Experimental and Numerical Investigation on the Perforation Resistance of Double-Layered Metal Shield under High-Velocity Impact of Armor-Piercing Projectiles
Abstract
:1. Introduction
2. Experimental Tests
3. Numerical Model
3.1. Numerical Model Development
3.2. Ramor 500 Material Parameters
3.3. AA6061-T6 Materials Parameters
4. Discussion
4.1. Numerical Model Validation
4.2. Analysis of the Perforation Process
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Børvik, T.; Dey, S.; Clausen, A.H. Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles. Int. J. Impact Eng. 2009, 36, 948–964. [Google Scholar] [CrossRef]
- Ben-Dor, G.; Dubinsky, A.; Elperin, T. Investigation and Optimization of Protective Properties of Metal Multi-Layered Shields: A Review. Int. J. Prot. Struct. 2012, 3, 275–291. [Google Scholar] [CrossRef]
- Ben-Dor, G.; Dubinsky, A.; Elperin, T. New results on ballistic performance of multi-layered metal shields: Review. Theor. Appl. Fract. Mech. 2017, 88, 1–8. [Google Scholar] [CrossRef]
- Dey, S.; Børvik, T.; Teng, X.; Wierzbicki, T.; Hopperstad, O.S. On the ballistic resistance of double-layered steel plates: An experimental and numerical investigation. Int. J. Solids Struct. 2007, 44, 6701–6723. [Google Scholar] [CrossRef] [Green Version]
- Flores-Johnson, E.A.; Saleh, M.; Edwards, L. Ballistic performance of multi-layered metallic plates impacted by a 7.62-mm APM2 projectile. Int. J. Impact Eng. 2011, 38, 1022–1032. [Google Scholar] [CrossRef] [Green Version]
- Babaei, B.; Shokrieh, M.M.; Daneshjou, K. The ballistic resistance of multi-layered targets impacted by rigid projectiles. Mater. Sci. Eng. A 2011, 530, 208–217. [Google Scholar] [CrossRef]
- Yunfei, D.; Wei, Z.; Yonggang, Y.; Lizhong, S.; Gang, W. Experimental investigation on the ballistic performance of double-layered plates subjected to impact by projectile of high strength. Int. J. Impact Eng. 2014, 70, 38–49. [Google Scholar] [CrossRef]
- Rahman, N.A.; Abdullah, S.; Zamri, W.F.H.; Abdullah, M.F.; Omar, M.Z.; Sajuri, Z. Ballistic limit of high-strength steel and Al7075-T6 multi-layered plates under 7.62-mm armour piercing projectile impact. Lat. Am. J. Solids Struct. 2016, 13, 1658–1676. [Google Scholar] [CrossRef] [Green Version]
- Holmen, J.K.; Solberg, J.K.; Hopperstad, O.S.; Børvik, T. Ballistic impact of layered and case-hardened steel plates. Int. J. Impact Eng. 2017, 110, 4–14. [Google Scholar] [CrossRef]
- Zahari, R.; Pillai, J.R.; Ordys, A.; Hameed Sultan, M.T.; Yidris, N. Ballistic impact analysis of double-layered metal plates. IOP Conf. Ser. Mater. Sci. Eng. 2018, 405, 012012. [Google Scholar] [CrossRef]
- Abdul Rahman, N.; Abdullah, S.; Abdullah, M.F.; Omar, M.Z.; Sajuri, Z.; Hakim Zamri, W.F. Ballistic limit of laminated panels with different joining materials subjected to steel-hardened core projectile. Int. J. Integr. Eng. 2018, 10, 8–14. [Google Scholar] [CrossRef]
- Rahman, N.; Abdullah, S.; Abdullah, M.; Zamri, W.; Omar, M.; Sajuri, Z. Experimental and numerical investigation on the layering configuration effect to the laminated aluminium/steel panel subjected to high speed impact test. Metals (Basel) 2018, 8, 732. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Millan, M.; Garcia-Gonzalez, D.; Rusinek, A.; Arias, A. Influence of Stress State on the Mechanical Impact and Deformation Behaviors of Aluminum Alloys. Metals (Basel) 2018, 8, 520. [Google Scholar] [CrossRef] [Green Version]
- Senthil, K.; Iqbal, M.A.; Bhargava, P.; Gupta, N.K. Experimental and numerical studies on mild steel plates against 7.62 API Projectiles. Procedia Eng. 2017, 173, 369–374. [Google Scholar] [CrossRef]
- Holmen, J.K.; Johnsen, J.; Hopperstad, O.S.; Børvik, T. Influence of fragmentation on the capacity of aluminum alloy plates subjected to ballistic impact. Eur. J. Mech. A/Solids 2016, 55, 221–233. [Google Scholar] [CrossRef]
- Rodriguez-Millan, M.; Garcia-Gonzalez, D.; Rusinek, A.; Abed, F.; Arias, A. Perforation mechanics of 2024 aluminium protective plates subjected to impact by different nose shapes of projectiles. Thin-Walled Struct. 2018, 123, 1–10. [Google Scholar] [CrossRef]
- Fras, T.; Roth, C.C.; Mohr, D. Fracture of high-strength armor steel under impact loading. Int. J. Impact Eng. 2018, 111, 147–164. [Google Scholar] [CrossRef]
- Liu, J.; Long, Y.; Ji, C.; Liu, Q.; Zhong, M.; Zhou, Y. Influence of layer number and air gap on the ballistic performance of multi-layered targets subjected to high velocity impact by copper EFP. Int. J. Impact Eng. 2018, 112, 52–65. [Google Scholar] [CrossRef]
- Holmen, J.K.; Hopperstad, O.S.; Børvik, T. Influence of yield-surface shape in simulation of ballistic impact. Int. J. Impact Eng. 2017, 108, 136–146. [Google Scholar] [CrossRef]
- Senthil, K.; Arindam, B.; Iqbal, M.A.; Gupta, N.K. Ballistic response of 2024 aluminium plates against blunt nose projectiles. Procedia Eng. 2017, 173, 363–368. [Google Scholar] [CrossRef]
- Gupta, P.K.; Iqbal, M.A.; Mohammad, Z. Energy dissipation in plastic deformation of thin aluminum targets subjected to projectile impact. Int. J. Impact Eng. 2017, 110, 85–96. [Google Scholar] [CrossRef]
- Ali, M.W.; Mubashar, A.; Uddin, E.; Haq, S.W.U.; Khan, M. An experimental and numerical investigation of the ballistic response of multi-level armour against armour piercing projectiles. Int. J. Impact Eng. 2017, 110, 47–56. [Google Scholar] [CrossRef]
- Banerjee, A.; Dhar, S.; Acharyya, S.; Datta, D.; Nayak, N. Numerical simulation of ballistic impact of armour steel plate by typical armour piercing projectile. Procedia Eng. 2017, 173, 347–354. [Google Scholar] [CrossRef]
- Sharma, P.; Chandel, P.; Mahajan, P.; Singh, M. Quasi-brittle fracture of aluminium alloy 2014 under ballistic impact. Procedia Eng. 2017, 173, 206–213. [Google Scholar] [CrossRef]
- Johnson, G.R.; Cook, W.H. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures. In Proceedings of the Proceedings 7th International Symposium on Ballistics, The Hague, The Netherlands, 19–21 April 1983; pp. 541–547. [Google Scholar]
- Iqbal, M.A.; Senthil, K.; Madhu, V.; Gupta, N.K. Oblique impact on single, layered and spaced mild steel targets by 7.62 AP projectiles. Int. J. Impact Eng. 2017, 110, 26–38. [Google Scholar] [CrossRef]
- Mohotti, D.; Ngo, T.; Raman, S.N.; Mendis, P. Analytical and numerical investigation of polyurea layered aluminium plates subjected to high velocity projectile impact. Mater. Des. 2015, 82, 1–17. [Google Scholar] [CrossRef]
- Saleh, M.; Kariem, M.M.; Luzin, V.; Toppler, K.; Li, H.; Ruan, D. High strain rate deformation of ARMOX 500T and effects on texture development using neutron diffraction techniques and SHPB testing. Mater. Sci. Eng. A 2018, 709, 30–39. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Senthil, K.; Sharma, P.; Gupta, N.K. An investigation of the constitutive behavior of Armox 500T steel and armor piercing incendiary projectile material. Int. J. Impact Eng. 2016, 96, 146–164. [Google Scholar] [CrossRef]
- Manes, A.; Peroni, L.; Scapin, M.; Giglio, M. Analysis of strain rate behavior of an Al 6061 T6 alloy. Procedia Eng. 2011, 10, 3477–3482. [Google Scholar] [CrossRef] [Green Version]
- Johnson, G.R.; Cook, W.H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 1985, 21, 31–48. [Google Scholar] [CrossRef]
- Cockcroft, M.G.; Latham, D.J. Ductility and Workability of Metals. J. Inst. Met. 1968, 96, 33–39. [Google Scholar]
- Bai, Y.; Wierzbicki, T. A new model of metal plasticity and fracture with pressure and Lode dependence. Int. J. Plast. 2008, 24, 1071–1096. [Google Scholar] [CrossRef]
- Gilioli, A.; Manes, A.; Giglio, M.; Wierzbicki, T. Predicting ballistic impact failure of aluminium 6061-T6 with the rate-independent Bao–Wierzbicki fracture model. Int. J. Impact Eng. 2015, 76, 207–220. [Google Scholar] [CrossRef]
- Scazzosi, R.; Giglio, M.; Manes, A. Experimental and Numerical Investigation on the Perforation Resistance of Double-Layered Metal Shields Under High-Velocity Impact of Soft-Core Projectiles. Eng. Struct. 2021, 228, 111467. [Google Scholar] [CrossRef]
- CEN EN 1522. Windows, Doors, Shutters and Blinds—Bullet Resistance—Requirements and Classification; European Standards: Brussels, Belgium, 1998. [Google Scholar]
- Lambert, J.P.; Jonas, G.H. Ballistic Research Laboratories Report. BRL-R-1852; Ballistic Research Laboratory: Aberdyn, MD, USA, 1976. [Google Scholar]
- Scazzosi, R.; Giglio, M.; Manes, A. Numerical simulation of high-velocity impact on fiber-reinforced composites using MAT_162. Mater. Des. Process. Commun. 2020, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Livemore Software Technology Corporation (LSTC). LS-DYNA Keyword User’s Manual—Volume II—Material Models; LSTC: Livermore, CA, USA, 2017. [Google Scholar]
- Zukas, J.A. High Velocity Impact Dynamics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1990. [Google Scholar]
- Scazzosi, R.; Giglio, M.; Manes, A. FE coupled to SPH numerical model for the simulation of high-velocity impact on ceramic based ballistic shields. Ceram. Int. 2020, 46, 23760–23772. [Google Scholar] [CrossRef]
- Rosenberg, Z.; Dekel, E. Terminal Ballistics; Springer: Berlin, Germany, 2016. [Google Scholar]
- Mahdavian, S.M.; Mai, Y.W.; Cotterel, B. Friction, metallic transfer and debris analysis of sliding surfaces. Wear 1982, 82, 221–232. [Google Scholar] [CrossRef]
- Nilsson, M. Constitutive Model for Armox 500T and Armox 600T at Low and Medium Strain Rates. Weapons Prot. 2003, SE-147/25, 1–76. [Google Scholar]
- Piekutowski, A.J.; Forrestal, M.J.; Poormon, K.L.; Warren, T.L. Perforation of aluminum plates with ogive-nose steel rods at normal and oblique impacts. Int. J. Impact Eng. 1996, 18, 877–887. [Google Scholar] [CrossRef]
Authors | Target Configuration | Projectile | Approach |
---|---|---|---|
Dey et al. [4] | Weldox 700E 2 × 6 mm | blunt and ogival | experimental |
Borvik et al. [1] | Weldox 700E 2 × 6 mm | 7.62 mm AP | experimental |
Flores-Johnson et al. [5] | various with Weldox 700E and Al7075-T651 | 7.62 mm AP | numerical |
Babaei et al. [6] | steel 1 mm + steel 1 mm steel 1 mm + aluminum 1 mm aluminum 1 mm + steel 1 mm aluminum 1 mm + aluminum 1 mm | blunt | experimental |
Yunfei et al. [7] | 6 mm 45 steel + 6 mm Q235 steel 6 mm Q235 steel + 6 mm 45 steel | blunt and ogival | experimental |
Rahman et al. [8] | various with high-strength steel and Al7075-T6 | 7.62 mm AP | numerical |
Holmen et al. [9] | structural steel 2 × 6 mm structural steel 4 × 3 mm | 7.62 mm AP | experimental |
Zahari et al. [10] | various with steel, aluminum and titanium | blunt | numerical |
Rahman et al. [11] | Ar500 8 mm + Al7075-T6 10 mm + Ar500 7 mm | 7.62 mm AP | numerical |
Rahman et al. [12] | Ar500 15 mm + AA7075-T6 10 mm AA7075-T6 10 mm+ Ar500 15 mm | 7.62 mm lead core | experimental |
Target ID | Target Configuration | Information |
---|---|---|
S | Monolithic Ramor 500 6.94 mm Areal Density: 54.48 kg/m2 | |
SA | Double-Layered Front Layer: Ramor 500 3.23 mm Rear Layer: AA6061-T6 8.27 mm Areal Density: 47.68 kg/m2 | |
AS | Double-Layered Front Layer: AA6061-T6 8.27 mm Rear Layer: Ramor 500 3.23 mm Areal Density: 47.68 kg/m2 |
Shot ID | Impact Velocity [m/s] | Residual Velocity [m/s] |
---|---|---|
Target S: Ramor 500 6.94 mm | ||
S1 | 824.22 | 588.61 |
S2 | 681.01 | 306.08 |
S3 | 600.15 | 284.39 |
S4 | 534.75 | 0 |
S5 | 577.93 | 199.97 |
S6 | 503.52 | 0 |
S7 | 758.06 | 490.82 |
S8 | 911.35 | 723.52 |
S9 | 552.59 | 263.22 |
Target SA: Ramor 500 3.23 mm + AA6061-T6 8.27 mm | ||
SA1 | 824.47 | 679.14 |
SA2 | 681.69 | 357.81 |
SA3 | 585.89 | 0 |
SA4 | 562.03 | 0 |
SA5 | 563.73 | 0 |
SA6 | 633.78 | 401.69 |
SA7 | 764.6 | 623.39 |
SA8 | 596.52 | 0 |
SA9 | 620.43 | 0 |
Target AS: AA6061-T6 8.27 mm + Ramor 500 3.23 mm | ||
AS1 | 833.3 | 712.17 |
AS2 | 721.83 | 545.32 |
AS3 | 622.73 | 556.39 |
AS4 | 518.9 | 490.31 |
AS5 | 471.05 | 79.58 |
AS6 | 448.52 | 213.27 |
AS7 | 378.91 | 0 |
AS8 | 514.5 | not measured |
AS9 | 578.32 | 101.88 |
Property | Hardened Steel (Core) | Brass (Jacket) | Lead (End) |
---|---|---|---|
Density ρ [kg/m3] | 7850 | 8520 | 10,660 |
Elastic Modulus E [MPa] | 200,000 | 115,000 | 16,000 |
Poisson Ratio ν [-] | 0.30 | 0.31 | 0.42 |
Specific Heat Cp [J/kgK] | 455 | 385 | 124 |
Taylor–Quinney Coefficient χ [-] | 0.9 | 0.9 | 0.9 |
Expansion Coefficient α [K−1] | 1.2 × 10−5 | 1.9 × 10−5 | 2.9 × 10−5 |
Reference Strain Rate [s−1] | 1 | 1 | 72.108 |
Melting Temperature Tm [K] | 1800 | 1189 | 525 |
J-C Parameter A [MPa] | 1657.71 | 111.69 | 0 |
J-C Parameter B [MPa] | 20,855.6 | 504.69 | 55.552 |
J-C Parameter n [-] | 0.651 | 0.42 | 0.0987 |
J-C Parameter C [-] | 0.007248 | 0.0085 | 0.126 |
J-C Parameter m [-] | 0.35 | 1.68 | 1 |
Cockcroft–Latham Parameter Wc [MPa] | 915 | 91 | 175 |
Property | Ramor 500 (3.23 mm) | Ramor 500 (6.94 mm) | AA6061-T6 |
---|---|---|---|
Density ρ [kg/m3] | 7850 | 7850 | 2700 |
Elastic Modulus E [MPa] | 197,468 | 201,383 | 70,216.66 |
Poisson Ratio ν [-] | 0.33 | 0.33 | 0.33 |
Specific Heat Cp [J/kgK] | 452 | 452 | 890 |
Taylor–Quinney Coefficient χ [-] | 0.9 | 0.9 | 0.9 |
Expansion Coefficient α [K−1] | 1.2 × 10−5 | 1.2 × 10−5 | 2.3 × 10−5 |
Reference Strain Rate [s−1] | 5 × 10−4 | 5 × 10−4 | 597.2 |
Melting Temperature Tm [K] | 1800 | 1800 | 925 |
J-C Parameter A [MPa] | 606.44 | 1021 | 198.07 |
J-C Parameter B [-] | 1486.86 | 965 | 322.95 |
J-C Parameter n [-] | 0.042 | 0.057 | 0.30 |
J-C Parameter C [-] | 0.001 | 0.001 | 0.107 |
J-C Parameter m [-] | 0.84 | 0.84 | 1.34 |
Cockcroft–Latham Parameter Wc [MPa] | 1285 | 1600 | 133.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scazzosi, R.; Giglio, M.; Manes, A. Experimental and Numerical Investigation on the Perforation Resistance of Double-Layered Metal Shield under High-Velocity Impact of Armor-Piercing Projectiles. Materials 2021, 14, 626. https://doi.org/10.3390/ma14030626
Scazzosi R, Giglio M, Manes A. Experimental and Numerical Investigation on the Perforation Resistance of Double-Layered Metal Shield under High-Velocity Impact of Armor-Piercing Projectiles. Materials. 2021; 14(3):626. https://doi.org/10.3390/ma14030626
Chicago/Turabian StyleScazzosi, Riccardo, Marco Giglio, and Andrea Manes. 2021. "Experimental and Numerical Investigation on the Perforation Resistance of Double-Layered Metal Shield under High-Velocity Impact of Armor-Piercing Projectiles" Materials 14, no. 3: 626. https://doi.org/10.3390/ma14030626
APA StyleScazzosi, R., Giglio, M., & Manes, A. (2021). Experimental and Numerical Investigation on the Perforation Resistance of Double-Layered Metal Shield under High-Velocity Impact of Armor-Piercing Projectiles. Materials, 14(3), 626. https://doi.org/10.3390/ma14030626