magnitude of the maximum heat flux
qnom magnitude of the nominal heat flux at the end of the body
t thickness of the main plate
T thickness of the attachment plate
Ttemp temperature
W displacement component corresponding to the anti–plane shear
X = ρ/(ρ + a) normalized toe radius parameter
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Y = a/(a + t) normalized weld thickness parameter
Z = T/a normalized attachment plate thickness parameter
Z0 arbitrarily chosen reference T/a value
|∇Ψ| magnitude of the displacement (temperature) gradient
|∇Ψ|max magnitude of the maximum displacement (temperature) gradient
|∇Ψ|nom magnitude of the nominal displacement (temperature) gradient
θ weld angle
κ correction function for the relative attachment plate thickness T/a
κt correction function κ for tensile (axial) load
κb correction function κ for bending load
κs correction function κ for shearing load
Ψ(x,y) potential function representing temperature or anti–plane displacement
∂Ψ/∂n normal derivative at the bounding contour
ρ weld toe radius
σ1 first principal stress produced by normal or bending load
σ1max maximum value of the first principal stress at the weld toe zone
σt nominal tensile (axial) stress
σb nominal bending stress
τmax maximum shear stress at the weld toe due to shearing load
τs nominal shear stress

Appendix A

Approximating SCFs’ Formulas for a Welded Plate T-Joint Subjected to Axial, Bending, and
Shearing Loads

Independent variables: ρ, a, θ, t, T;
Normalized quantities: X = ρ/(ρ + a), Y = a/(a + t); Z = T/a;
Range of validity: 0 < ρ/a ≤ 1.3; 0 < a/t ≤ 1.3; 1 ≤ T/a ≤ 4; 30◦ ≤ θ ≤ 60◦.
In all formulas, θ is expressed in radians.
Exponent of the singular term for:
Axial and bending load:

n =
−0.63662θ − 0.09330θ2

1 + 0.77635θ + 0.04075θ1.5 − 0.00499θ2 + 0.13365θ2.5

Shearing load:

ns =
−θ

θ + π

Accuracy: maximum percentage error lower than 2% compared to the FEM results
Tensile (axial) load:

Ktt = Xn
(

At
0 + At

1X + At
2X2 + At

3X3 + At
4X4

)
κt (A1)

where:
At

0 = At
00 + At

01Y + At
02Y2 + At

03Y3 + At
04Y4

At
00 = 2.078− 0.712θ − 0.076θ4

At
01 = 0.132 + 0.718θ − 0.455θ4

At
02 = −18.982 + 12.585θ + 0.398θ4

At
03 = 55.711− 54.642θ + 5.304θ4

At
04 = −47.047 + 53.604θ − 7.139θ4

At
1 = At

10 + At
11Y + At

12Y2 + At
13Y3 + At

14Y4

At
10 = −0.066− 0.789θ + 0.878θ4

At
11 = −0.413 + 0.119θ2 + 0.428θ4
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At
12 = 6.193− 5.495θ2 − 5.077θ4

At
13 = −20.187 + 34.745θ2 + 11.092θ4

At
14 = 16.393− 27.986θ2 − 13.135θ4

At
2 = At

20 + At
21Y + At

22Y2 + At
23Y3 + At

24Y4

At
20 = 5.133− 21.927θ + 24.944θ2 − 8.229θ4

At
21 = 2.250− 2.429θ2 + 0.805θ4

At
22 = −5.156− 6.961θ2 + 14.020θ4

At
23 = 0.909 + 92.878θ2 − 118.392θ4

At
24 = 16.571− 147.711θ2 + 151.148θ4

At
3 = At

30 + At
31Y + At

32Y2 + At
33Y3 + At

34Y4

At
30 = −15.018 + 58.059θ − 60.616θ2 + 17.595θ4

At
31 = −7.053 + 5.113θ − 0.340θ4

At
32 = 14.167 + 8.281θ2 − 22.438θ4

At
33 = 19.091− 213.131θ2 + 226.174θ4

At
34 = −146.976 + 316.815θ − 195.919θ4

At
4 = At

40 + At
41Y + At

42Y2 + At
43Y3 + At

44Y4

At
40 = 10.494− 40.594θ + 41.995θ2 − 11.917θ4

At
41 = 24.260− 73.105θ + 67.325θ2 − 17.427θ4

At
42 = −1.928− 16.706θ2 + 18.955θ4

At
43 = −86.411 + 181.383θ − 108.284θ4

At
44 = 117.729− 227.646θ + 117.488θ4

κt = 1 +
(√

Z− 1
){

1−
[(
−0.889 + 2.279θ − 0.539θ2)+ (12.70 + 10.21θ − 7.17θ2)Y2]X}·

·Exp
{
−
[(

12.94− 13.94θ + 6.57θ2)Y]2.4 −
(
3.72− 4.03θ + 1.62θ2)}

Bending load:

Ktb = Xn
(

Ab
0 + Ab

1X + Ab
2X2 + Ab

3X3 + Ab
4X4

)
κb (A2)

where:
Ab

0 = Ab
00 + Ab

01Y + Ab
02Y2 + Ab

03Y3 + Ab
04Y4

Ab
00 = 1.833− 0.316θ2 − 0.621θ3 + 0.394θ4

Ab
01 = −1.282 + 6.636θ − 10.422θ3 + 5.974θ4

Ab
02 = −16.721− 7.442θ2 + 54.668θ3 − 33.383θ4

Ab
03 = 50.505− 118.407θ2 + 50.936θ3 + 12.039θ4

Ab
04 = −43.771 + 162.845θ2 − 140.901θ3 + 30.243θ4

Ab
1 = Ab

10 + Ab
11Y + Ab

12Y2 + Ab
13Y3 + Ab

14Y4

Ab
10 = 0.015− 0.811θ − 0.974θ2 + 1.765θ3

Ab
11 = −0.585 + 0.319θ − 0.084θ4

Ab
12 = −7.287 + 53.653θ − 55.081θ2 + 0.947θ4
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Ab
13 = −5.158− 77.965θ + 105.085θ2

Ab
14 = 28.354− 41.874θ2

Ab
2 = Ab

20 + Ab
21Y + Ab

22Y2 + Ab
23Y3 + Ab

24Y4

Ab
20 = 2.501− 11.722θ + 14.711θ2 − 5.338θ4

Ab
21 = 20.181− 60.484θ + 51.074θ2 − 14.228θ3

Ab
22 = −15.157− 0.689θ2 + 35.741θ4

Ab
23 = 74.171 + 0.421θ2 − 89.665θ4

Ab
24 = −108.419 + 93.296θ2 + 1.340θ4

Ab
3 = Ab

30 + Ab
31Y + Ab

32Y2 + Ab
33Y3 + Ab

34Y4

Ab
30 = −21.534 + 82.796θ − 94.723θ2 + 18.151θ3 + 14.663θ4

Ab
31 = −12.022 + 42.247θ2 − 16.989θ4

Ab
32 = 68.318− 111.122θ2 − 28.428θ4

Ab
33 = −268.940 + 340.766θ2 + 18.190θ4

Ab
34 = 342.766− 505.198θ2 + 160.946θ4

Ab
4 = Ab

40 + Ab
41Y + Ab

42Y2 + Ab
43Y3 + Ab

44Y4

Ab
40 = 30.817− 118.209θ + 137.515θ2 − 34.910θ3 − 14.672θ4

Ab
41 = 6.060− 51.272θ3 + 33.481θ4

Ab
42 = −188.380 + 368.847θ − 453.325θ3 + 326.318θ4

Ab
43 = 534.753− 856.175θ + 926.225θ3 − 645.821θ4

Ab
44 = −690.666 + 1465.07θ − 1261.73θ2 + 396.370θ3 + 50.486θ4

κb = 1 +
(√

Z− 1
){

1−
[(
−1.00 + 2.23θ − 0.41θ2)+ (−2.81 + 37.10θ − 21.04θ2)Y2]X}·

·Exp
{
−
[(

11.77− 13.20θ + 5.77θ2)Y]2.6 −
(
3.84− 4.33θ + 1.68θ2)}

Shearing load:

Kts = Xns
(

As
0 + As

1X + As
2X2 + As

3X3 + As
4X4

)
κs (A3)

where:
As

0 = 1.4361− 0.0912θ2 +
(
−0.8777− 0.0080θ2

)
Y2

As
1 = 0.1147− 0.6461θ + 0.2553θ2 +

(
0.0581 + 0.1094θ2

)
Y2

As
2 = −0.5070 + 0.4287θ2 +

(
0.4582 + 0.2199θ2

)
Y2

As
3 = 0.7581− 0.4544θ2 +

(
−0.7112− 0.1743θ2

)
Y2

As
4 = −0.6625 + 0.4349θ2 +

(
1.1281− 0.5013θ2

)
Y2

κs = 1 +
(√

Z− 1
)[

1−
((
−0.40 + 0.67θ + 0.70θ2)+ (−4.17 + 18.54θ − 6.94θ2)Y2)X2] ·

· Exp
[
−
((

6.26− 5.74θ + 2.52θ2)Y)2.0 −
(
3.84− 3.31θ + 1.23θ2)]
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Appendix B

Parametric Formulas for Calculating SCFs, while θ = 45◦

Tensile (axial) load:

Ktt = X−0.3264
(

At
0 + At

1X + At
2X2 + At

3X3 + At
4X4

)
κt (A4)

where:
At

0 = 1.490 + 0.523Y− 8.946Y2 + 14.813Y3 − 7.663Y4

At
1 = −0.352− 0.177Y + 0.872Y2 + 5.466Y3 − 5.868Y4

At
2 = 0.167 + 1.0580Y− 4.115Y2 + 13.152Y3 − 17.032Y4

At
3 = −0.115− 3.167Y + 10.737Y2 − 26.319Y3 + 27.302Y4

At
4 = −0.018 + 1.742Y− 5.021Y2 + 14.844Y3 − 16.359Y4

κt = 1 +
(√

Z− 1
)[

1−
(

0.568 + 16.296Y2
)

X
]
·Exp

[
−(6.044Y)2.4 − 1.554

]
Bending load:

Ktb = X−0.3264
(

Ab
0 + Ab

1X + Ab
2X2 + Ab

3X3 + Ab
4X4

)
κb (A5)

where:
Ab

0 = 1.487 + 1.154Y− 7.529Y2 + 6.724Y3 − 0.075Y4

Ab
1 = −0.368− 0.366Y + 1.236Y2 − 1.570Y3 + 2.524Y4

Ab
2 = 0.338− 2.711Y− 1.982Y2 + 40.313Y3 − 50.359Y4

Ab
3 = −0.563 + 7.574Y− 11.045Y2 − 51.817Y3 + 92.375Y4

Ab
4 = 0.306− 6.040Y + 5.853Y2 + 65.308Y3 − 107.060Y4

κb = 1 +
(√

Z− 1
)[

1−
(

0.499 + 13.350Y2
)

X
]
·Exp

[
−(4.962Y)2.6 − 1.476

]
Shearing load:

Kts = X−0.2
(

As
0 + As

1X + As
2X2 + As

3X3 + As
4X4

)
κs (A6)

where:
As

0 = 1.380− 0.883Y2

As
1 = −0.235 + 0.126Y2

As
2 = −0.243 + 0.594Y2

As
3 = 0.478− 0.819Y2

As
4 = −0.394 + 0.819Y2

κs = 1 +
(√

Z− 1
)[

1−
(

0.558 + 6.110Y2
)

X2
]
·Exp

[
−(3.306Y)2 − 1.999

]
Appendix C

Alternative Parametric Formulas for Calculating SCF for Plate T-Joints Subjected to Tensile and
Bending Loads

Plate T-joint—axial load
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Ushirokawa and Nakayama (1983). Range of validity: 0.025 ≤ ρ/t ≤ 0.35, 20◦ ≤ θ ≤
50◦, T/t = 1, hp/t = 0.75.

Ktt = 1 +
[

h/ρ

2.8(w/t)− 2

]0.65
{

1− Exp
[
−0.9θ

√
w/2h

]
1− Exp

[
−0.9(π/2)

√
w/2h

]} (A7)

w = (t + 2h) + 0.3
(
T + 2hp

)
.

Tsuji (1990): range of validity not precisely defined.

Ktt = 1 + 1.015
[

h/ρ

2.8(w/t)− 2

]0.446
{

1− Exp
[
−0.9θ

√
w/2h

]
1− Exp

[
−0.9(π/2)

√
w/2h

]} (A8)

w = (t + 2h) + 0.3
(
T + 2hp

)
.

Monahan (1995), range of validity: 0.02 ≤ ρ/t ≤ 0.066, 30◦ ≤ θ≤60◦, L/t = 2.8.

Ktt = 1 + 0.388(θ)0.37(ρ/t)−0.454 (A9)

Brennan et al. (2000), range of validity: 0.01 ≤ ρ/t ≤ 0.066, 30◦ ≤ θ≤60◦, 0.3 ≤ L/t ≤ 4.0

Ktt = 1.027 + 0.271(θ)0.216(ρ/t)−0.47(L/t)0.183 (A10)

Plate T-joint—bending load
Ushirokawa and Nakayama (1983), range of validity: 0.025≤ ρ/t≤ 0.35, 20◦ ≤ θ≤50◦,

T/t = 1, hp/t = 0.75.

Ktb = 1 + 1.9
√

Tanh
(

2T
t+2h + 2ρ

t

){
Tanh

[
(2h/t)1/4

1−ρ/t

]}[
0.13+0.65(1−ρ/t)4

(ρ/t)1/3

]
·

·
{

1−Exp[−0.9θ
√

w/2h]
1−Exp[−0.9(π/2)

√
w/2h]

} (A11)

w = (t + 2h) + 0.3
(
T + 2hp

)
Niu and Glinka (1987), range of validity: 0.02 ≤ ρ/t ≤ 0.066, 30◦ ≤ θ≤60◦, T/t = 1,

h/t = 1.
Ktb = 1 + 0.5121(θ)0.572(ρ/t)−0.469 (A12)

Tsuji (1990), range of validity not precisely defined.

Ktb = 1 +
[
0.629 + 0.058Ln

(
T+2hp

t

)][ ρ
t
]−0.431Tanh

(
6h
t

){
1−Exp[−0.9θ

√
w/2h]

1−Exp[−0.9(π/2)
√

w/2h]

}
(A13)

w = (t + 2h) + 0.3
(
T + 2hp

)
Brennan et al. (2000), range of validity: 0.01≤ ρ/t≤ 0.066, 30◦ ≤ θ≤60◦, 0.3≤ L/t≤ 4.0.

Ktt = 1.01 + 0.344(θ)0.336(ρ/t)−0.468(L/t)0.233 (A14)
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