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Abstract: Channel segregation (CS) is the most typical defect during solidification of NbTi alloy.
Based on numerical simulation and experimental characterizations, we deeply elucidated its charac-
teristics, formation mechanism, effecting factor and prediction criterion. According to acid etching,
industrial X-ray transmission imaging, 3D X-ray microtomography and chemical analysis, it was
found that in a casing ingot, by He cooling, finer grain size, weaker segregation and slighter CS can
be obtained compared with air-cooled ingot. The simulation results of macrosegregation show that
CS is caused by the strong natural convection in the mushy zone triggered by the thermo-solutal
gradient. Its formation can be divided into two stages including channel initiation and growth.
In addition, due to the stronger cooling effect of the He treatment, the interdendritic flow velocity
becomes smaller, consequently lowering the positive segregation and CS and improving the global
homogenization of the final ingot. Finally, to predict the formation of CS, the Rayleigh number model
was proposed and its critical value was found to be 15 in NbTi alloy for the first time. When it is
lower than the threshold, CS disappears. It provides an effective tool to evaluate and optimize the
solidification parameters to fabricate the homogenized NbTi ingot in engineering practice.

Keywords: NbTi alloy; channel segregation; simulations; experimental characterizations; criterion

1. Introduction

As the common material of low-temperature superconductors, NbTi alloy has been
widely used in high-energy physics, controlled thermonuclear fusion, energy storage
and magnetic levitation considering its superior machinability and high critical current
density [1–3]. To achieve the low magnetic hysteresis loss and residual resistivity ratio,
the high compositional homogenization and low segregation index are strictly required in
the casting ingot and product. Owing to the large density difference between Nb and Ti,
the severe Ti segregation occurs during solidification of ingots, which always causes the
breakage of NbTi superconducting wire [4,5].

In NbTi alloy, channel segregation (CS, namely freckle, chimney) is the most common
type of macrosegregation during solidification. It cannot be eliminated by the subsequent
deforming and heat treatment processes considering its large scale of width in ~mm and
length in ~cm. More importantly, due to the thermal-solutal distribution feature of the
ingot, CS is usually located in the 1/3–2/3 radius and, hence, it also cannot be cut off by
punching or peeling.
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Actually, CS also exists in the common structural materials of aluminum alloy,
Ni-base superalloys, and steels and functional materials such as SnPb, SnBi and GaIn [6–16].
According to the macrosegregation theory, CS is caused by the redistribution of solute and
natural convection during solidification [17–23]. With the development of solidification,
the redistribution phenomenon occurs due to the difference of the solubility of solutes in
solid and liquid phases. When solute continuously segregates and enriches in front of so-
lidification, the interdendritic liquid flows upwards considering the huge density inversion
between the mushy zone and bulk liquid, and even becomes instable. Under the interaction
between flow and solidification, the sequential solidification is destroyed and solidification
is restricted, which initiates the CS. Such mode has been verified in the above-mentioned
alloys, but the formation mechanism and evolution has been not reported in NbTi alloy.

On the other hand, the detailed characteristics and features of CS in NbTi alloy are also
unclear currently. In industry, the size and distribution of CS are usually only observed by
industrial-level X-ray transmission. However, its resolution is too low to capture the details
of CS formation. Moreover, the quantitative information and segregation extent cannot
be given by such qualitative characterization. Hence, here its formation details will be
revealed by combining multiscale experiments such as grain size statistics, 3D morphology
observation and chemical analysis and numerical simulations.

In this study, based on numerical simulations and experimental characterizations, the
characteristics, evolution mechanism and effecting factor of CS are investigated in detail in
NbTi alloy. In addition, the prediction criterion of CS is proposed to provide the basis to
optimize the solidification process and to produce a homogenized NbTi ingot.

2. Materials and Experimental Methods
2.1. Ingot Production and Industrial X-ray Transmission Observation

Two Nb-47 wt.% Ti ingots with Φ530 mm × 2700 mm were produced by He and air
cooling between a copper mold and melt, respectively. Because of the low temperature of
He, its cooling effect is strengthened compared with the normal air-cooled ingot. After the
complete solidification, it was dissected along the longitudinal center plane. A test piece of
dimensions 250 mm × 170 mm × 4 mm was cut from the top surface to perform the indus-
trial X-ray transmission observation. The Paxscan 2530C X-ray apparatus (Varian Medical
Systems, Palo Alto, CA, USA) was used with a current of 1 mA and a voltage of 128 kV.
Its resolution is 139 µm, and the final image includes a total of 256 frames. The imaging is
based on the density difference of the inner materials and they present the distinct X-ray
absorption capacities, consequently causing the different signal strength in the detector.
Owing to Ti enrichment in CS, its density is lighter and its X-ray absorption capacity of is
weaker than the normal zone, which leads to the blacker imaging of banded CS.

2.2. Acid Etching and Grain Size Distribution

To obtain the morphology and size of the grains in two ingots, the above pieces were
etched by the mixed acid with H2SO4:HF:HNO3 of 5:1:2 in volume. The etching time
was about 55 s and then the surface was cleaned and dried. Due to the distinct corro-
sion resistance between the grain boundary and interior, the grain morphology can be
observed. By such a macro etching technique, the effect of the different cooling methods
on the final grain distribution in the ingot can be revealed. Quantitatively, the statistic
software MIPAR v3.3.4 was used to calculate the numerous grains. By using the cut-
ting line method, the shape parameters and dimension of each grain can be obtained.
Meanwhile, the statistic grain size is applied as the input parameter in the subsequent
macrosegregation simulations.

2.3. Chemical Analysis and Segregation Determination

To illustrate quantitatively the effect of He cooling on the final Ti segregation, five sam-
ples were drilled uniformly at the half height of the piece obtained in Section 2.1. The dis-
tance between the neighboring points is 50 mm. Then, the sample was dissolved in
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acid and the solute content was detected by inductively coupled plasma-atomic emission
spectrometry (ICP-AES) with an iCAP6300 (Thermo Fisher Scientific, Waltham, MA, USA).

2.4. 3D Microtomography

To reveal the 3D distribution of CS in two ingots, cylinder samples of Φ2 mm× 28 mm
were cut in the center of the test piece. After being ground by the abrasive paper and
ultrasonic cleaning, sample was put on the stage of an Xradia Versa XRM-500 (Carl Zeiss
AG, Shanghai, China) [24]. Its voltage and resolution are 140 kV and 30 µm, respectively.
With rotation of 360◦, total 1600 2D projection images can be obtained and the exposure
time was 4 s. Then, these 2D images can be reconstructed into the 3D image after Foulier
filtering by the back projection algorithm. Finally, via the post processing, visualization and
computing using Avizo fire 7.1 software, the 3D inner structure of CS can be reproduced.

3. Experimental Results

The distributions of CS near the top surface in He- and air-cooled NbTi ingots revealed
by the industrial X-ray detector are shown in Figure 1. Different from the dotted “freckle”
in the horizontal section, it appears to be band or channel in the current longitudinal
section as marked by the black arrows. In the normal air-cooled ingot, CS is mainly
distributed in 1/4–3/4 radius, and most channels can run through the whole height of the
test piece. In contrast, in the He-cooled ingot, the formation positions of CS are generally
the same with the air-cooled ingot, but the color of CS becomes lighter. The more severe Ti
segregation is, the darker CS becomes. In addition, after He-cooled treatment, the distance
between neighboring channels is larger, and its length is shorter and hence it cannot span
the whole section in height.
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Figure 1. Macrostructure and channel segregation distributions in the top slice of Air- (a) and He-cooled (b) ingots of NbTi
alloy. Channel segregation (CS) is marked by the black arrow.

Though Figure 1 reproduces the overall view of CS in the whole section of the ingot,
the local detail and 3D morphology of CS cannot be revealed clearly considering its lower
resolution of 139 µm. Furthermore, Figure 2 presents the 3D distribution of grey scale and
CS via 3D microtomography. Owing to the distinct absorption capacity between CS and
normal zones, the grey scale indicates the difference of Ti content in the observation zones,
and, correspondingly, the CS formation or lack of formation can be also illustrated. Here,
there are two channels marked by the black arrows in the observed zone in both ingots.
In the interior of each CS, the grey scale is not the same, indicating the difference of Ti
content during the growth of the channel, whose detail cannot be found by the industrial
X-ray detector due to its low resolution. In addition, it can be found that there is the
extremely nonuniform distribution of Ti content in the air-cooled ingot, and the distance
between the neighboring channels of the detected area is about 13 mm. Compared to the
normal zone, the grey scale in the CS is obviously lower, indicating the severe segregation
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of Ti in the air-cooled ingot. However, in the He-cooled ingot, the nonuniformity of
grey scale and Ti segregation is significantly reduced, and CS is also obviously slighter.
It agrees well with the industrial X-ray transmission result, and He cooling can promote
the homogenization of Ti content in NbTi alloy. It should be noted that, the discrepancy of
CS features via the two distinct transmission techniques is caused by the heterogeneous
distribution of the channel in the three-dimensional spacing and the interaction between
2D slices with different depths, consequently, to some extent, lowering the severity of CS
in 3D reconstruction.
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Figure 2. The three-dimensional distribution of grey scale and CS in Air- (a) and He-cooled (b) NbTi
ingots by 3D microtomography. The sample of Φ2 mm × 28 mm was obtained in the center of the
test piece, and the reconstructed zone is 1.875 × 1.875 × 25 mm3. The observed two channels (blue
color) are marked by the black arrows.

The final grain morphology and size are revealed in Figure 3. After He cooling, grains
become more equiaxed and their dimension is also smaller. The difference of the oriental
grain-size distribution from edge to center of the ingot is compared in Figure 4. In both
ingots, the grain sizes are mainly distributed from 2 mm to 8 mm (Figure 4a–e). With the
increase in distance from the ingot edge, the grain size becomes larger. At the edge of the
air-cooled ingot, the maximum (Dmax) and average (Dave) grain sizes are 17.15 mm and
5.14 mm, respectively, and they increase to 21.72 mm and 5.8 mm in the center, respectively.
As a comparison, grain size shifts toward the left direction in the He-cooled ingot, indicating
the increasing number of small grains. The proportions of the small grains (<5 mm) are
66% and 72%, respectively, in air- and He- cooled ingots. Specially, the ultra-large grains
obviously decrease in the He-cooled ingot, and Dmax in the edge and center are lowered to
13.8 mm and 17.16 mm, respectively.
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Quantitatively, the relative segregation of Ti, namely C/C0 − 1, is depicted in Figure 5.
Because the samples were obtained from the top surface of the ingot, all the segregations
are determined to be positive. In the late solidification, the accumulation phenomenon of
solute is rather obvious due to its longer local solidification time. Thus, with the increase in
distance from the ingot edge, the Ti segregation becomes more severe considering the solute
enrichment caused by the interdendritic convection. It should be noted that, although there
is a similar evolution tendency of Ti content in both ingots, quantitatively the maximum
and minimum values of Ti segregation are lowered to 0.55 and 0, respectively, in the He-
cooled ingot compared to the larger segregation of 0.055 and 0.0043 in the air-cooled ingot.
In addition, besides the maximum and minimum segregations, the global macrosegregation
extent of GM, which indicates the severity of compositional fluctuation in the whole section,
is also a key indicator and its expression is below,

GM =
1
n

n

∑
i=1

(
Ci
C0
− 1)2, (1)

where n is the sample number, C and C0 are the detected and normal compositions of
Ti, respectively. The larger GM is, the more severe global segregation becomes. Calcula-
tions show that GM is 0.0042 and 0.0037, respectively, in the air- and He-cooled ingots,
which again proves the positive effect of He-cooling treatment on the final compositional
homogenization in NbTi alloy.
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By comparing these multiscale characteristics of macrosegregation, especially CS in
two different cooling processes, it can be concluded that, with the increase in the cooling
capacity in the He-cooled ingot, the solidification speed becomes faster during solidification
of liquid alloy. As a result, the ejection of solute into the interval of dendrites is suppressed,
and the microsegregation becomes slighter. In addition, the higher cooling rate can refine
the grains, in which case the permeability in the mushy zone decreases sharply and the
thermo-solutal convection strength becomes weaker, consequently lowering the final Ti
segregation. When natural convection is suppressed, the risk of solidification destabi-
lization triggered by thermo-solutal fluctuation is lower, and the sequential solidification
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mode can last, and its ignition of CS becomes more difficult. Even though CS ignition
can occur, its growth rate is also restricted, and hence the final CS appears to be less, the
shorter length and the lighter color shown in Figure 1. Actually, to sufficiently validate
the positive effect of He cooling on the final compositional homogenization, CS severity
in more 51 Nb-47 wt.% Ti ingots (Φ530 mm × 1700–2700 mm) was statistically detected
by scanning the whole ingot body along the longitudinal direction and the grassy-shape
wave received in an ultrasonic fault detector. The length ratio between the CS zone and
the whole body is introduced in Figure 6. It shows that, after He cooling, the average and
maximum length percentages of the CS zone are lowered to 2.83% and 11.11% from 18.76%
and 66.67% by the air cooling treatment, respectively.
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4. Simulation Method and Model

To reveal the formation mechanism and evolution detail of CS in NbTi alloy, a series
of macrosegregation simulations were further carried out by considering the thermal
and solutal effects during solidification. In the model, the local thermo-solutal balance
is assumed to be met at the solid/liquid interface. The model details can be referred to
in our previous publication [25], and here only the conservations of solute, energy and
momentum are listed below.

The momentum equation in x direction:

∂(ρu)
∂t

+∇ ·
(

ρ
→
Uu
)
= −∂P

∂x
− Ku +∇ · (µl∇u), (2)

The momentum equation in y direction:
∂(ρw)

∂t
+∇ ·

(
ρ
→
Uw
)
= −∂P

∂z
− Kw +∇ · (µl∇w) + ρg

[
βT

(
T − Tre f

)
+ βC

(
Cl − Cre f

)]
, (3)

The energy equation:

∂[ρH]

∂t
+∇ ·

(
ρcp
→
UT + ρ

→
U∆H

)
= ∇ · (λ∇T), (4)
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The solute equation:
∂[ρC]

∂t
+∇ ·

(→
UCl

)
= 0, (5)

In the model, to calculate the solid fraction f s during solidification accurately, the fol-
lowing quadratic equation is built by combining the energy and solute relationship.

A ·
(

f t
s
)2 − B · f t

s + E = 0

where
A = (1− k) · ρ · ∆H

B = ρ∆H(k + k f t−∆t
s − 2) + (k− 1)(ρcpTM − [ρH]t)

E = (ρcpTM − [ρH]t + ρ∆H)(1− k f t−∆t
s )− ρcpmlCt−∆t

l (1− f t−∆t
s )

, (6)

The finite difference method is applied to solve the above conservation equations,
and in the momentum equation, the correction between velocity and pressure is realized via
the SOLA algorithm. In the current simulation cases, the experimental ingot of Nb-47 wt.%
Ti with Φ530 mm × 2700 mm was simulated as shown in Figure 7, and its grid size
was 3 mm × 3 mm. Considering the geometrical symmetry and computational efficiency,
only the left part of the ingot was calculated. Based on the experimental result of grain size,
the secondary dendritic arm spacing ds was selected as 2000 µm. The thermo–physical
parameters and boundary conditions are listed in Tables 1 and 2, respectively.
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Table 1. The main thermo–physical parameters used in the current simulations.

Parameter Symbol Value

Solutal expansion coefficient βC 0.8 × 10−2 (wt.%)−1

Thermal expansion coefficient βT 1.87 × 10−5 K−1

Liquidus slope ml −11.4 K (wt.%)−1

Secondary dendritic arm spacing ds 200 µm
Dynamic viscosity µl 0.0042 Pa·s

Specific heat capacity cp 2000 J kg−1 K−1
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Table 1. Cont.

Parameter Symbol Value

Latent heat ∆H 150,000 J kg−1

Heat conductivity λ 30 W m−1 K−1

Density ρ 5460 kg m−3

Melting point of pure Nb Tm 2750.15 K
Equivalent partition coefficient k 0.75

Table 2. The boundary conditions used in the simulations.

ρ, kg m−3 Cp, J kg−1 K−1 λ, W m−1 K−1 T0, K

Mold 8900 385 380 323.15

Interface heat-transfer coefficient hi,
W m−2 K−1

Liquid–top surface: 50
Mold–top surface: 50
Liquid–mold: 2000

Mold–air: 200 + 4 × 5.67 × 10−8 × 0.9 × T3

5. Simulation Results and Discussion
5.1. Formation Mechanism of CS in NbTi Alloy

Figure 8 reveals the evolution process of Ti segregation during solidification. Simulations
show that, with the increase in solidification time, the segregation phenomenon becomes
more severe. After the final solidification, the positive segregation in the top, the negative
segregation in the bottom and channel segregation in both sides of the ingot body are
reproduced, which are totally consistent with the typical types of macrosegregation in
the casing ingot. Hence, the current model and simulations can be used to elucidate the
formation mechanism and characteristics of macrosegregation in NbTi alloy.

At the beginning of solidification, due to the strong cooling effect of the mold, heat can
be transferred outward quickly and the temperature near the mold/melt interface drops
dramatically, consequently forming the huge temperature gradient. Therefore, the cool
interdendritic liquid flows downward near the side mold owing to its heavy density,
and then it turns upward along the centerline considering its high temperature and light
density. As solidification proceeds, the solidified layer gradually increases and its thermal
conductively becomes weaker, and hence there forms the thick thermo boundary layer
in the front of solidification. In such case, the downward driving force driven by the
temperature gradient decreases. At the same time, with the solute being expelled from the
solid to the interdendritic melt, there exists the obvious enrichment of solute in the mushy
zone, which can drive the ascending flow. When the solute continues to accumulate, namely
~1000 s, the solutal effect begins to dominate the downward thermal effect, and hence the
clockwise current forms, as shown in Figure 9a. Such a flow mode can last until the end
of solidification (Figure 9b), which causes the final positive segregation in the top and the
negative segregation in the bottom. However, in the late solidification, the single systemic
circulation gradually branches indicting the instability of the flow as shown by two smaller
flow circulations in Figure 8b, which can trigger the occurrence of CS as discussed below.
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At 11000s, the solidification of the ingot is complete.

To illustrate the formation mechanism and conditions of CS, the isolines of solid frac-
tion are further extracted in Figure 10. At the initial stage of solidification (1000 s), although
the solutal effect governs the flow field, but the solutal enrichment is not sufficiently obvi-
ous and at that moment the opposite thermal effect cannot be neglected, which causes the
weak thermo-solutal convection in the mushy zone and the sequential solidification still
exists, as shown in Figure 9a. With the development of solidification (2700 s), the solute
continues to accumulate in the mushy zone and the ascending natural convection strength
increases until the local mush destabilization occurs. When the initial micro channel is
triggered, its main manifestations are the distortion of the solidification front and the wavy
distribution of solid fraction isolines (Figure 10b) rather than the straight type appeared in
Figure 10a.
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In addition, further calculations find that, when the angle between the interdendritic
flow velocity and temperature gradient is smaller than 90◦, the destabilization phenomenon
of the mushy zone can last. It is because in such a situation, the increment rate of the solid
fraction becomes slower and even negative (indicating the remelting of the solidified zone)
with the sudden increase in the flow velocity, both of which can cause smaller local flow
resistance and bigger permeability compared with the surrounding regions. According
to hydromechanics, melt always flows along the low-resistance direction, and hence,
in the interior of channel, the solute-enriched melt flows towards the growth direction of
the channel, which can be seen by comparing the flow field, solid fraction isolines and
concentration distributions (Figures 8, 9 and 10b). That is, the increase in local flow can be
strengthened, and hence the flow instability and mush destabilization can be maintained
rather than fade away. It should be stressed that the formation of CS can be divided
into two stages: channel initiation and growth. The initiation stage is driven by strong
natural convection and flow instability, which can be disturbed by either thermal or solutal
fluctuation. For instance, the increase in solute or the decrease in temperature can both
strengthen the local flow. When the local solidification is suppressed, it in turn accelerates
the flow velocity and, hence, the destabilization of the flow field and mushy zone can
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survive, and the micro channel can continue to grow up into the macro channel in the
completely solidified ingot.
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5.2. Effect of Cooling Rate on the Final Macrosegregation in NbTi Alloy

Based on the above simulation results, the origin of CS is driven by sufficiently strong
flow during solidification. Hence, it can be predicted that the strong cooling effect can
reduce the CS and the global macrosegregation in engineering. To reveal the effect of
the different cooling methods on the final macrosegregation including CS, a series of
simulation cases with different interface heat-transfer coefficients of mold/melt were
carried out. Figure 11 illustrates the final distributions of Ti segregation when the heat-
transfer coefficient is increased from 2000 to 2500 and 3000 W m−2 K−1, respectively.
By comparing Figures 8c and 11, there are still severe channel segregations in the cases
with the faster solidification rate, which is consistent with the above experimental results in
Figure 1. However, in terms of the number and severity of channels, both of them appear
to be decreasing tendency when cooling rate increases.
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Table 3 lists the quantitative statistic results of convection strength and segregation
extent in different cooling conditions. It can be found that, with the increase in cooling
rate, the interdendritic velocity induced by thermal and solutal gradients is weakened
during solidification, as are the average and maximum flow velocities in the whole ingot
(0.1 < f s < 0.7). When the flow strength is decreased, the transport of solute in the macro
scale is hindered to some extent, and, hence, the maximum positive and global macrosegre-
gation is reduced in the final ingot. In addition, through the formation mechanism of CS
mentioned above, the risk of flow instability can be also lowered when the flow velocity
becomes smaller. For instance, the maximum Ti content in the channel, and the channel
length and number are all brought down with the increase in the interface heat-transfer
coefficient. Thus, both simulations and experiments validate the reasonability of reducing
the macrosegregation including channel segregation by increasing the cooling capacity of
the mold in engineering.

Table 3. The interdendritic flow velocity and segregation extent during solidification with different cooling rates.

Interface
Heat-Transfer

Coefficient,
W m−2 K−1

Average
Interdendritic

Flow Velocity 1,
mm/s

Max.
Interdendritic

Flow Velocity 1,
mm/s

Max. Ti
Content 2,

wt.%
GM 2

Max. Ti
Content in
CS 2, wt.%

Max. Length
of CS, mm2

Number of
CS 2

2000 0.105 0.944 63.66 0.0412 58.49 19.76 24
2500 0.104 0.924 63.39 0.0406 58.31 17.89 21
3000 0.103 0.794 63.29 0.0397 58.17 15.81 20

Note: 1 means the solidification time of 2700 s in which the solidification proceeds towards half of the whole ingot, and 2 denotes the final
solidification time in three cases.
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5.3. Rayleigh Number Criterion of CS Initiation in NbTi Alloy

Besides the formation mechanism and effecting factors of CS, its prediction criterion
and model have widely attracted attention from researchers and engineers. Currently, there
mainly exist two prediction models including the Suzuki and Rayleigh number (Ra) [22].
In the former, only the effect of thermal parameters is considered, and hence the critical
Suzuki number varies with different alloy systems. In contrast, Ra stands for the ratio
between the thermo-solutal driving force and the dragging force induced by melt viscosity,
and it not only includes the temperature parameters but also comprises the microstructure,
permeability and dynamic viscosity. Hence, it can be used to compare the difficulty of
CS formation in various alloys, and has been widely used in SnPb-, GaIn-, and Ni-base
superalloys and steels [26–33]. In this study, to directly extract the physical parameters
used in Ra expression, it was further rewritten as follows.

Ra =
∆ρ

ρ0

gK
Rµl

= [βC(Cl − Cre f ) + βT(T − T0)]
g(1− fs)

3d2
s G

180µl f 2
s ε

(7)

where R, G, ε are solidification speed, temperature gradient and cooling rate, respectively.
In Equation (7), the solid fraction f s is selected on average as 0.15, in which it is always
considered as the onset site of initiate channel segregation [31]. The distribution contour
of Ra in the air-cooled ingot is depicted in Figure 12. It shows that, with the increase in
distance from the side surface, the Rayleigh number increases first and then decreases.
As mentioned above, the flow direction will be quickly overturned when solutal gradient
governs the opposite temperature gradient with the development of solidification. Owing
to the solute redistribution and accumulation of segregation, the density inversion becomes
larger and, correspondingly, Ra also increases according to Equation (7). However, at the
end of the solidification, the simultaneous solidification phenomenon occurs, and hence
fast solidification lowers the Rayleigh number although the density contrast between the
interdendritic liquid and bulk melt is large.
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By further comparing the Ra distribution in Figure 12 and the final CS positions in
Figure 8c, we find that there is a critical Rayleigh number of 15 at the onset site of CS.
When Rayleigh number is smaller than the critical value, CS disappears. Coincidentally, the
critical criterion is located in the range of 9–25 proposed by Rad in industrial steel ingots [31].
It is worth noting that the current Ra criterion is a single value, which can provide the more
accurate prediction of CS sites and guide the optimization of the solidification process
in practice compared with the critical range. In the current simulations, the positions
with the locally maximum Rayleigh number agrees well with the real onset sites of CS,
and such self-consistency sufficiently proves the accuracy of the suggested Ra criterion
and the macrosegregation model. In addition, according to the experimental result in
Figure 1, there are eight main channels in the top test piece, which is generally consistent
with the predicted number of CS by the Ra criterion. Meanwhile, the onset sites of CS
from the simulation and Ra criterion are located in 1/4–3/4 radius of the ingot, which
is also successfully validated by the experimental results. Therefore, the proposed Ra
criterion provides a high-efficient and significant tool to forecast the initiation of CS in
NbTi alloy, and the process parameters during solidification can be optimized to reduce CS
in engineering.
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6. Conclusions

In this study, via the numerical simulations and experimental characterizations, the
distribution characteristics, evolution process, potential mechanism and affecting factor in
Nb-47 wt.% Ti alloy are elucidated in detail, and the main conclusions are summarized below.

1. By comparing the macrostructure, grain size, compositional segregation and 3D
details of channel segregation in He- and air-cooled ingots, it can be found that
severer segregation in the air-cooled ingot is caused by coarser grains and the re-
sulting stronger natural convection during solidification. After increasing cooling
by He treatment, it reduces the interdendritic flow velocity, consequently lowering
the positive, global and channel-type segregations. The key effect of the cooling
capacity of the mold on macrosegregation including CS was sufficiently proven by
the numerous simulations.

2. Macrosegregation simulations show that the formation of CS in NbTi alloy includes
two stages of channel initiation and growth. CS initiation is triggered by the flow
instability and mush destabilization caused by the large density contrast and the
strong thermo-solutal convection. Under the interaction of solidification and flow,
the micro channel can continue to grow into a macro channel.

3. Based on the Rayleigh number distribution and the final CS sites, the critical Ra crite-
rion of 15 is successfully proposed in NbTi alloy for the first time. When the Rayleigh
number is lower than the critical value, CS disappears. It provides a significant tool
to predict CS and fabricate the homogenized NbTi ingot in engineering.

In summary, although the above conclusions are obtained from the current Nb-47
wt.%Ti alloy, they are still prospectively valid for other NbTi alloys with different metal
composition percentages. On one hand, the composition percentages in NbTi alloy can
induce the different density inversions and the strength difference of natural convection
during solidification. Generally, with the increase in the initial Ti content, its segregation
becomes more severe. However, in terms of the stronger cooling rate, it still weakens the
interdendritic flow, refines the grain size and consequently lowers the positive and global
extents of macrosegregation in various NbTi alloys. On the other hand, it has been widely
considered that Ra can be used to compare the sensitivity of CS in common alloy systems,
and hence the proposed critical value is applicable to optimize the solidification process
to reduce CS. When the original content of Ti is lowered, Ra will decrease considering its
smaller density difference between the mushy zone and bulk melt, and therefore, in these
low-Ti alloys, CS can be inhibited to some extent.
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