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Note: The content of the supporting information is based on dedicated radiative heat transfer text-

books [1–3]. The following equations intend to provide the reader with the necessary background 

required to derive/understand the formulas used in the corresponding paper. 

 

1. Radiative Heat Transfer Between Black Surfaces 

The net radiative energy interchange, 𝑄𝑖𝑗 , between two black surfaces, 𝑖 and 𝑗, with 

surface areas, 𝐴𝑖 and 𝐴𝑗, is calculated as: 

𝑄𝑖𝑗 = 𝐴𝑖𝐹𝑖𝑗𝐸𝑖 − 𝐴𝑗𝐹𝑗𝑖𝐸𝑗 (S1) 
 

  

where the total energy 𝐸𝑖 leaving a blackbody surface 𝑖 is determined by the Stefan–

Boltzmann law. In order to introduce symmetry, the concept of direct surface-to-surface 

exchange area, 𝑠𝑖𝑠𝑗̅̅ ̅̅ , for finite black surfaces is introduced: 

𝑠𝑖𝑠𝑗̅̅ ̅̅ = 𝐴𝑖𝐹𝑖𝑗  (S2) 
 

 

where the view factor, 𝐹𝑖𝑗, is equivalent to the portion of radiation leaving surface 𝑖 and 

directly impacting surface 𝑗. Because of the reciprocity relation 𝐴𝑖𝐹𝑖𝑗 = 𝐴𝑗𝐹𝑗𝑖 ⟺ 𝑠𝑖𝑠𝑗̅̅ ̅̅ =

𝑠𝑗𝑠𝑖̅̅ ̅̅ , the expression for the net radiative energy exchange between two finite black sur-

faces, Equation (S1), simplifies to: 

𝑄𝑖𝑗 = 𝑠𝑖𝑠𝑗̅̅ ̅̅ (𝐸𝑖 − 𝐸𝑗) (S3) 
 

 

The formal definition of the direct surface-to-surface exchange area is given by: 

𝑠𝑖𝑠𝑗̅̅ ̅̅ = ∯ ∯
𝑐𝑜𝑠𝜑𝑖𝑐𝑜𝑠𝜑𝑗

𝜋𝑟2
𝑑𝐴𝑗𝑑𝐴𝑖

𝐴𝑗𝐴𝑖

 (S4) 

 

 

The direct surface-to-surface exchange area can be calculated using Equation (S2) 

when view factors are known. View factors between surfaces in simplified geometries are 

often described in literature or can be derived analytically. For more complex geometries 

they are often calculated using Monte Carlo techniques. 

2. Radiative Heat Transfer Between Gray Surfaces 

For gray surfaces an emission coefficient, 𝜀, is introduced. This general “emissivity” 

corresponds to the total hemispherical emissivity previously introduced in Equation (6). 
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When a surface is in thermodynamic equilibrium with the surroundings, all absorbed ra-

diation will be re-emitted, according to Kirchhoff’s law of thermal radiation. For a gray 

surface, the total radiative flux leaving a surface is defined as the radiosity, 𝐽. In other 

words, the radiosity is made up by two contributions: the radiation emitted by the surface 

on the one hand and the reflected radiation on the other [4]. 

𝐽𝑖 ≡ 𝜀𝑖𝐸𝑖 + 𝜌𝑖𝐻𝑖 = (
Radiation emitted
by surface 𝑖

) + (
Radiation reflected

by surface 𝑖
) (S5) 

 

 

where the reflectivity, 𝜌, equals 1 − 𝜀, as opaque bodies to not transmit radiation. The 

total incident radiation is expressed by 𝐻, while 𝐸 corresponds to the energy emitted by 

a blackbody surface at the same temperature. Finally, the energy balance over a gray sur-

face yields the following equation for the total heat supplied to that surface: 

𝑄𝑖 = 𝐴𝑖[𝐽𝑖 −𝐻𝑖] = 𝐴𝑖 [𝐽𝑖 −
𝐽𝑖 − 𝜀𝑖𝐸𝑖
1 − 𝜀𝑖

] =
𝜀𝑖

1 − 𝜀𝑖
𝐴𝑖[𝐸𝑖 − 𝐽𝑖] (S6) 

 

 

The “electric circuit analogy”, as shown in Figure S1 for a system with one heat source 

and one heat sink, helps to visualize radiative heat transfer. 

 

Figure S1. Electric circuit analogy of a radiative heat transfer problem involving two gray surfaces. 

The net radiative exchange between these two gray surfaces can be interpreted as 

three resistances in series, based on the electric circuit analogy: 

𝑄𝑖𝑗 =
𝐸𝑖 − 𝐸𝑗

𝑅1 + 𝑅2 + 𝑅3
=

𝐸𝑖 − 𝐸𝑗

(1 − 𝜀𝑖)
𝐴𝑖𝜀𝑖

+
1

𝐴𝑖𝐹𝑖𝑗
+
(1 − 𝜀𝑗)
𝐴𝑗𝜀𝑗

 
(S7) 

 

 

Based on Equation (S7), the effect of the (changes in) emissivity on the radiative en-

ergy exchange between two gray surfaces becomes clearer. A higher emissivity reduces 

the “resistance”, which implies that a lower driving force, 𝐸𝑖 − 𝐸𝑗 , is needed to realize the 

same radiative energy exchange between two gray surfaces [5]. 

For geometrically more complex systems involving several participating gray sur-

faces, the total surface-to-surface exchange area for each pair of surfaces, 𝑆𝑖𝑆𝑗̅̅ ̅̅ ̅, is intro-

duced, in analogy to the direct surface-to-surface exchange area, 𝑠𝑖𝑠𝑗̅̅ ̅̅ , for blackbody sur-

faces. The net radiative heat transfer between two gray surfaces is expressed as: 

𝑄𝑖𝑗 = 𝑆𝑖𝑆𝑗̅̅ ̅̅ ̅(𝐸𝑖 − 𝐸𝑗) (S8) 
 

 

This total surface-to-surface exchange area accounts for: 

• The area of both surfaces. 

• The shape, orientation and spacing of both surfaces. 

• The radiative properties of both surfaces. 

• The reflection caused by other additional surfaces. 

• The possibility to account for participating media (discussed later). 

All this information is combined by introducing the concept of total surface-to-sur-

face exchange area. The main advantage of the total surface-to-surface exchange area is 

that the electric circuit analogy no longer needs to be visualized. Whereas the electric cir-

cuit analogy offers a rapid visualization for problems involving up to three surfaces, the 

method gets tedious once more surfaces are involved. The latter is bound to happen when 

modelling three dimensional problems. A general derivation of the total surface-to-sur-

face exchange area in multi-surface problems is given in the following section. 
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3. Total Surface-to-Surface Exchange Area between Two Gray Surfaces 

The total radiative flux leaving a surface, 𝐽𝑗, consists of the radiation emitted by the 

surface and multiple reflective contributions: 

𝐴𝑗𝐽𝑗 = 𝐴𝑗𝜀𝑗𝐸𝑗 + 𝜌𝑗∑ 𝑠𝑖𝑠𝑗̅̅ ̅̅  𝐽𝑖
𝑖

 (S9) 

 

 

By introducing the Kronecker delta symbol, 𝛿𝑖𝑗, a shorthand notation is introduced: 

∑(𝑠𝑖𝑠𝑗̅̅ ̅̅ − 𝛿𝑖𝑗 𝐴𝑗 𝜌𝑗⁄ ) 𝐽𝑖 = −
𝐴𝑗𝜀𝑗

𝜌𝑗
𝐸𝑗

𝑖

 (S10) 

 

 

In matrix notation, this expression becomes: 

[

𝑠1𝑠1̅̅ ̅̅ ̅ − 𝐴1/𝜌1
𝑠2𝑠1̅̅ ̅̅ ̅
𝑠3𝑠1̅̅ ̅̅ ̅
⋮

𝑠1𝑠2̅̅ ̅̅ ̅
𝑠2𝑠2̅̅ ̅̅ ̅̅ − 𝐴2/𝜌2

𝑠3𝑠2̅̅ ̅̅ ̅̅
⋮

𝑠1𝑠3̅̅ ̅̅ ̅
𝑠2𝑠3̅̅ ̅̅ ̅̅

𝑠3𝑠3̅̅ ̅̅ ̅̅ − 𝐴3/𝜌3
⋮

⋯] . [

𝐽1
𝐽2
𝐽3
⋮

] = [

−𝐴1𝜀1𝐸1/𝜌1
−𝐴2𝜀2𝐸2/𝜌2
−𝐴3𝜀3𝐸3/𝜌3

⋮

] (S11) 

 

 

For the net heat flux between two gray surfaces all emissive contributions in Equation 

(S11), except for the emitting surface 𝑖, are assigned the value of zero. Equation (S6) can 

be rewritten to account for the net flux into 𝑗 with one sole emitting surface 𝑖 [6]: 

𝑄𝑖𝑗 =
𝐴𝑗𝜀𝑗

𝜌𝑗
(𝐽𝑗
(𝑖)
/𝐸𝑖 − 𝛿𝑖𝑗𝜀𝑖)[𝐸𝑖 − 𝐸𝑗] (S12) 

 

 

This gives the general expression for the total surface-to-surface exchange area, based 

on Equation (S8): 

𝑆𝑖𝑆𝑗̅̅ ̅̅ ̅ =
𝐴𝑗𝜀𝑗

𝜌𝑗
(𝐽𝑗
(𝑖)
/𝐸𝑖 − 𝛿𝑖𝑗𝜀𝑖) (S13) 

 

where the superscript in the notation 𝐽𝑗
(𝑖)

is used to stress by which surface, 𝑖, the radia-

tion is emitted. Using Cramer’s rule to solve Equation (S11) for 𝐽𝑗
(𝑖)

, a general expression 

can be obtained for the total surface-to-surface exchange area, 𝑆𝑖𝑆𝑗̅̅ ̅̅ ̅. The expression is 

based on the cofactor of the 𝑖th row and 𝑗th column of the square coefficient matrix in 

Equation (S11) (later referred to as M) and the determinant of the same coefficient matrix 

[6]. The matrix inversion required to calculate the determinant of the coefficient matrix 

makes it tedious to get an exact analytical solution for problems involving more than two 

radiating surfaces. For that reason, we will continue with a simplified geometry involving 

only two surfaces. 

[
𝑠1𝑠1̅̅ ̅̅ ̅ − 𝐴1/𝜌1 𝑠1𝑠2̅̅ ̅̅ ̅

𝑠1𝑠2̅̅ ̅̅ ̅ 𝑠2𝑠2̅̅ ̅̅ ̅̅ − 𝐴2/𝜌2
] . [
𝐽1
(1)

𝐽2
(1)
] = [

−𝐴1𝜀1𝐸1/𝜌1
0

] ⇔ 

[
𝐽1
(1)

𝐽2
(1)
] =

1

det (𝑀)
[
𝑠2𝑠2̅̅ ̅̅ ̅̅ − 𝐴2/𝜌2 −𝑠1𝑠2̅̅ ̅̅ ̅

−𝑠1𝑠2̅̅ ̅̅ ̅ 𝑠1𝑠1̅̅ ̅̅ ̅ − 𝐴1/𝜌1
] . [
−𝐴1𝜀1𝐸1/𝜌1

0
] ⇔ 

[
𝐽1
(1)

𝐽2
(1)
] =

1

det (𝑀)
[
(𝑠2𝑠2̅̅ ̅̅ ̅̅ − 𝐴2/𝜌2)(−𝐴1𝜀1𝐸1/𝜌1)

𝑠1𝑠2̅̅ ̅̅ ̅𝐴1𝜀1𝐸1/𝜌1
] 

(S14 

 

) 

Substitution of 𝐽2
(1)

 in Equation (S13) results in an expression for the total surface-to-

surface exchange area for the net radiative exchange between two gray surfaces: 

𝑆1𝑆2̅̅ ̅̅ ̅̅ =
𝜀1𝐴1
𝜌1

[
𝜀2𝐴2
𝜌2

(
𝑠1𝑠2̅̅ ̅̅ ̅

det(𝑀)
)] =

1

(1 − 𝜀1)
𝐴1𝜀1

+
1

𝐴1𝐹12
+
(1 − 𝜀2)
𝐴2𝜀2

 
(S15) 

 

 

with the determinant for the coefficient matrix 𝑀: 
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det(𝑀) = |
𝑠1𝑠1̅̅ ̅̅ ̅ − 𝐴1/𝜌1 𝑠1𝑠2̅̅ ̅̅ ̅

𝑠1𝑠2̅̅ ̅̅ ̅ 𝑠2𝑠2̅̅ ̅̅ ̅̅ − 𝐴2/𝜌2
| = (𝑠1𝑠1̅̅ ̅̅ ̅ − 𝐴1/𝜌1)(𝑠2𝑠2̅̅ ̅̅ ̅̅ − 𝐴2/𝜌2) − (𝑠1𝑠2̅̅ ̅̅ ̅)2 (S16) 

As expected, the total surface-to-surface exchange area matches the inverse of the 

three resistances in series shown in the electric circuit analogy in Figure S1. 

4. Radiative Heat Transfer in the Presence of a Gray Gas 

In the presence of a gray gas having an absorption coefficient, 𝐾, averaged over the 

entire spectrum, the direct surface-to-surface exchange area, previously introduced in 

Equation (S4), becomes: 

𝑠𝑖𝑠𝑗̅̅ ̅̅ = ∯ ∯
𝑒−𝐾𝑟

𝜋𝑟2
𝑐𝑜𝑠𝜑𝑖𝑐𝑜𝑠𝜑𝑗𝑑𝐴𝑗𝑑𝐴𝑖

𝐴𝑗𝐴𝑖

 (S17) 

 

 

and the direct gas-to-surface exchange area is introduced as: 

𝑠𝑖𝑔𝑗̅̅ ̅̅ ̅ = ∯ ∰ 𝐾
𝑒−𝐾𝑟

𝜋𝑟2
𝑐𝑜𝑠𝜑𝑖𝑑𝑉𝑗

 

𝑉𝑗

𝑑𝐴𝑖
𝐴𝑖

 (S18) 

 

 

Solving the aforementioned integrals is time consuming. Additionally, the integra-

tion as to be reperformed every time the absorption coefficient changes, e.g., when the 

composition or the temperature of the participating gas changes. This is typically pre-

vented by introducing the concept of the mean beam length, 𝐿. The transmissivity defined 

as 𝜏 = 𝑒−𝐾𝐿, becomes a constant value and can be placed out of the integral. 

𝑠𝑖𝑠𝑗̅̅ ̅̅ = 𝑒−𝐾𝐿∯ ∯
𝑐𝑜𝑠𝜑𝑖𝑐𝑜𝑠𝜑𝑗

𝜋𝑟2
𝑑𝐴𝑗𝑑𝐴𝑖

𝐴𝑗𝐴𝑖

= 𝜏𝐴𝑖𝐹𝑖𝑗  (S19) 

 

 

The electric circuit analogy for the tube-in-box problem, described in Figure 4, is vis-

ualized in Figure S2. 

 

Figure S2. Electric circuit analogy for a configuration with one sink surface and an adiabatic re-

fractory surface. 

The direct exchange areas for the electric circuit analogy, shown in Figure S2, are 

given by: 

{
 
 

 
 

𝑠1𝑠1̅̅ ̅̅ ̅ = 𝐴1𝐹11𝜏
𝑠1𝑠2̅̅ ̅̅ ̅ = 𝐴1𝐹12𝜏
𝑠2𝑠2̅̅ ̅̅ ̅̅ = 𝐴2𝐹22𝜏

𝑠1𝑔̅̅̅̅̅ = (𝐴1𝐹11 + 𝐴1𝐹12)(1 − 𝜏)

𝑠2𝑔̅̅ ̅̅ ̅ = (𝐴2𝐹21 + 𝐴2𝐹22)(1 − 𝜏)

 (S20) 

 

 

For the simplified tube-in-box model, the primary example in the corresponding pa-

per, the direct exchange areas can be simplified as a consequence of the symmetry of the 

problem. As the central tube is convex, the view factor matrix simplifies to: 

𝐹 = [
𝐹11 𝐹12
𝐹21 𝐹22

] = [
0 1

𝐴1 𝐴2⁄ 1 − 𝐴1 𝐴2⁄
] (S21) 
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By substituting the view factors of the tube-in-box model into the general formulation 

of the direct exchange areas for two surfaces, Equation (S21) can be simplified to: 

{
 
 

 
 

𝑠1𝑠1̅̅ ̅̅ ̅ = 0
𝑠1𝑠2̅̅ ̅̅ ̅ = 𝐴1𝜏

𝑠2𝑠2̅̅ ̅̅ ̅̅ = 𝐴2(1 − 𝐴1 𝐴2⁄ )𝜏

𝑠1𝑔̅̅̅̅̅ = 𝐴1(1 − 𝜏)

𝑠2𝑔̅̅ ̅̅ ̅ = 𝐴2(1 − 𝜏)

 (S22) 

 

 

The total resistance of the electric circuit corresponding to the tube-in-box problem, 

visualized in Figure S2, gives: 

𝑄𝐺1,𝑡𝑜𝑡 =
𝐸𝑔 − 𝐸1

𝑅𝑡𝑜𝑡
 with 𝑅𝑡𝑜𝑡 =

1

(
1
𝑅1
) + (

1
𝑅2 + 𝑅3

)
+ 𝑅4 (S23) 

⇔ 𝑅𝑡𝑜𝑡 =
1

1
𝐴1(1 − 𝜏)

+
1

𝐴2(1 − 𝜏) + 𝐴1𝜏 

+ (1 − 𝜀1) 𝜀1𝐴1⁄  

 

The electric circuit where energy is transferred from the gas to the reactor tube (from 

source to sink) consists of four resistances. Energy is either transferred directly from the 

gas to the coil, determined by 𝑅2, or is transferred from the gas to the refractory wall and 

consequently to the coil, corresponding to two resistances in series, 𝑅2 and 𝑅3. These two 

options, on the one hand directly from gas to coil or on the other hand from gas to coil 

through reflection or absorption and re-emission of the refractory wall, are regarded as 

two resistances in parallel. One final resistance, 𝑅4, is determined by the receiving surface 

emissivity, 𝜀1. 

5. Total Surface-to-Surface Exchange Area in the Presence of a Gray Gas 

In analogy to Equation (S9), the total incoming radiation in the presence of a partici-

pating gas can be expressed as: 

𝐴𝑖
𝐽𝑖 − 𝜀𝑖𝐸𝑖
𝜌𝑖

=∑𝐽𝑗𝑠𝑗𝑠𝑖̅̅ ̅̅

𝑗

+ 𝑔𝑠𝑖̅̅ ̅̅ 𝐸𝑔 (S24) 

 

 

which transforms into the following matrix for a two-surface problem in the presence of 

a gray gas: 

[
𝑠1𝑠1̅̅ ̅̅ ̅ − 𝐴1/𝜌1 𝑠1𝑠2̅̅ ̅̅ ̅

𝑠1𝑠2̅̅ ̅̅ ̅ 𝑠2𝑠2̅̅ ̅̅ ̅̅ − 𝐴2/𝜌2
] . [
𝐽1
𝐽2
] = [

−𝐴1𝜀1𝐸1/𝜌1 − 𝑔𝑠1̅̅ ̅̅ ̅𝐸𝑔
−𝐴2𝜀2𝐸2/𝜌2 − 𝑔𝑠2̅̅ ̅̅ ̅𝐸𝑔

] (S25) 

 

 

The total surface-to-surface and gas-to-surface exchange areas are derived in analogy 

to Equations (S13) and (S14). 

𝑆1𝑆2̅̅ ̅̅ ̅̅ =
𝐴1𝜀1𝜀2𝐹12

1 𝜏⁄ + 𝜏𝜌1𝜌2(1 − 𝐹12 𝐶2⁄ ) − 𝜌1(1 − 𝐹12) − 𝜌2(1 − 𝐹21)
 

𝑆1𝑆1̅̅ ̅̅ ̅̅ =
𝐴1𝜀1

2(𝐹11 + 𝜌2𝜏(𝐹12 𝐶2⁄ − 1))

1 𝜏⁄ + 𝜏𝜌1𝜌2(1 − 𝐹12 𝐶2⁄ ) − 𝜌1(1 − 𝐹12) − 𝜌2(1 − 𝐹21)
 

𝑆2𝑆2̅̅ ̅̅ ̅̅ =
𝐴2𝜀2

2(𝐹22 + 𝜌1𝜏(𝐹12 𝐶2⁄ − 1))

1 𝜏⁄ + 𝜏𝜌1𝜌2(1 − 𝐹12 𝐶2⁄ ) − 𝜌1(1 − 𝐹12) − 𝜌2(1 − 𝐹21)
 

𝐺𝑆1̅̅ ̅̅ ̅ =
𝐴1𝜀1(1 − 𝜏)(1 𝜏⁄ + 𝜌2(𝐹12 𝐶2⁄ − 1)) 

1 𝜏⁄ + 𝜏𝜌1𝜌2(1 − 𝐹12 𝐶2⁄ ) − 𝜌1(1 − 𝐹12) − 𝜌2(1 − 𝐹21)
 

𝐺𝑆2̅̅ ̅̅ ̅ =
𝐴2𝜀2(1 − 𝜏)(1 𝜏⁄ + 𝜌1(𝐹12 𝐶2⁄ − 1))

1 𝜏⁄ + 𝜏𝜌1𝜌2(1 − 𝐹12 𝐶2⁄ ) − 𝜌1(1 − 𝐹12) − 𝜌2(1 − 𝐹21)
 

(S26) 

with 𝐶2 = 𝐴2 𝐴𝑡𝑜𝑡⁄  and 𝐴𝑡𝑜𝑡 = 𝐴1 + 𝐴2. 
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Substitution of the view factor matrix for the tube-in-box model, Equation (S21), in 

the aforementioned Equation (S26), results in the final total exchange areas for the tube-

in-box geometry: 

𝑆1𝑆2̅̅ ̅̅ ̅̅ =
𝐴1𝜀1𝜀2
𝐷

 

(S27) 
𝐺𝑆1̅̅ ̅̅ ̅ =

𝐴1𝜀1𝜀𝐺(1 𝜏⁄ + 𝜌2 𝐴1 𝐴2⁄ ) 

𝐷
 

𝐺𝑆2̅̅ ̅̅ ̅ =
𝐴2𝜀2𝜀𝐺(1 𝜏⁄ + 𝜌1 𝐴1 𝐴2⁄ )

𝐷
 

𝐺𝑆2̅̅ ̅̅ ̅ =
𝐴2𝜀2𝜀𝐺(1 𝜏⁄ + 𝜌1 𝐴1 𝐴2⁄ )

𝐷
 

with 𝐷 = 1 𝜏⁄ − 𝜌2 [1 −
𝐴1
𝐴2
(1 − 𝜏𝜌1)] 

 

 

 

In the tube-in-box model, the enclosing surface is assumed to be adiabatic, indicating 

that all incoming energy will have to be redirected: 

𝑄𝐺1,𝑡𝑜𝑡 = 𝐺𝑆1̅̅ ̅̅ ̅(𝐸𝑔 − 𝐸1) + 𝐺𝑆2̅̅ ̅̅ ̅(𝐸𝑔 − 𝐸2) = (𝐺𝑆1̅̅ ̅̅ ̅ +
1

1
𝐺𝑆2̅̅ ̅̅ ̅ +

1
𝑆1𝑆2̅̅ ̅̅ ̅̅

) (𝐸𝑔 − 𝐸1)  

since 𝐺𝑆2̅̅ ̅̅ ̅(𝐸𝑔 − 𝐸2) = 𝑆1𝑆2̅̅ ̅̅ ̅̅ (𝐸2 − 𝐸1) ⇔ 𝐸2 =
𝐺𝑆2̅̅ ̅̅ ̅𝐸𝑔 + 𝑆1𝑆2̅̅ ̅̅ ̅̅ 𝐸1

𝑆1𝑆2̅̅ ̅̅ ̅̅ + 𝐺𝑆2̅̅ ̅̅ ̅
 

(S28) 

 

 

This total surface-to-surface exchange area solution proves to be a valuable alterna-

tive to the electric circuit approach when more surfaces are present. 

6. Total Surface-to-Surface Exchange Area in the Presence of a Gray-Plus-Clear Gas 

A radiating gas departs from grayness in two ways [7]. 

• Its transmittance 𝜏 along successive path lengths due to surface reflection keeps 

increasing, while it remains constant for a gray gas. At wavelengths with high 

absorption the incremental absorption decreases with increasing path length. 

• Gas emissivity, 𝜀𝐺, and gas absorptivity, 𝛼𝐺, have different values unless the gas 

temperature equals the temperature of the radiating surface. 

For a gas and an enclosing black surface, the concept of equivalent gray gas emissiv-

ity is introduced to circumvent this issue: 

𝑄𝐺𝑆1 = 𝜀𝐺𝐸𝐺 − 𝛼𝐺𝐸1 ≡ 𝜀𝐺,𝑒(𝐸𝐺 − 𝐸1) with 𝜀𝐺,𝑒 =
𝜀𝐺𝐸𝐺−𝛼𝐺𝐸1

𝐸𝐺−𝐸1
 (S29) 

 

In the weighted sum of gray gasses model, the gas emissivity, 𝜀𝐺, is expressed as a 

weighted sum of gray gas emissivities in (n + 1) wavelength bands: 

𝜀𝐺 =∑𝑎𝑖𝜀𝐺,𝑖

𝑛

0

=∑𝑎𝑖(1 − 𝑒
−𝐾𝑖𝐿)

𝑛

0

 with ∑ 𝑎𝑖
𝑛

0
= 1 (S30) 

 

 

In the following calculations, the gray-plus-clear simplification is used. Introducing 

one clear and one absorption band, Equation (S30) becomes: 

𝜀𝐺(𝐿) = 𝑎1(1 − 𝑒
−𝐾1𝐿) + 𝑎2(1 − 𝑒

−𝐾2𝐿) (S31) 
 

 

with 𝐾1 = 0 and 𝑎2 ≠ 0, to satisfy the one clear and one absorption band assumption. 

Equation (S31) simplifies to: 

𝜀𝐺(𝐿) = 𝑎(1 − 𝑒
−𝐾𝐿) = 𝑎(1 − 𝜏) (S32) 
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The parameter 𝑎 can be determined by calculating the gas phase absorptivity, 𝜀𝐺, 

for two different path lengths. 

{
𝜀𝐺(𝐿) = 𝑎(1 − 𝜏) 

𝜀𝐺(2𝐿) = 𝑎(1 − 𝑒
−2𝐾𝐿) = 𝑎(1 − 𝜏2) = 𝑎(1 − 𝜏)(1 + 𝜏) = 𝜀𝐺(𝐿)(1 + 𝜏)

 (S33) 

 

 

In this set of equations, the transmissivity, 𝜏, and coefficient, 𝑎, representing the to-

tal energy fraction of the blackbody energy distribution emitted in the non-clear absorp-

tion band, are the only two unknowns. 

The electric circuit analogy is no longer valid when working with non-gray gasses. 

There is no longer “one type of current”, since an emitting surface emits partly in the clear 

window and partly in one of the absorbing wavelength bands. For the gray-plus-clear gas 

assumption, all absorbing wavelength bands are lumped, resulting in just one transparent 

and one absorbing wavelength band. The total surface-to-surface and gas-to-surface ex-

change areas are then calculated from: 

𝑆1𝑆2̅̅ ̅̅ ̅̅ ′ = (1 − 𝑎)
𝐴1𝜀1𝜀2𝐹12

1 + 𝜌1𝜌2(1 − 𝐹12 𝐶2⁄ ) − 𝜌1(1 − 𝐹12) − 𝜌2(1 − 𝐹21)

+ 𝑎
𝐴1𝜀1𝜀2𝐹12

1 𝜏⁄ + 𝜏𝜌1𝜌2(1 − 𝐹12 𝐶2⁄ ) − 𝜌1(1 − 𝐹12) − 𝜌2(1 − 𝐹21)
 

𝐺𝑆1̅̅ ̅̅ ̅′ =
𝐴1𝜀1𝜀𝐺,𝑒(1 𝜏⁄ + 𝜌2(𝐹12 𝐶2 − 1⁄ ))

1 𝜏⁄ + 𝜏𝜌1𝜌2(1 − 𝐹12 𝐶2⁄ ) − 𝜌1(1 − 𝐹12) − 𝜌2(1 − 𝐹21)
 

𝐺𝑆2̅̅ ̅̅ ̅′ =
𝐴2𝜀2𝜀𝐺,𝑒(1 𝜏⁄ + 𝜌1(𝐹12 𝐶2 − 1⁄ ))

1 𝜏⁄ + 𝜏𝜌1𝜌2(1 − 𝐹12 𝐶2⁄ ) − 𝜌1(1 − 𝐹12) − 𝜌2(1 − 𝐹21)
 

(S34) 

hereby accounting for the corrected transmissivity in the absorption band 𝜏 = 1 − 𝜀𝐺,𝑒 𝑎⁄  

When the view factors of the tube-in-box model, Equation (S21), are taken into ac-

count the total exchange areas are calculated as: 

𝑆1𝑆2̅̅ ̅̅ ̅̅ ′ = (1 − 𝑎)
𝐴1𝜀1𝜀2

1 − 𝜌2(1 − 𝜀1 𝐴1 𝐴2⁄ )
+ 𝑎

𝐴1𝜀1𝜀2
𝐷

 

𝐺𝑆1̅̅ ̅̅ ̅′ =
𝐴1𝜀1𝜀𝐺,𝑒(1 𝜏⁄ + 𝜌2 𝐴1 𝐴2⁄ )

𝐷
 

𝐺𝑆2̅̅ ̅̅ ̅′ =
𝐴2𝜀2𝜀𝐺,𝑒(1 𝜏⁄ + 𝜌1 𝐴1 𝐴2⁄ )

𝐷
 

with 𝐷 = 1 𝜏⁄ − 𝜌2 [1 −
𝐴1
𝐴2
(1 − 𝜏𝜌1)] 

(S35) 

Gray gas and gray-plus-clear gas radiative heat transfer simulations are performed 

in the corresponding paper for the tube-in-box demonstration case. The goal is to high-

light the effect of the boundary emissive properties, 𝜀1 and 𝜀2, on the radiative heat trans-

fer from a participating gas to a central heat sink. The effect of the boundary wall emissive 

properties on the radiative heat transfer is far from understood and this approach aims to 

show the working principle behind high emissivity coatings. The conclusion is that a gray 

gas model suffices to capture the heat sink behavior of a reactor coil, but a non-gray gas 

model, that is able to account for the absorption and re-emission in specific bands, is nec-

essary to accurately model the benefits of applying a high emissivity coating on the fur-

nace wall. A high emissivity coating on a refractory wall increases the probability of ab-

sorbing radiation in a non-clear window and consequently re-emitting the radiation in a 

clear window where the probability increases to reach the heat sink. 
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