Enhanced Thermal Conductivity of Polyamide-Based Nanocomposites Containing Graphene Oxide Sheets Decorated with Compatible Polymer Brushes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Grafting of Polymer Brushes from GO Surface
2.3.1. Modifications of GO Sheets with APTES
2.3.2. Immobilization of Initiator on GO_APTES
2.3.3. Grafting of Polymer Brushes from GO_BIBB
2.4. Preparation of PA6 Nanocomposites
3. Results
3.1. Preparation of GO_PAAM via SI-ATRP
3.2. Preparation and Characterization of PA6-Based Nanocomposites
3.2.1. Mechanical Properties
3.2.2. Thermal Conductivity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Randviir, E.P.; Brownson, D.A.C.; Banks, C.E. A decade of graphene research: Production, applications and outlook. Mater. Today. 2014, 17, 426–432. [Google Scholar] [CrossRef]
- Cruz-Silva; Endo, M.; Terrones, M. Graphene oxide films, fibers, and membranes. Nanotechnol. Rev. 2016, 5, 377–391. [Google Scholar] [CrossRef]
- Sanes, J.; Sánchez, C.; Pamies, R.; Avilés, M.-D.; Bermúdez, M.-D. Extrusion of Polymer Nanocomposites with Graphene and Graphene Derivative Nanofillers: An Overview of Recent Developments. Materials 2020, 13, 549. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Meng, Z.; Keten, S. Interfacial mechanics and viscoelastic properties of patchy graphene oxide reinforced nanocomposites. Carbon 2020, 158, 303–313. [Google Scholar] [CrossRef]
- Chen, W.; Weimin, H.; Li, D.; Chen, S.; Dai, Z. A critical review on the development and performance of polymer/graphene nanocomposites. Sci. Eng. Compos. Mater. 2018, 25, 1059–1073. [Google Scholar] [CrossRef]
- Research and Markets. Glob Therm Conduct Plast Mark Anal Co Profiles, Size, Share, Growth, Trends Forecast to 2025. 2018. Available online: https://www.businesswire.com/news/home/20180417006 (accessed on 9 October 2020).
- Guo, F.; Shen, X.; Zhou, J.; Liu, D.; Zheng, Q.; Yang, J.; Jia, B.; Lau, A.K.; Kim, J.K. Highly Thermally Conductive Dielectric Nanocomposites with Synergistic Alignments of Graphene and Boron Nitride Nanosheets. Adv. Funct. Mater. 2020, 30, 1910826. [Google Scholar] [CrossRef]
- Gao, Y.; Müller-Plathe, F. Increasing the thermal conductivity of graphene-polyamide-6,6 nanocomposites by surface-grafted polymer chains: Calculation with molecular dynamics and effective-medium approximation. J. Phys. Chem. B. 2016, 120, 1336–1346. [Google Scholar] [CrossRef] [PubMed]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.B.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Terrones, M.; Martín, O.; González, M.; Pozuelo, J.; Serrano, B.; Cabanelas, J.C.; Vega-Díaz, S.M.; Baselga, J. Interphases in graphene polymer-based nanocomposites: Achievements and challenges. Adv. Mater. 2011, 23, 5302–5310. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Wang, H.; Mao, J. Aligned-graphene composites: A review. J. Mater. Sci. 2019, 54, 36–61. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Lai, L.; Liu, P.; Wu, H.; Xu, J.; Severtson, S.J.; Wang, W.-J. Synergistic enhancement of gas barrier and aging resistance for biodegradable films with aligned graphene nanosheets. Carbon 2021, 172, 31–40. [Google Scholar] [CrossRef]
- Chen, N.; Ren, Y.; Kong, P.; Tan, L.; Feng, H.; Luo, Y. In situ one-pot preparation of reduced graphene oxide/polyaniline composite for high-performance electrochemical capacitors. Appl. Surf. Sci. 2017, 392, 71–79. [Google Scholar] [CrossRef]
- Ding, P.; Su, S.; Song, N.; Tang, S.; Liu, Y.; Shi, L. Highly thermal conductive composites with polyamide-6 covalently-grafted graphene by an in situ polymerization and thermal reduction process. Carbon 2014, 66, 576–584. [Google Scholar] [CrossRef]
- Fukushima, H.; Drzal, L.T. Nylon—Exfoliated Graphite Nanoplatelet (xGnP) Nanocomposites with Enhanced Mechanical, Electrical and Thermal Properties; NSTI-Nanotech; Nano Science and Technology Institute: Washington, DC, USA, 2006; Volume 1, ISBN 0-9767985-6-5. [Google Scholar]
- Cho, E.-C.; Huang, J.-H.; Li, C.-P.; Chang-Jian, C.-W.; Lee, K.-C.; Hsiao, Y.-S.; Huang, J.-H. Graphene-based thermoplastic composites and their application for LED thermal management. Carbon 2016, 102, 66–73. [Google Scholar] [CrossRef]
- Chen, J.; Chen, X.; Meng, F.; Li, D.; Tian, X.; Wang, Z.; Zhou, Z. Super-high thermal conductivity of polyamide-6/graphene-graphene oxide composites through in situ polymerization. High Perform. Polym. 2017, 29, 585–594. [Google Scholar] [CrossRef]
- Dai, W.; Yu, J.; Wang, Y.; Song, Y.; Alam, F.E.; Nishimura, K.; Lin, C.-T.; Jiang, N. Enhanced thermal conductivity for polyimide composites with a three-dimensional silicon carbide nanowire@graphene sheets filler. J. Mater. Chem. A 2015, 3, 4884–4891. [Google Scholar] [CrossRef]
- Gonalves, G.; Marques, P.A.A.P.; Barros-Timmons, A.; Bdkin, I.; Singh, M.K.; Emami, N.; Grácio, J. Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J. Mater. Chem. 2010, 20, 9927–9934. [Google Scholar] [CrossRef] [Green Version]
- Fang, M.; Wang, K.; Lu, H.; Yang, Y.; Nutt, S. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J. Mater. Chem. 2009, 19, 7098–7105. [Google Scholar] [CrossRef]
- Liu, D.; Ding, C.; Chi, F.; Pan, N.; Wen, J.; Xiong, J.; Hu, S. Polymer brushes on graphene oxide for efficient adsorption of heavy metal ions from water. J. Appl. Polym. Sci. 2019, 136, 1–9. [Google Scholar] [CrossRef]
- Zygo, M.; Mrlik, M.; Ilcikova, M.; Hrabalikova, M.; Osicka, J.; Cvek, M.; Sedlacik, M.; Hanulikova, B.; Munster, L.; Skoda, D.; et al. Effect of structure of polymers grafted from graphene oxide on the compatibility of particles with a silicone-based environment and the stimuli-responsive capabilities of their composites. Nanomaterials 2020, 10, 591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manias, E.; Polizos, G.; Nakajima, H.; Heidecker, M.J. Fundamentals of Polymer Nanocomposite Technology. In Flame Retardant Polymer Nanocomposites; Morgan, A.B., Wilkie, C.A., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Hasheminejad, K.; Montazeri, A. Enhanced interfacial characteristics in PLA/graphene composites through numerically-designed interface treatment. Appl. Surf. Sci. 2020, 502, 144150. [Google Scholar] [CrossRef]
- Kulshreshtha, A.; Modica, K.J.; Jayaraman, A. Impact of hydrogen bonding interactions on graft-matrix wetting and structure in polymer nanocomposites. Macromolecules 2019, 52, 2725–2735. [Google Scholar] [CrossRef]
- Zhang, H.; Du, Z.; Jiang, Y.; Yu, Q. Preparation and characterization of grafting polyacrylamide from PET films by SI-ATRP via water-borne system. J. Appl. Polym. Sci. 2012, 126, 1941–1955. [Google Scholar] [CrossRef]
- Pant, B.; Saud, P.S.; Park, M.; Park, S.J.; Kim, H.Y. General one-pot strategy to prepare Ag-TiO2 decorated reduced graphene oxide nanocomposites for chemical and biological disinfectant. J. Alloys Compd. 2016, 671, 51–59. [Google Scholar] [CrossRef]
- Lin, Y.; Jin, J.; Song, M. Preparation and characterisation of covalent polymer functionalized graphene oxide. J. Mater. Chem. 2011, 21, 3455–3461. [Google Scholar] [CrossRef]
- Çiplak, Z.; Yildiz, N.; Cąlimli, A. Investigation of graphene/Ag nanocomposites synthesis parameters for two different synthesis methods. Fuller. Nanotub. Carbon Nanostructures 2015, 23, 361–370. [Google Scholar] [CrossRef]
- Rattana, T.; Chaiyakun, S.; Witit-Anun, N.; Nuntawong, N.; Chindaudom, P.; Oaew, S.; Kedkeaw, C.; Limsuwan, P. Preparation and characterization of graphene oxide nanosheets. Procedia Eng. 2012, 32, 759–764. [Google Scholar] [CrossRef] [Green Version]
- Pourhashem, S.; Vaezi, M.R.; Rashidi, A.; Bagherzadeh, M.R. Distinctive roles of silane coupling agents on the corrosion inhibition performance of graphene oxide in epoxy coatings. Prog. Org. Coatings 2017, 111, 47–56. [Google Scholar] [CrossRef]
- Roghani-Mamaqani, H.; Haddadi-Asi, V. In-plane functionalizing graphene nanolayers with polystyrene by atom transfer radical polymerization: Grafting grom hydroxyl groups. Polym. Compos. 2014, 35, 386–395. [Google Scholar] [CrossRef]
- Baliś, A.; Wolski, K.; Zapotoczny, S. Thermoresponsive Polymer Gating System on Mesoporous Shells of Silica Particles Serving as Smart Nanocontainers. Polymers 2020, 12, 888. [Google Scholar] [CrossRef]
- Fortenberry, D.I.; Pojman, J.A. Solvent-free synthesis of polyacrylamide by frontal polymerization. J. Polym. Sci. Part A Polym. Chem. 2000, 38, 1129–1135. [Google Scholar] [CrossRef]
- Lian, B.; De Luca, S.; You, Y.; Alwarappan, S.; Yoshimura, M.; Sahajwalla, V.; Smith, S.C.; Leslie, G.; Joshi, R.K. Extraordinary water adsorption characteristics of graphene oxide. Chem. Sci. 2018, 9, 5106–5111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pomorska, A.; Wolski, K.; Wytrwal-Sarna, M.; Bernasik, A.; Zapotoczny, S. Polymer brushes grafted from nanostructured zinc oxide layers—Spatially controlled decoration of nanorods. Eur. Polym. J. 2019, 112, 186–194. [Google Scholar] [CrossRef]
- Gorman, C.B.; Petrie, R.J.; Genzer, J. Effect of substrate geometry on polymer molecular weight and polydispersity during surface-initiated polymerization. Macromolecules 2008, 41, 4856–4865. [Google Scholar] [CrossRef]
- Kozanoǧlu, S.; Özdemir, T.; Usanmaz, A. Polymerization of N-vinylcaprolactam and characterization of poly(N-vinylcaprolactam). J. Macromol. Sci. A 2011, 48, 467–477. [Google Scholar] [CrossRef]
- Yoo, H.-J.; Kim, H.-D. Characteristics of waterborne polyurethane/poly (N-vinylpyrrolidone) composite films for wound-healing dressings. J. Appl. Polym. Sci. 2008, 107, 331–338. [Google Scholar] [CrossRef]
- Heller, D.A.; Barone, P.W.; Swanson, J.P.; Mayrhofer, R.M.; Strano, M.S. Using Raman spectroscopy to elucidate the aggregation state of single-walled carbon nanotubes. J. Phys. Chem. B 2004, 108, 6905–6909. [Google Scholar] [CrossRef]
- Bîru, E.I.; Iovu, H. Graphene nanocomposites studied by Raman spectroscopy, Raman Spectroscopy, Gustavo Morari do Nascimento; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Claramunt, S.; Varea, A.; Lo, D.; Vela, M.M.; Cornet, A.; Cirera, A. The importance of interbands on the interpretation of the raman spectrum of graphene oxide. J. Phys. Chem. C 2015, 119, 10123–10129. [Google Scholar] [CrossRef]
- Rashmi, B.J.; Prashantha, K.; Lacrampe, M.-F.; Krawczak, P. Scalable production of multifunctional bio-based polyamide 11/graphene nanocomposites by melt extrusion processes via masterbatch approach. Adv. Polym. Technol. 2018, 37, 1067–1075. [Google Scholar] [CrossRef]
- dal Lago, E.; Cagnin, E.; Boaretti, C.; Roso, M.; Lorenzetti, A.; Modesti, M. Influence of different carbon-based fillers on electrical and mechanical properties of a PC/ABS blend. Polymers 2020, 12, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, X.; Ya, C.; Yang, G. Recent advances in graphene/polyamide 6 composites: A review. RSC Adv. 2015, 5, 61688–61702. [Google Scholar] [CrossRef]
- Lai, H.; Chen, G.; Wu, P.; Li, Z. Thermoresponsive behavior of an LCST-type polymer based on a pyrrolidone structure in aqueous solution. Soft Matter 2012, 8, 2662–2670. [Google Scholar] [CrossRef]
Properties | Unit | PA6/GO_PAAM | PA6/GO | PA6 |
---|---|---|---|---|
Yield point | MPa | 40.0 ± 0.9 | 42.0 ± 1.2 | 41.0 ± 1.2 |
Yield point elongation | % | 24.0 ± 1.6 | 11.0 ± 1.3 | 11.0 ± 1.2 |
Tensile strength | MPa | 38 ± 1 | 34 ± 0.6 | 33.5 ± 0.6 |
Elongation at break | % | 241 ± 14 | 240 ± 9 | 240 ± 9 |
Tensile modulus | MPa | 820 ± 90 | 980 ± 100 | 968 ± 100 |
Charpy notched impact strength | kJ/m2 | 5.2 ± 0.1 | 5.0 ± 0.3 | 5.0 ± 0.3 |
Charpy impact strength | kJ/m2 | no break | no break | no break |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łątka, Ł.; Goc, K.; Kapusta, C.; Zapotoczny, S. Enhanced Thermal Conductivity of Polyamide-Based Nanocomposites Containing Graphene Oxide Sheets Decorated with Compatible Polymer Brushes. Materials 2021, 14, 751. https://doi.org/10.3390/ma14040751
Łątka Ł, Goc K, Kapusta C, Zapotoczny S. Enhanced Thermal Conductivity of Polyamide-Based Nanocomposites Containing Graphene Oxide Sheets Decorated with Compatible Polymer Brushes. Materials. 2021; 14(4):751. https://doi.org/10.3390/ma14040751
Chicago/Turabian StyleŁątka, Łukasz, Kamil Goc, Czesław Kapusta, and Szczepan Zapotoczny. 2021. "Enhanced Thermal Conductivity of Polyamide-Based Nanocomposites Containing Graphene Oxide Sheets Decorated with Compatible Polymer Brushes" Materials 14, no. 4: 751. https://doi.org/10.3390/ma14040751
APA StyleŁątka, Ł., Goc, K., Kapusta, C., & Zapotoczny, S. (2021). Enhanced Thermal Conductivity of Polyamide-Based Nanocomposites Containing Graphene Oxide Sheets Decorated with Compatible Polymer Brushes. Materials, 14(4), 751. https://doi.org/10.3390/ma14040751