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Abstract: Electron beam melting is a powder bed fusion (PBF) additive manufacturing (AM) method
for metals offering opportunities for the reduction of material waste and freedom of design, but
unfortunately also suffering from material defects from production. The stochastic nature of defect
formation leads to a scatter in the fatigue performance of the material, preventing wider use of this
production method for fatigue critical components. In this work, fatigue test data from electron beam
melted Ti-6Al-4V specimens machined from as-built material are compared to deterministic fatigue
crack growth calculations and probabilistically modeled fatigue life. X-ray computed tomography
(XCT) data evaluated using extreme value statistics are used as the model input. Results show
that the probabilistic model is able to provide a good conservative life estimate, as well as accurate
predictive scatter bands. It is also shown that the use of XCT-data as the model input is feasible,
requiring little investigated material volume for model calibration.

Keywords: additive manufacturing; electron beam melting; Ti-6Al-4V; defects; fatigue life; fracture
mechanics; fatigue crack propagation; probabilistic modeling

1. Introduction

Additive manufacturing (AM) of metals using powders as the feedstock material
is developing to become a viable process for the aerospace industry [1]. One of the
main challenges with powder-based AM techniques is achieving a defect-free material to
optimize the fatigue life [2]. The primary origin for crack initiation in powder bed AM
materials is the rough, as-produced, surface [3,4]. For a material for which the surface is
treated or removed in order to smoothen it, volumetric defects such as a lack of fusion, gas
porosity, keyhole porosity, or inclusions are the primary sources for crack initiation [4–6].
In 2016, Seifi et al. [7] highlighted the need to account for AM defect populations in fatigue
life modeling. Fracture mechanical models (Kitagawa–Takahashi-type diagrams) have
been shown to yield good results for fatigue strength predictions [8–12]. For deterministic
modeling of fatigue life, fatigue crack growth (FCG) methods have been used [6,12–14].
These models are based on defect size measurements. Examples of different FCG-based
models include the use of different crack growth descriptions such as the Paris–Erdogan
equation [15] or variations of the NASGRO equation [3,14,16].

Seifi et al. [7] also advocated for the use of probabilistic modeling of fatigue behavior,
i.e., models taking statistical variance into account in contrast to the deterministic models.
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A common probabilistic approach is to use deterministic FCG models fed probabilistically
derived input parameters [17]. Probabilistic models are useful considering the numerous
variables introducing scatter in the fatigue behavior of AM materials [7,18].

As demonstrated in the 1980s in the works of Murakami [19], defects close to the
surface are more likely to initiate crack growth than defects further from the surface.
This has also more recently been shown to be the case for defects in AM materials [20–22].
Due to the generally large number of defects present in AM materials, there is almost
always a near-surface defect determining the fatigue life [23]. In general, when defects are
present, the fatigue failure of metal is determined by the largest defect experiencing the
highest stress [24]. Thus, probabilistic models for AM need to, at a minimum, include the
variability in the size and position of defects. This was done by Beretta, Romano et al. in
a series of studies on a additively manufactured AlSi10Mg. They evaluated the tails of
the defect size distributions with extreme value statistics and assumed random locations
of defects. Both the position and size were measured mainly with non-destructive X-ray
computed tomography, but also with classic metallography, and the results showed the
accurate prediction of fatigue strength [14,25,26]. For a broader overview of the effects
of defects on fatigue performance, including different modeling approaches, readers are
referred to the review article by Sanaei and Fatemi [27].

Defects in AM materials are of different types having different origins in the building
process [27]. Distinct defect types show differences in both size and shape, factors that
influence crack initiation behavior. Lack of fusion (LOF) defects are a result of under-
melting during processing [28–30], and keyhole porosity is a result of over-melting and
partially vaporizing the metal during production [30,31]. Another defect type is gas
pores coming from the powder or the building process. The two former defect types
can be avoided by correct processing parameters, but gas pores are generally considered
unavoidable [32].

Investigations of defects and their distribution have traditionally been carried out on
2D (or composite 3D) images using metallography [33], with X-ray computed tomography
as an increasingly viable option. Recent advances in XCT have facilitated the documen-
tation and analysis of complete 3D defect distributions even though there are limitations,
primarily in regards to resolution, due to which certain types and sizes of defects are more
difficult to reliably detect than others [23]. XCT also becomes less effective for high-density
materials due to increased X-ray attenuation [34]. Compared to metallography, XCT is
more costly to run, but compensates for that by being less time consuming and more
efficient for larger material volumes [26]. Increased use of the XCT technique has also given
rise to a shift in the method of choice for statistical analysis of life-determining defects.
When relying on metallographic characterization, so-called block maxima (BM) statistical
sampling is used [35]. In this method, the investigated material is subdivided into blocks,
and the largest defect in each block is recorded. The data can then be described using a
Gumbel distribution [36]. For XCT derived data, the use of peak-over-threshold (POT) has
been shown to, with the same accuracy, be both quicker and simpler than BM sampling.
POT sampling consists of recording all data points followed by truncation of the data at a
threshold u. Such truncated data can be described using a generalized Pareto distribution
(GPD) [37].

The present work aims to predict fatigue life in electron beam melted Ti-6Al-4V
using different sets of known information regarding the defect population. One of the
ways this is done is using a probabilistic approach based on X-ray computed tomography
characterization. Extreme value statistical analysis of the distribution of internal defects is
used to simulate the input for fatigue crack growth calculations. Validation is performed
by comparison with empirical fatigue test data.

2. Materials and Methods

The material investigated was Ti-6Al-4V produced by electron beam melting (EBM)
in an Arcam Q20plus machine. The powder used for the production was pre-alloyed Ti-
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6Al-4V extra low interstitial (ELI) powder from AP&C Inc. (Boisbriand, Québec, Canada),
conforming with ASTM F3001 [38]. The chemical composition of the powder was in good
agreement with ASTM F3001, as can be seen in Table 1.

Table 1. Chemical composition of the as-delivered powder compared to ASTM requirements.

Element C O N H Fe Al V Y Other Ti

ASTM F3001 <0.08 <0.13 <0.05 <0.012 <0.25 5.50–6.50 3.50–4.50 <0.005 <0.40 Balance
As-delivered 0.01 0.09 0.02 0.002 0.18 6.35 4.01 <0.001 <0.40 Balance

Two separate builds, named A and B, were produced with different build layer heights.
Build A had a 50 µm layer height, and Build B had a 90 µm layer height. A rotating hatch
was used with 67.5 degrees of rotation between layers. Standard EBM pre-heating scanning
between layers kept the build at elevated temperature during production. The build layout
is shown in Figure 1a. Arcam machines operate at a set voltage to power input during
hatching that was equal in both builds. To get the required greater melt pool depth in Build
B, the speed function was adjusted from 35 to 60 (procedure defined units) so that the scans
were slower, increasing the energy density input. The building rate was ∼0.11 kg/h for
Build A and ∼0.15 kg/h for Build B.

Four vertically built bars with dimensions of 15 mm × 15 mm × 180 mm were used
from each build, A and B, for this study. From each of these bars, two fatigue specimens
were machined for fatigue testing. In total, sixteen specimens were manufactured. Apart
from blasting for powder cake removal, no further post-production processing was done.
All specimens were machined so that the fatigue loading direction was parallel to the
building direction. Each fatigue specimen was denoted AL, AH, BL, or BH, with the first
letter signifying the build and the second letter indicating if the specimen came from the
higher (H) or lower (L) half of the bar. The fatigue specimen dimensions are shown in
Figure 1b.

Figure 1. (a) Build layout in the Q20 machine’s cylindrical build chamber. The smaller objects in the
build chamber are tensile test specimens for quality control. (b) Fatigue specimen geometry.

Etching with Kroll’s reagent revealed a typical prior-β structure elongated in the
building direction with a microstructure predominately made up of fine basket weave
α-laths with visible grain boundary α at prior-β grain boundaries, as can be seen in Figure 2.
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Figure 2. Typical microstructure in the observed material. A medium sized pore is visible. White ar-
rows highlights an example of grain boundary α. Images are taken in the plane perpendicular to the
building direction.

Fatigue testing was carried out in an MTS 810 load frame equipped with a closed-
loop servo-hydraulic system managed by an MTS TestStar IIs control system. The fatigue
specimens were divided into two sets. Twelve specimens were tested under strain control
and four under load control. The strain controlled testing used 1% strain with an R-ratio
of −1 and a testing frequency of 0.5 Hz. The load controlled testing used 500 MPa with
an R-ratio of 0 and a testing frequency of 10 Hz. All tests were run with sinusoidal
loading until failure. Fractography was carried out using a JEOL JSM-IT300LV scanning
electron microscope.

X-ray computed tomography (XCT) was carried out on the gauge lengths of the twelve
fatigue specimens tested under strain control using a Zeiss Xradia 510 versa microtomo-
graph from Carl Zeiss X-ray Microscopy (Pleasanton, CA, USA) employing a cone-beam
setup. The parameters for the scans are presented in Table 2. Segmentation and analy-
sis of the tomography data were carried out using Dragonfly PRO 4.1 [39] employing a
segmentation algorithm for internal porosity specified in [20]. Any segmented volume
smaller than 81 voxels was considered unreliable data and therefore excluded from the
analysis. The reason for the 81 voxel limit is that the effective resolution was assumed
to be 27 voxels, as is the case for a perfect scan [34]. Since one of the segmentation steps
was applying a 3 × 3 × 3 median filter for denoising, the effective resolution consequently
became 3 times larger than 27 voxels. For measurements of the defect size, equivalent
diameters were calculated from the area of each defect projected on the plane perpendicular
to the building direction.

Table 2. Settings used for XCT scans.

Field of View
(mm)

Voxel Size
(µm)

Tube Voltage
(kV)

Tube Output
(W)

# of
Projections

Exposure Time
(s)

Scan Time
(h)

17.4 8.5 140 10 1601 9 5.5

2.1. Statistical Simulations of Defect Size Distributions

Size, shape, and location are the main factors determining a defect’s impact on fatigue.
The largest defect, with the sharpest edges, at the location submitted to the highest stress
shows the highest stress intensity factor and thus governs the fatigue behavior of a compo-
nent [24]. For the porosity distribution simulations two assumptions were made: (i) Defect
projections in the plane perpendicular to the loading direction were assumed to be circular.
This is a good, but not perfect assumption based on the observed XCT data [20]. (ii) The
defect location distribution was assumed to be uniform in the plane perpendicular to the
building direction. Defect distributions (size+position) were simulated for one specimen
volume, and individual defects were considered as near-surface if they fulfilled the criterion
proposed by Murakami [24],



Materials 2021, 14, 640 5 of 19

r/h > 0.8 (1)

where r is the equivalent radius of a circle with the same area as the defect and h is
the distance from the center of the defect to the specimen surface, as shown in Figure 3.
Only near-surface defects were used for crack growth calculations.

Figure 3. Definitions of the equivalent radius (r) and location (h) of a defect according to the Murakami criterion (1) [24].
The depth parameter a used for calculations was evaluated as a = h + r.

Defect size was defined as an equivalent defect diameter, d = 2r, calculated from the
area of projection along the loading direction. The defect size distribution was approxi-
mated by a generalized Pareto distribution (GPD) according to the peak-over-threshold
(POT) extreme value statistics method in which only the tail of the distribution above a
certain cut-off diameter u is analyzed [37]. The tails of the defect size distribution as evalu-
ated by XCT have previously been found to be exponentially distributed [20]; consequently,
the shape parameter ξ of the GPD approaches 0, and the cumulative density function of
the generalized Pareto distribution becomes a two-parameter exponential distribution:

FGPD(x, u, σ, ξ) = Fexp(x, u, σ) = 1− exp(− x− u
σ

) if ξ → 0 (2)

where σ is a scale parameter for the distribution of defect sizes larger than the cut-off
parameter u. The pth percentile of the distribution can be derived from Equation (2) as:

x(p) = u− σ · log(1− p) (3)

where p is the cumulative probability of recurrence. For each value of a distribution,
the cumulative probability of recurrence can be associated to a return period T as p =
1− 1/T. The return period T of a maximum defect size in a characteristic volume V is:

T =
Nu

V0
V = ρV (4)

where Nu is the number of observed defects larger than the cut-off value u in V0, where
V0 is the investigated volume. Thus, ρ is the observed numerical density of defects larger
than u in V0. The characteristic maximum defect size (x̂(T)) is defined as the size that,
on average, is expected to be exceeded by at least one defect in a characteristic volume V,
which can be expressed as:

x̂(T) = û + σ̂ · log(T) (5)

where û and σ̂ are the values of the cut-off and scale estimated from the XCT data. The cut-
off parameter was evaluated graphically by fitting exponential percentile plots to truncated
data in which exceedances formed a straight line whilst making sure not to select a cut-off
such that the true initiator diameters as measured by fractography were excluded. The scale
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parameters was then evaluated using the maximum likelihood procedure. The distributions
of a depth parameter (a), which is a new stochastic variable, were taken as:

a = h + r (6)

as illustrated in Figure 3, where the defect size radius r is taken as half of the defect diameter
d randomly sampled from the defect size distribution described by the parameters û and σ̂.
The distance from the surface was sampled by assuming a homogeneous distribution in the
cylindrical specimen volume, thus randomizing the distance from the specimen surface as:

h = D
√

U(0, 1) (7)

where D is the test specimen diameter and U is the uniform distribution. As the tested and
simulated volumes were equal and the number of defects in each volume far from zero,
the number of simulated defects for each specimen was taken to be ∼ N(µ∗, σ∗) where µ∗

is the empirical mean number of defects and σ∗ is the empirical standard deviation of the
number of defects, in one specimen. For each specimen, the largest a = h + r fulfilling the
Murakami rule (1) was recorded. This sampling was done 5000 times for each build as this
was considered a sufficient number of data points to limit the variability of the evaluated
parameter and small enough to give a reasonable calculation time.

2.2. Fatigue Crack Growth Calculations

The commercial software NASGRO v9.10 [40] was used to simulate the fatigue life
of the test specimens based on fractography and XCT results, as well as probabilistic
modelling. NASGRO uses a library of two-dimensional crack cases for the calculation of
the stress intensity factor. The crack case used in this work, “SC07 - semi-elliptical surface
crack in solid cylinder”, is shown in Figure 4. The stress intensity factor range of the
simulated defects was compared to an NASGRO equation description of forged Ti-6Al-4V
crack propagation data from the GKN Aerospace company database. This showed only
a slight overlap with the near-threshold regime of the crack growth curve. This overlap
occurred at crack lengths similar in scale to the intrinsic crack length a0 defined in the
material description of the forged material. a0 is the crack size at which the fatigue limit
stress level gives rise to a stress intensity factor range equaling the threshold stress intensity
factor range (∆K = ∆Kth). This similarity in scale between the considered cracks and
a0 leads to an approximate decrease of ∆Kth by 30% due to the small crack effect [40].
The effect on the life of the accelerating crack propagation as ∆K → Kc was considered
negligible due to the limited number of cycles in this crack growth regime. On the basis
of these two observation, Paris’ law descriptions of the crack propagation at R = 0 and
R = −1 were considered appropriate for the life analysis. Proprietary data from crack
propagation tests of the tested EBM material at R = 0 and R = −1 were then fit to Paris’
law and used for the crack propagation calculations. A comparison of a Paris description
of the forged data to the EBM data is shown in Figure 5. At no stress, the intensity factor
range was the difference in crack propagation rate larger than a factor of two. Modeling
using forged data would thus provide less conservative predictions since most of the crack
growth takes place at low ∆K levels.
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Figure 4. SC07-“semi-elliptical surface crack in solid cylinder”- crack case configuration [40]. Either a,
the crack depth, or c, the circumferential crack length, can be used as the geometrical input parameter.
S0 is uniform stress and S1 bending stress.

Figure 5. Comparison between the Paris descriptions of crack propagation data from electron beam
melting (EBM) produced and forged Ti-6Al-4V for two stress ratios, R = 0 and R = −1.

As the input parameter in NASGRO, the depth parameter a was used. a was defined
as the distance from the furthest edge of the initiating defect to the specimen surface
(a = h + r in Figure 3). Only uniform stress was considered. The loads used for the FCG
calculations of the strain controlled R = −1 specimen were taken from the empirical mid-
life cycle loads. A comparison with calculations using true loads was made with negligible
difference in predicted life. For failure evaluation, the net-section stress failure criterion in
NASGRO was disabled. Instead, the calculations ended when the calculated maximum
stress intensity factor exceeded the fracture toughness (Kc) set to 1799 MPa

√
mm, the same

as the forged reference material. A similar fracture toughness has been reported for as-built
EBM produced Ti-6Al-4V by Galarraga et al. [41]. Seifi et al. [18] reported a higher fracture
toughness, but also a large variation within single builds, motivating the use of the more
conservative value.
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2.3. Fatigue Life Predictions

Fatigue life predictions using fatigue crack growth calculations were made in three
ways. The first way was deterministic prediction from fractography, where the FCG input
parameter a was measured from the fracture initiating defects found on fracture surfaces.
The second way was deterministic prediction from XCT data using the deepest (largest a)
observed defect fulfilling the Murakami criterion in each fatigue specimen. The third way
was probabilistic prediction from XCT based on the distributions of a evaluated from the
simulations of the specimen as described in Section 2.1. By running FCG calculations for
a range of loads at R = 0 and R = −1, prediction curves were created. The input for the
calculations of the prediction bands were the 2.5th and 97.5th percentiles of the a parameter
distributions. To complement the probabilistic model, a conservative fatigue life prediction
curve was included. It was calculated similarly to the prediction band, but as the input
for FCG calculations, the characteristic maximum defect size (diameter), x̂(T)1000, in a
characteristic volume V1000, as described in Equation (7), was used. V1000 was taken to
be the volume of 1000 hollow cylinders (specimen surfaces) with a width corresponding
to the greatest sampled depth parameter (a) and a length equal to that of the specimen
gauge length. Putting a = x̂(T) is the same as assuming that the edge of the characteristic
maximum defect is tangential to the specimen surface.

3. Results
3.1. Fatigue Testing and Fractography

Table 3 shows the fatigue testing results for all specimens and the corresponding
maximum and minimum stresses. The table also shows the defect size measurements from
fractography, together with the associated predicted fatigue life values. Specimens with
names ending with a number 1 to 3 were tested under strain control (R = −1 and 1%
strain), and specimens with a 4 were tested under stress control (R = 0 and 500 MPa stress).

Three fractures initiated from LOF defects, all from Build A. Two specimens with LOF
initiation were tested at R = 0 and 500 MPa (specimens AH4 and AL4) and the third at
R = 0 (AL1). For all other specimens, the fractures initiated from pores. Four specimens
had multiple initiation sites visible on the fracture surface (AH3, BH1, BH3, and BL3).
For these cases, the measurements of the “distance from surface” and “initiator radius”
were at the initiation with the largest visible crack propagation area. All initiations started
at the specimen surface, and examples of typical fracture surfaces are shown in Figure 6.
The figure demonstrates initiations from different configurations of defects such as LOF,
interacting pores, and singular pores. It also shows one fracture surface with multiple
initiating defects.

3.2. X-ray Computed Tomography Data

Defect analysis on the segmented XCT data showed between 2704 and 5214 spherical
or near-spherical defects in each specimen. The spatial distribution of defects was seemingly
random with both large and smaller porosity scattered in the volume. A large number
of surface-adjacent defects of varying sizes were observed. The overall largest observed
defect had an equivalent diameter of 209 µm. A typical tomogram, as well as the combined
defect size distributions from the two EBM builds are presented in Figure 7. Build B (90 µm
build layer height) showed slightly fewer defects in total, but a higher number of large
defects than Build A (50 µm build layer height). The global level of internal porosity as
evaluated by XCT is shown in Table 4.
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Table 3. Results from the fatigue testing and prediction based on fractography measurements. If multiple crack initiation
sites were found, only the largest initiator is listed. r and h are parameters in the Murakamis criterion (1). h = 0 indicates that
the center of the equivalent spherical initiator is outside the specimen surface. Stress values are midlife stresses. ∗ More than
one initiation site contributed to failure. † Crack initiation at a lack of fusion (LOF) defect. A, Build A; B, Build B; H, higher; L, lower.

Specimens σmax
(MPa)

σmin
(MPa)

Initiator
Radius (r)

(µm)

Distance from
Surface (h)

(µm)
r/h

Actual
Life (A)

(# of Cycles)

Predicted
Life (P)

(# of Cycles)
A/P

R = −1
AH1 596 −633 41.8 51.7 0.809 18,340 17,359 1.06
AH2 605 −616 38.6 51.4 0.751 18,975 17,295 1.10
AH3 * 619 −608 34.4 17.6 1.96 18,712 25,172 0.743
AL1 † 605 −614 - - - 12,334 9690 1.27
AL2 595 −608 40.0 52.4 0.763 20,763 17,865 1.16
AL3 588 −633 50.6 50.7 0.998 19,396 16,881 1.15
BH1 * 608 −618 59.3 0 ∞ 16,935 36,395 0.465
BH2 587 −655 45.2 39.8 1.14 18,672 19,465 0.959
BH3 * 619 −614 49.9 23.2 2.15 15,642 19,145 0.817
BL1 595 −628 54.0 44.7 1.21 15,514 16,702 0.929
BL2 584 −653 58.3 44.9 1.30 16,022 16,778 0.955
BL3 * 607 −616 39.7 44.1 0.899 16,527 13,303 1.24

R = 0
AH4 † 500 0 - - - 45,497 27,455 1.66
AL4 † 500 0 - - - 57,909 33,328 1.74
BH4 500 0 64.1 0 ∞ 151,075 92,230 1.64
BL4 500 0 78.5 169 0.466 80,959 19,985 4.05

Figure 6. Examples of fracture initiating defects documented via SEM. (a) Specimen AL1 with
initiation at an LOF defect. (b) Specimen AL2 with initiation at a pair of pores. (c) Specimen BL3 with
multiple initiations on the fracture surface. (d) Specimen BL3 with multiple initiations. To the left,
a large initiating pore barely visible behind an overhang. The approximate hidden shape is marked
with a dashed line. To the right, initiation at a pair of pores.



Materials 2021, 14, 640 10 of 19

Figure 7. (a) Tomogram showing the porosity in a test specimen. (b) Distributions of the defect size
(equivalent diameter) of segmented defects. Data are combined from XCT scans of six specimens
from each of the two builds.

Table 4. Average porosity levels as evaluated from XCT.

Investigated Volume
(mm3)

Defects
(#)

Porosity
(%)

Build A 2769.1 20,486 0.0672
Build B 2769.5 22,803 0.0844

Even though three of the sixteen fatigue specimen fractured from initiations at LOF
defects, no such defect was visible in the XCT data. This is likely because of the flat
geometry of LOF defects in combination with the limitations of the resolution. This was
previously discussed in [20].

For the current method, it is important that the defect distribution is homogeneous in
3D. In a previous work, the defect distribution of the 12 XCT scanned specimens was shown
to be homogeneous in the building plane (i.e., 2D) [20]. There, the authors proposed that
the defect distribution was homogeneous in 3D since the scanned volume was machined
from a region in the hatch, not adjacent to areas of production inhomogeneities such as the
edges/contour interface or the top/bottom surfaces. In order to confirm homogeneity for
further analysis in this study, the local porosity level of each tomogram along the building
direction was calculated. The results are plotted in Figure 8. From the figure, it can be seen
that there are three specimens that have horizontal planes (perpendicular to the building
direction) with a porosity level higher than 0.25% (specimens BL1, BL2, and BL3), all from
the lower part of Build B (90 µm build layer height). These planes all contain at least one of
the 10 largest observed defects. Despite these outliers, the statement from [20] is considered
valid. The average porosity levels across all scanned specimens as seen in Table 4 are
marked with horizontal lines in Figure 8, with Build A showing a lower average porosity
level than Build B.

3.3. Statistical Fitting

Figure 9 shows the graphical evaluation of the cut-off and scale parameter through
probability plot linear fits of the GPD to the defect size (diameter) distribution of the two
builds. Various cut-offs are shown including the selected cut-off values. The resulting
cut-off and scale parameter values, as well as the maximum defect sizes for 1000 specimens
x̂(T)1000 are listed in Table 5.
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Figure 8. Porosity fraction along the building direction derived from XCT data for each build.
Horizontal dashed lines show the global mean porosity for each build. (a) Build A. (b) Build B.

1 
 

(a) (b) 

 
Figure 9. Linear fits to the probability plots of XCT data from Build A at various cut-offs. (a) Build A; the dashed line shows
an example of a potential secondary linear fit to the extreme values of the distribution. (b) Build B.
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Table 5. Cut-off (û) and scale (σ̂) parameters, as well as the characteristic maximum defect size for
1000 specimens x̂(T)1000.

û (µm) σ̂ x̂(T)1000 (µm)

Build A 70 11.295 192.2
Build B 85 12.31 211.4

3.4. Fatigue Life Prediction

The result from the predictive modeling is presented in Figure 10. The figure shows
experimental fatigue data (solid markers) and deterministic fatigue life predictions from
fractography and XCT data (hollow markers). The correlation between experimental
and predicted fatigue life is satisfying. Deterministic prediction from fractography is
non-conservative for the specimens that failed from LOF defects. The figure also shows
probabilistic fatigue life prediction bands, covering the 2.5–97.5 percentile range of modeled
life. All experimental fatigue life data for specimens tested at R = −1 and failing at
pores fall within the prediction bands. For specimens tested at R = 0, the deterministic
predictions are conservative, as are the probabilistic prediction bands. The solid lines in
Figure 10 are lower bound estimates based on the characteristic maximum defect size
for 1000 specimens x̂(T)1000. All experimental fatigue life data are to the right of these
lines. The distributions of simulated defect distances to the surface and corresponding life
distributions at σmax = 500 MPa and R = 0 are shown at the bottom of Figure 10. As can
be seen, the life distributions are skewed to longer lives. Miniature versions of the life
distributions are visible in Figure 10c,d.

Figure 10. Experimental fatigue data (solid markers) and modelled life predictions (hollow markers
and bands). (a) Build A, R = −1. (b) Build B, R = −1. (c) Build A, R = 0. (d) Build B, R = 0.
Histograms show the distributions of the distance of simulated defects to the specimen surface and
the distributions of calculated life. FCG, fatigue crack growth.
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4. Discussion
4.1. Defect Distribution Simulations

The use of extreme value statistics and POT is feasible when working with XCT
data due to the large amount of available data points. If a proper XCT setup is selected,
the relative measurement error related to resolution primarily affects the detection of defects
below the selected cut-off, which is another advantage of the POT sampling method.
However, in order to further investigate the suitability of the POT sampling method,
two important topics to discuss are the selection of the cut-off and if the material volume
investigated by XCT is sufficiently large.

4.1.1. Selecting a Cut-Off

For selecting the cut-off parameter in the two-parameter exponential distribution (2),
there are multiple options. Completely objective methods such as using pre-selected cut-off
values or distribution percentiles are the fastest ways, but are not always optimal. In the
current work, a graphical approach was used, requiring more subjective analysis of the
dataset in the selection. This could be preferable in many situations since, using an objective
method, it is not unlikely that a parameter value can be rejected even if the deviation from
the data is negligible from a practical point of view. This is especially true for large data
sets due to the large influence of the data collection on the parameters [37].

Validation of the selected cut-off diameters can be done by comparing the selected cut-
offs in Table 5 (70 µm for Build A and 85 µm for Build B) to the radii of the fracture initiating
pores listed in Table 3. It was observed that two specimens showed the largest initiators that
were marginally smaller than the selected cut-off diameter (specimen AH3 with a diameter
of 68.8 µm and BL3 with diameter 79.4 µm). However, in both of these cases, the specimens
showed more than one initiation site and did thus not fully represent the crack case used for
modeling, which assumed failure from a single initiation. The other specimens all fractured
from defects with sizes larger than the cut-off diameters. This validates the selected cut-off
values since a higher value would have excluded defect sizes that in reality lead to failure
from the defect distribution simulations. A lower cut-off value selection would have given
more weight to the small defects in the maximum likelihood fit and would then poorly
describe the largest defects, as illustrated in Figure 9, where the fit is poor for larger defects
at smaller cut-off values.

In Figure 9a, some indication of two separate defect populations can be seen (solid and
dashed lines) in Build A. Romano et al. [26] made similar observations when combining
the size measurements of LOF defects and pores into a single distribution. They separated
the two defect types based on sphericity criteria since it is not advised to assess the effect of
different defect types with a single distribution [35]. It is unlikely that the largest (extreme)
defects observed in this work are LOF defects mainly due to their overall shape, which is
round and slightly flattened in the build layer plane and not flat with jagged edges like
the observed LOF defects. This morphological observation led to the conclusion that all
observed defects should be considered to be of the same defect type and thus be described
by a single extreme value fit. The fact that these defects did not line up with the bulk of the
porosity in the probability plots was attributed to the selected measure of defect size being
the projected area in the build plane.

One step of the defect distribution simulation, as described in Section 2.1, is the
simulation of all defects of a size exceeding the cut-off diameter in a single specimen
volume. By fitting the distribution scale parameters σ to a simulated sample population, it is
possible to illustrate the effect of different cut offs (u) on the scatter of σ and, by extension,
the sampled defect sizes. This is presented in Figure 11 for simulations of specimens
from Build A. At increasing cut-off values, there is an associated increase in the scatter
of the scale parameter due to the reduced number of simulated defects. By extension,
this increases the scatter in the fatigue life estimation due to the reduced probability of
simulating large defects at the specimen surface. There was little variation in the mean of
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the scale parameter from σ̂, which is to be expected since the defect sizes for each specimen
simulation themselves were sampled from a distribution with a fixed scale parameter.

4.1.2. Effect of Investigated Volume

In addition to the cut-off selection, the total material volume investigated by XCT
also plays a role in the scatter of the extreme value estimation of σ. A larger scanned
volume equals more detected defects, informing the statistical parameter fitting. In the
current work, six fatigue specimen gauge sections (6V0) of each of the two builds were
scanned by XCT. The effect of scanned volume is illustrated in Figure 11 by simulating
six specimens to which the maximum likelihood fit was made. At the selected cut-off
(70 µm), there was little scatter with the change in scanned volume. This shows that the
amount of XCT used in this work adds negligibly to the uncertainty in the scale parameter
estimation. On the other hand, the cut-off selection process is more sensitive to changing
the statistical sampling uncertainty. In fact, scanning only one specimen rather than six
adds about the same amount of parameter scatter as increasing the cut-off from 70 µm to
85 µm, an increase >20%. Due to the cost of XCT, it is worth pointing out that even the
XCT of a rather limited volume, in this case one gauge length (V0 ≈ 475 mm3), would likely
have been sufficient for the extreme value statistical analysis of the material presented
given the XCT resolution and data processing used in this work.

Figure 11. Scatter of the extreme value estimation of σ with increasing cut-off (u) and simulated
volume. V0 is the volume of one test specimen. The scatter is illustrated by maximum likelihood fitted
lines to exponential probability plots of the simulated specimens. Each sub-plot contains 100 lines
with the mean slope in solid black and the fifth and 95th slopes in dotted black. The bottom left plot
represents the scatter of the estimation of σ in the current work.
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Ultimately, any scatter in the extreme value estimation translates to a decreased
predictive accuracy i.e., a wider predictive scatter band. With six specimens scanned for
each material and the cut-offs selected, prediction scatter bands became narrow but also
remained accurate to the simulated data when compared in a post predictive check.

4.2. FCG Calculations
4.2.1. Crack Case

The choice to use the “semi-elliptical surface crack in a solid cylinder” case (SC07)
in NASGRO limited the simulations to only consider cracks originating from porosity
at or close to the surface. Considering the high likelihood for fatigue critical cracks to
originate from the surface region [20–22], this seems like an acceptable, even preferred,
limitation. This is further supported by the fracture surface observations in this study,
which showed that the fracture in thirteen out of sixteen specimens originated from defects
fulfilling the Murakami criterion (r/h > 0.8) and two out of sixteen barely failing the
criterion. The only exception was specimen BL4 with r/h = 0.466. This specimen also had
the largest initiating non-LOF defect. Since this defect was further from the surface than the
other initiating defects, the NASGRO estimate from fractography measurements showed a
conservative (>1) A/P (actual/predicted) life ratio value of 4.05 (Table 3). This is an effect
of the selected crack case. Since the only input parameter in SC07, a (distance from the
surface), increases with increased distance from the surface, the initial size (area) of a defect
not immediately at the surface will be overestimated. This is most clearly seen in Figure 10d
where the FCG calculation from the fractography measurement of specimen BL4 showed a
shorter life than the already conservative characteristic maximum estimate. The fact that
one specimen fractured from a defect not considered near the surface according to the
Murakami criterion raises questions regarding the use of the Murakami criterion as the
screening method for non-critical cracks if a surface crack case is used. An alternative to
using the Murakami criterion could be to consider all defects within a fixed sub surface
volume to be near the surface and thus included in the analysis. This would require
determination of such a volume whilst accounting for the geometry of the defects present
in the specific material, which can be challenging [42]. Another solution that avoids the
need to classify defects as near the surface would be to consider a different (internal) crack
case. This way, ready-made stress intensity factor solutions for internal cracks would allow
for the life estimation of all simulated cracks in the current work. There are two main issues
with this approach, the first being that it is inefficient. Since there is a clearly documented
affinity for crack formation at or near the surface (not least under the tested conditions),
a majority of crack calculations on internal defects would not be interesting for actual
life prediction. The second issue is that it is practically difficult to find ready-made stress
intensity factor solutions for anything but the simplest geometries. For example, NASGRO
v9.10, a state-of-the-art fatigue crack growth software, does not yet include any stress
intensity factor solution for internal cracks in cylindrical bodies. Looking at the available
options for internal crack solutions in NASGRO, a comparison was made between surface
and embedded crack cases, the result of which is included in Figure 10d. The embedded
crack case used was “elliptical embedded crack (offset) in plate subject to uni-variant stress”
(EC05). Keeping the cross-section area between the circular SC07 case and square EC05
equal, the A/P ratio decreased from 4.05 to 1.49. This indicates that a prediction based on
surface crack cases is unsuitable for cracks that are near the surface, but not directly at the
surface and that using a crack case for an embedded crack is a better alternative, though
it is unclear how valid this claim is in a general case. In a defect-rich material, it is likely
that there is a competition between defects in regards to which crack initiation leads to
failure. Provided there are no large defects at the surface, this could mean that at lower
loads, crack initiation from smaller defects that are at the surface are deactivated, leading
to a transition from surface-originating failure to failure from sub-surface defects. This is
an effect that has previously been observed in AM produced stainless steel alloy 316L
containing large sub-surface defects [43]. If this transition exists in material containing
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smaller internal defects than reported in [43], the prediction model in this work could be
overly conservative since it assumes critical cracks to originate at the specimen surface.

4.3. Fatigue Life Prediction

Figure 10 summarizes the results of the life predictions from crack growth calculations.
There is a difference between the two test conditions, not only in the accuracy of prediction,
but also in the spread of tested life. At ∆ε ≈ 1% and R = −1, all twelve specimens
fractured at around 20,000 cycles, whereas at σmax = 500 MPa and R = 0, there was more
scatter despite fewer specimens being tested.

4.3.1. Deterministic Prediction from Fractography

Crack growth calculations based on the measurements of the positions of the actual
initiating defects on the fracture surfaces yielded varied results. For specimen tested at
R = −1 with pores as initiators, the A/P values as presented in Table 3 ranged from 0.465
to 1.27 with a majority remarkably close to one. The one outlier, the non-conservative
0.465 value, was likely due to the specimen fracturing from multiple initiations, meaning
that the defect measured for prediction did not solely cause the fracture. For the R = 0
tested specimens, two out of four fractured at pores, both in specimens from Build B.
As previously discussed, the A/P ratio of 4.05 can be attributed to the overestimation of
initial crack size due to using a surface crack case. The second A/P value of 1.64 was
slightly higher than what was observed for higher loads and a lower R-ratio, which might
be attributed to the Paris crack growth description being less representative of the true
crack growth at lower stress intensity factors. For the three specimens breaking from
LOF defects, the fractography-based predictions were also slightly conservative with A/P
values of 1.27, 1.66, and 1.74. Because of the limited number of specimens fracturing from
LOF defects, the results are inconclusive, but the results still build confidence in the current
crack propagation approach as a tool for life prediction since they are relatively accurate
and baseline conservative when using data from true initiating defects, which should be
preferred over a non-conservative life estimate.

4.3.2. Deterministic Prediction from XCT

Since fractography requires destructive mechanical testing, a non-destructive XCT-
based prediction would be more useful for prediction. The most direct way of doing this
would be to identify a worst case defect among the defects visible in the XCT data from
each scanned specimen. This is done using the same method as when sampling from
simulated specimens, i.e., by sorting the depth of defects fulfilling the Murakami criterion.
Using these direct observations as the crack propagation input, the resulting lives are
also plotted Figure 10. The results were similar to the predictions made from fracture
surface measurements in that they were very close to the actual life with a mix of slightly
conservative and non-conservative predictions. Specimen AL1, the only XCT scanned
specimen that fractured from an LOF defect, was the least accurate prediction with an
A/P of 0.469. This was expected since no defect identified as an LOF defect was observed.
The fact that these results are as close or closer to the actual life than predictions from
fractography is promising since XCT could be carried out on actual components intended
for use. The main challenge of this approach is that it is inefficient in that almost none
of the recorded defect information is used. For quality control, it would also require the
entirety of the loaded volume of a part to be inspectable by XCT. This is likely to be neither
practical, nor time efficient for a real production scenario.

4.3.3. Probabilistic Prediction from XCT

In theory, a probabilistic prediction based on the statistical simulation of defects has
the advantage of extrapolation, being scalable to work for parts of material that are not
directly inspectable by XCT. For both Build A and Build B, the width and slope of the 95%
prediction bands in Figure 10 are similar for the two R-ratios with a slight translation in life
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at equivalent σmax values. This is to be expected as, for each build, the same defect depth
distribution was used as the input to all life calculations. The life distributions at R = 0
and σmax = 500 MPa are shown in Figure 10. At higher loads (Figure 10a,b), the predictive
bands entirely included the test data apart from one specimen, which fractured from an
LOF defect. The same is not true at lower loads. Like the case with the direct predictions at
lower loads, this could indicate a difference in the accuracy of the model in that exclusively
considering defects fulfilling the Murakami criterion is too strict of a condition for accurate
prediction. Nevertheless, the predictive bands were conservative and within a factor two of
tested life, which shows the predictive capabilities of the method at the conditions studied.

The fatigue lives and predicted lives of all specimen, including those fracturing from
an LOF defect, fell above the conservative life prediction. This is to be expected, but also
confirms that the simple approach of evaluating a characteristic maximum defect (x̂(T))
from an XCT size distribution and placing it in a critical location for failure is a feasible
method for lower bound prediction.

5. Conclusions

This work used X-ray computed tomography and extreme value statistics combined
with fracture mechanics to predict the fatigue life of electron beam melted Ti-6Al-4V test
specimens. The following conclusions can be drawn:

The life predicted from deterministic fatigue crack growth calculations based on frac-
tography was accurate, but showed mixed conservative and non-conservative predictions.
This was found to be due to crack initiations not agreeing with model assumptions (sin-
gle initiation from a defect at the surface). The life predicted from deterministic fatigue
crack growth calculations based on “worst-case defects” detected by XCT were found to
be accurate. One drawback of using XCT in this manner is the inefficient use of defect
information. It was also observed that XCT can fail to detect fatigue-critical LOF defects
due to resolution issues.

The proposed probabilistic predictive model was shown to be conservative and accu-
rate for one of the tested conditions (R = −1, 1% strain). The model was conservative and
satisfactorily accurate, within a factor of two, for the other tested condition (R = 0, 500 MPa).
The predicted lower bounds of the fatigue life, estimated from the characteristic maximum
defect size, were shown to be valid conservative estimates as no specimen, including those
with LOF initiations, fractured outside these bounds.
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