Soiling Effect Mitigation Obtained by Applying Transparent Thin-Films on Solar Panels: Comparison of Different Types of Coatings
Abstract
:1. Introduction
2. Hydrophilic Coatings
3. Hydrophobic Coatings
4. A Study of Hydrophobic Coatings Available on the Polish Market
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Hasan, A. A new correlation for direct beam solar radiation received by photovoltaic panel with sand dust accumulated on its surface. Sol. Energy 1998, 63, 323–333. [Google Scholar] [CrossRef]
- Elminir, H.K.; Ghitas, A.E.; Hamid, R.; El-Hussainy, F.; Beheary, M.; Abdel-Moneim, K.M. Effect of dust on the transparent cover of solar collectors. Energy Convers. Manag. 2006, 47, 3192–3203. [Google Scholar] [CrossRef]
- Beattie, N.S.; Moir, R.S.; Chacko, C.; Buffoni, G.; Roberts, S.H.; Pearsall, N.M. Understanding the effects of sand and dust accumulation on photovoltaic modules. Renew. Energy 2012, 48, 448–452. [Google Scholar] [CrossRef] [Green Version]
- Al-Hasan, A.; Ghoneim, A.A. A new correlation between photovoltaic panels efficiency and amount of sand dust accumulated on their surface. Int. J. Sustain. Energy 2005, 24, 187–197. [Google Scholar] [CrossRef]
- Rao, A.; Pillai, R.; Mani, M.; Ramamurthy, P. Influence of dust deposition on photovoltaic panel performance. Energy Procedia 2013, 54, 690–700. [Google Scholar] [CrossRef] [Green Version]
- Aïssa, B.; Isaifan, R.J.; Madhavan, V.E.; Abdallah, A.A. Structural and physical properties of the dust particles in Qatar and their influence on the PV panel performance. Sci. Rep. 2016, 6, 31467. [Google Scholar] [CrossRef]
- Shi, C.; Yu, B.; Liu, D.; Wu, Y.; Li, P.; Chen, G.; Wang, G. Effect of high-velocity sand and dust on the performance of crystalline silicon photovoltaic modules. Sol. Energy 2020, 206, 390–395. [Google Scholar] [CrossRef]
- Yadav, S.; Bajpai, U. Variation in the performance of solar photovoltaic power plant due to climatic parameters in composite climatic zone. IJETER 2017, 5, 67–72. [Google Scholar]
- Khodakaram-Tafti, A.; Yaghoubi, M. Experimental study on the effect of dust deposition on photovoltaic performance at various tilts in semi-arid environment. Sustain. Energy Technol. Assess. 2020, 42, 100822. [Google Scholar] [CrossRef]
- Abderrezek, M.; Fathi, M. Experimental study of the dust effect on photovoltaic panels’ energy yield. Sol. Energy 2017, 142, 308–320. [Google Scholar] [CrossRef]
- Gholami, A.; Saboonchi, A.; Alemrajabi, A.A. Experimental study of factors affecting dust accumulation and their effects on the transmission coefficient of glass solar applications. Renew. Energy 2017, 112, 466–473. [Google Scholar] [CrossRef]
- Styszko, K.; Jaszczur, M.; Teneta, J.; Hassan, Q.; Burzyńska, P.; Marcinek, E.; Łopian, N.; Samek, L. An analysis of the dust deposition on solar photovoltaic modules. Environ. Sci. Pollut. Res. 2019, 26, 8393–8401. [Google Scholar] [CrossRef] [Green Version]
- Abdeen, E.; Orabi, M.; Hasaneen, E.S. Optimul tilt angle for photovoltaic system in desert environment. Sol. Energy. 2017, 155, 267–280. [Google Scholar] [CrossRef]
- Jaszczur, M.; Teneta, J.; Styszko, K.; Hassan, Q.; Burzyńska, P.; Marcinek, E.; Łopian, N. The field experiments and model of the natural dust deposition effects on photovoltaic module efficiency. Environ. Sci. Pollut. Res. Int. 2019, 26, 8402–8417. [Google Scholar] [CrossRef] [Green Version]
- LONGi Solar Technology Co., LTD. Installation Manual for LONGi Solar PV Modules, V03. Available online: https://www.tim.pl/fileuploader/download/download/?d=1&file=GLOWNA%2F0001%2F000%2F13%2F628%2F65%2F0001_00013_62865_8.pdf (accessed on 24 January 2021).
- JA Solar Holdings Co., LTD. JA Solar PV Modules Installation Manual, Regular Modules. Available online: https://www.jasolar.com.cn/uploadfile/2019/0129/20190129030900765.pdf (accessed on 24 January 2021).
- Aleo Solar GmbH. Quick Referance Manual for the Aleo Modules. Quick Reference Manual Rel. 4.2, 08/2015, en-GB-DE (1) JD00000 10-EN. Available online: https://www.aleo-solar.com/app/uploads/sites/7/2016/02/quick-reference-manual_-V4.2.pdf (accessed on 24 January 2021).
- Chint Solar (Zhejiang) Co., LTD. Crystalline Silicon PV Module Installation Manual. Available online: http://www.chint.com/zh/upload/data/201910-31/150138418100001646.pdf (accessed on 21 January 2021).
- SANYO Electric Co., LTD. Panasonic. General Installation Manual. Photovoltaic Module HITTM. IME002-0918-2. Available online: https://eu-solar.panasonic.net/cps/rde/xbcr/solar_en/2019_VBHNxxxSJ25_40_46_47_installation_manual_EN.pdf (accessed on 21 January 2021).
- Sarver, T.; Al-Qaraghuli, A.; Kazmerski, L.L. A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches. Renew. Sust. Energ. Rev. 2013, 22, 698–733. [Google Scholar] [CrossRef]
- Aranzabe, E.; Azpitarte, I.; Fernández-García, A.; Argüelles-Arízcun, D.; Pérez, G.; Ubach, J.; Sutter, F. Hydrophilic anti-soiling coating for improved efficiency of solar reflectors. AIP Conf. Proc. 2018, 2033, 220001. [Google Scholar]
- Atkinson, C.; Sansom, C.L.; Almond, H.J.; Shaw, C.P. Coatings for concentrating solar systems—A review. Renew. Sust. Energ. Rev. 2015, 45, 113–122. [Google Scholar] [CrossRef]
- Hee, J.Y.; Kumar, L.V.; Danner, A.J.; Yang, H.; Bhatia, C.S. The effect of dust on transmission and self-cleaning property of solar panels. Energy Procedia 2012, 15, 421–427. [Google Scholar] [CrossRef] [Green Version]
- De Jesus, M.A.; da Silva Neto, J.T.; Timò, G.; Paiva, P.R.; Dantas, M.S.; de Mello Ferreira, A. Superhydrophilic self-cleaning surfaces based on TiO2 and TiO2/SiO2 composite films for photovoltaic module cover glass. Appl. Adhes. Sci. 2015, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Jang, G.G.; Smith, D.B.; Polizos, G.; Collins, L.; Keum, J.K.; Lee, D.F. Transparent superhydrophilic and superhydrophobic nanoparticle textured coatings: Comparative study of anti-soiling performance. Nanoscale Adv. 2019, 1, 1249–1260. [Google Scholar] [CrossRef] [Green Version]
- Nabemoto, K.; Sakurada, Y.; Ota, Y.; Takami, K.; Nagai, H.; Tamura, K.; Araki, K.; Nishioka, K. Effect of anti-soiling layer coated on poly(methyl methacrylate) for concentrator photovoltaic modules. Jpn. J. Appl. Phys. 2012, 51, 10ND11. [Google Scholar] [CrossRef]
- Sueto, T.; Ota, Y.; Nishioka, K. Supression of dust adhesion on a concentrator photovoltaic module using an anti-soiling photocatalytic coating. Sol. Energy 2013, 97, 414–417. [Google Scholar] [CrossRef]
- Canete, C.T.; Moreno-Saez, R.; Carretero, J.; Piliougine, M.; Sidrach-de-Cardona, M.; Hirose, J.; Ogawa, S. Comparative analysis of energy produced by photovoltaic modules with anti-soiling coating surface in arid climates. In Proceedings of the Fourth International Conference on Applied Energy, Jiangsu, China, 5–8 July 2012; pp. 3678–3684. [Google Scholar]
- Mondal, B.; Eain, M.M.G.; Xu, Q.; Egan, V.M.; Punch, J.; Lyons, A.M. Design and fabrication of a hybrid superhydrophobic-hydrophilic surface that exhibits stable dropwise condensation. ACS Appl. Mater. Interfaces 2015, 7, 23575–23588. [Google Scholar] [CrossRef]
- Nayshevsky, I.; Xu, Q.; Lyons, A.M. Hydrophobic-hydrophilic surfaces exhibiting dropwise condensation for anti-soiling application. IEEE J. Photovolt. 2018, 9, 302–307. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, Z. Droplet growth model for dropwise condensation on concave hydrophobic surfaces. ACS Omega 2020, 5, 22560–22567. [Google Scholar] [CrossRef]
- Bahattab, M.A.; Alhomoudi, I.A.; Alhussaini, M.I.; Mirza, M.; Hegmann, J.; Glaubitt, W.; Löbmann, P. Anti-soiling surfaces for PV applications prepared by sol-gel processing: Comparison of laboratory testing and outdoor exposure. Sol. Energy Mater. Sol. Cells 2016, 157, 422–428. [Google Scholar] [CrossRef]
- Polizos, G.; Sharma, J.K.; Smith, D.B.; Tuncer, E.; Park, J.; Voylov, D.; Sokolov, A.P.; Meyer, H.M.; Aman, M. Anti-soiling and highly transparent coatings with multi-scale features. Sol. Energy Mater. Sol. Cells 2018, 188, 255–262. [Google Scholar] [CrossRef]
- Quan, Y.Y.; Zhang, L.Z. Experimental investigation of the anti-dust effect of transparent hydrophobic coatings applied for solar cell covering glass. Sol. Energy Mater. Sol. Cells 2017, 160, 382–389. [Google Scholar] [CrossRef]
- De Jesus, M.A.; Timò, G.; Agustín-Sáenz, C.; Braceras, I.; Cornelli, M.; de Mello Ferreira, A. Anti-soiling coatings for solar cell cover glass: Climate and surface properties influence. Sol. Energy Mater. Sol. Cells 2018, 185, 517–523. [Google Scholar] [CrossRef]
No. | Product | Description of the Coating | Manufacturer |
---|---|---|---|
1 | No coating | - | - |
2 | Nano Window | Suitable for: glass Expected durability: 1 year Price of 100 mL: 7.37 USD | Hadwao Nanotechnologia |
3 | Nano Window Plus | Suitable for: glass Expected durability: 3 years Price of 100 mL: 11.39 USD | Hadwao Nanotechnologia |
4 | Nano Solar | Suitable for: glass coverage in PV modules and solar collectors Expected durability: 1 years Price of 100 mL: 9.25 USD | Hadwao Nanotechnologia |
5 | Nanocape Solar | Suitable for: glass coverage in PV modules and solar collectors Expected durability: not specified Price of 100 mL: 9.38 USD | Nanosolution |
6 | Eco hydrophobic impregnate | Suitable for: glass coverage in PV modules and solar collectors; ceramic roof tiles Expected durability: 1–3 years Price of 100 mL: 27.88 USD | H2O Nanotechnology |
7 | Nanostone Home Panel PV protection | Suitable for: glass coverage in PV modules and solar collectors Expected durability: 2 years Price of 100 mL: 31.90 USD | P&K J. Marciniak P. Bzukała |
8 | Nanostone Home Windows protection | Suitable for: glass Expected durability: 3 years Price of 100 mL: 29.97 USD | P&K J. Marciniak P. Bzukała |
9 | Nanostone Home Shower protection | Suitable for: glass; ceramic Expected durability: 2 years Price of 100 mL: 26.54 USD | P&K J. Marciniak P. Bzukała |
Soil Number | Description | Coordinates |
---|---|---|
1 | Taken from roads nearby the Chemistry C GUT building | 54°37″ N 18°62″ E |
2 | Taken from a sandy beach area near the walking pier in Gdansk | 54°41″ N 18°64″ E |
3 | Taken from a sandy beach area near the tram loop in Gdansk | 54°41″ N 18°62″ E |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudnicka, M.; Klugmann-Radziemska, E. Soiling Effect Mitigation Obtained by Applying Transparent Thin-Films on Solar Panels: Comparison of Different Types of Coatings. Materials 2021, 14, 964. https://doi.org/10.3390/ma14040964
Rudnicka M, Klugmann-Radziemska E. Soiling Effect Mitigation Obtained by Applying Transparent Thin-Films on Solar Panels: Comparison of Different Types of Coatings. Materials. 2021; 14(4):964. https://doi.org/10.3390/ma14040964
Chicago/Turabian StyleRudnicka, Małgorzata, and Ewa Klugmann-Radziemska. 2021. "Soiling Effect Mitigation Obtained by Applying Transparent Thin-Films on Solar Panels: Comparison of Different Types of Coatings" Materials 14, no. 4: 964. https://doi.org/10.3390/ma14040964
APA StyleRudnicka, M., & Klugmann-Radziemska, E. (2021). Soiling Effect Mitigation Obtained by Applying Transparent Thin-Films on Solar Panels: Comparison of Different Types of Coatings. Materials, 14(4), 964. https://doi.org/10.3390/ma14040964