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Abstract: In the injection molding field, the flow of plastic material is one of the most important
issues, especially regarding the ability of melted plastic to fill the thin walls of products. To improve
the melt flow length, a high mold temperature was applied with pre-heating of the cavity surface. In
this paper, we present our research on the injection molding process with pre-heating by external
gas-assisted mold temperature control. After this, we observed an improvement in the melt flow
length into thin-walled products due to the high mold temperature during the filling step. In
addition, to develop the heating efficiency, a flow focusing device (FFD) was applied and verified.
The simulations and experiments were carried out within an air temperature of 400 ◦C and heating
time of 20 s to investigate a flow focusing device to assist with external gas-assisted mold temperature
control (Ex-GMTC), with the application of various FFD types for the temperature distribution of
the insert plate. The heating process was applied for a simple insert model with dimensions of
50 mm × 50 mm × 2 mm, in order to verify the influence of the FFD geometry on the heating result.
After that, Ex-GMTC with the assistance of FFD was carried out for a mold-reading process, and the
FFD influence was estimated by the mold heating result and the improvement of the melt flow length
using acrylonitrile butadiene styrene (ABS). The results show that the air sprue gap (h) significantly
affects the temperature of the insert and an air sprue gap of 3 mm gives the best heating rate, with
the highest temperature being 321.2 ◦C. Likewise, the actual results show that the height of the flow
focusing device (V) also influences the temperature of the insert plate and that a 5 mm high FFD
gives the best results with a maximum temperature of 332.3 ◦C. Moreover, the heating efficiency
when using FFD is always higher than without FFD. After examining the effect of FFD, its application
was considered, in order to improve the melt flow length in injection molding, which increased from
38.6 to 170 mm, while the balance of the melt filling was also clearly improved.

Keywords: injection molding; mold temperature control; external gas-assisted mold temperature
control (Ex-GMTC); cavity temperature distribution; flow focusing device (FFD); melt flow length;
heating rate; temperature uniformity

1. Introduction

In today’s industries, with the development of a wide range of product geometries,
injection molding has become known as one of the most popular plastic manufacturing
processes because of its low-cost advantages and high efficiency. In general, an injection
molding cycle includes three stages. In the first stage of the process, the liquid melt is
created by heating the raw material in an injection molding machine. Then, the formation
of the plastic product is carried out by pressing the hot melt into the cavity. At the final
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stage, after the cooling time, the mold reaches the ejection temperature and it is ready
to open, meaning that the product can be removed. It can be seen that the hot melt
filling step is very important for the shaping of the parts, as well as in relation to the
quality of the product itself. This step depends on several elements, such as the material
viscosity, melt temperature, melt flow thickness, injection pressure, injection speed, and
mold temperature. In recent studies, for improving the melt flow ability and reducing the
injection pressure, a molding cycle with a high mold temperature has been investigated.
The results show that with a higher cavity temperature, the melt can flow into the narrow
cavity more easily, but this leads to a longer cooling time. In contrast, with a lower
cavity temperature, the cooling step is completed more rapidly, and it is difficult to fill
the cavity with the hot melt because of the appearance of frozen layers [1]. Due to the
higher demands of customers in today’s industries in terms of the product quality and
complex product geometries, the mold temperature control method has been considered
as one of the most effective technologies for solving the problems that occur during the
filling step in the injection molding process [2,3]. For example, the mold temperature for
manufacturing micro products or thin-walled products must be high in the filling step to
meet its requirements, but a short cycle time must be maintained. Therefore, a variety of
methods have been tested for increasing the mold temperature.

In the primary study, the steam heating method was implemented with a hot fluid
flowing inside the mold and a cooling channel, in order to increase the mold temperature
to the expected value. For an expected mold temperature under 100 ◦C, hot water was
employed; however, when the mold temperature was higher than 100 ◦C, another fluid was
used, such as hot oil, steam, or water under high pressure. In general, during the heating
process, these methods require the addition of mold equipment and the high pressure of
the fluid should be maintained throughout the operation time [4,5].

When the heating target is higher than 100 ◦C, the mold plate is often heated by
electronic heaters [6]. This is a popular solution for raising the mold temperature; however,
this method often causes the mold cycle to become longer. As a result, the use of many
cooling channels was suggested for the cooling step. In previous research, after the heating
process, a mold temperature of 150 ◦C could be reached and the results also indicate a
significant reduction in the number of frozen layers [7,8]. However, this method also
requires additional heating sources and tool costs for mold design.

Due to energy wasted when the heating step was applied for all mold plate volumes,
mold surface heating methods were suggested, such as infrared heating, laser heating,
induction heating, and gas heating. The results showed an improvement in the energy
consumption and heating rate using an infrared system in the heating process. In this way,
the center of the mold surface could reach over 180 ◦C after the heating process [9–11]. For
microinjection molding, laser heating was considered for mold temperature control [12,13]
because it is advantageous for small products with a high heating rate; however, this
method required coating of the cavity surface and additional equipment. In addition,
induction heating was suggested as a method that had a rapid heating rate with a proper
coil design [14]. The induction heating method was verified with several heating methods,
such as proximity heating [15,16], ring heating [17], and coil heating [18]. The heating
process with the application of the induction heating method is easy to predict using a
simulation; however, this method also remains disadvantageous due to the requirement
for proper coil design and the potential for over-heating, as well as the fact that aluminum
plates are hardly suitable for heating using this method.

In addition, and in relation to surface heating, gas-assisted mold temperature control
(GMTC) was investigated [19–21]. In this heating method, the mold temperature reaches
the target value due to the heat convection between the cavity surface and the hot gas
that flows into the cavity. The results proved that the cavity surface could be increased to
over 200 ◦C. However, the requirement for a complex mold structure design because of
the heating system integrated into the mold is also a problem that needs to be resolved in
further research. Then, because of the drawbacks of GMTC, external GMTC (Ex-GMTC)
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was suggested, with the hot gas sprue being directly applied to the cavity surface for
heating before the start of the next molding cycle [22]. This development does possess
some advantages, such as its higher heating rate and better temperature distribution
for many cavity geometries, and the fact that easier local heating of the mold plate is
possible. Ex-GMTC has also succeeded in improving the weld line quality [23] and melt
flow length [24]. However, these studies also show that Ex-GMTC is strongly influenced by
the environment, as air flows from another source, meaning that the hot gas can be easily
dispersed and, consequently, the heating efficiency and heating stability are reduced.

According to these disadvantages, in this paper, a flow focusing device (FFD) was
suggested for controlling the hot gas flow, in order to improve the heating rate and mold
temperature. To achieve this, the FFD was applied to investigate the factors that affect the
temperature distribution on the insert plate in various simulations and experiments during
the gas heating process, such as the air sprue gap, the height of the FFD, and the number
of outlet holes on the side and top surfaces of the air cover. In addition, an application
of FFD to improve the melt flow length was also conducted. The heating process was
achieved with four hot gas gates on a melt flow length mold. In this application, an FFD
was designed and manufactured for application in four hot gas gates. After finishing the
injection molding process, the melt flow length was measured to observe the influence of
Ex-GMTC with the application of FFD on the melt flow length. In all cases, simulations
were used to predict the heating rate and temperature distribution. Experimentally, the
temperature distribution of the cavity surface was determined by the Fluke TiS20 infrared
camera (Fluke Corporation, Everett, Washington, DC, USA). The heating process was
carried out 10 times for each case. After this, the average temperature result was calculated
for a discussion and comparison with the simulation result.

2. Simulation and Experimental Methods
2.1. Experimental Methods

In this study, the Ex-GMTC method was applied in the injection molding process
with five steps, as shown in Figure 1. In step 1, after the molding cycle is finished and the
product is rejected, the two-half molds are moved to the heating position (step 1). Then, the
hot gas source is moved to the heating area, as in step 2. In this step, the insert is separated
from the mold plate to reduce the heat transferred from it to the mold plate. Next, the
heating area is heated by the hot gas that sprues directly into the heating surface of the
insert (step 3). Because of heat convection, the cavity surface receives thermal energy and
its temperature will rise to the expected temperature. At the end of the heating process,
the cavity is maintained at a high temperature. In step 4, when the heating area reaches
the target temperature, the hot gas source is removed to the outside of the molding area.
Then, the two-half molds close after the gas drier is completely removed from the heating
area. In the closing period of the mold, the insert position is moved to the molding location,
in contact with the mold plate (step 5). When the two-half molds are closed, the melt is
pressed so that it fills the cavity, in order to begin a new molding cycle. In this step, due to
the high temperature of the mold surface, the hot melt can easily flow into the cavity.

Figure 2 illustrates the assembly of the heating system, which includes an Ex-GMTC
controller, a hot gas with 12 kW of power, and a cooling system. The robot arm was
controlled by the controller, in order to move the hot gas generator to the heating area. The
outside dimensions of the air drier were 240 mm × 100 mm × 60 mm and this was used
to produce hot air with an inlet air pressure of 0.7 MPa. Then, hot gas flowed out of the
10 mm diameter gas gate. The gas drier system supported a heat source with a maximum
gas temperature of 400 ◦C and a maximum heating time of 60 s.
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Figure 2. Schematic of the external gas-assisted mold temperature control (Ex-GMTC) system 

with the assistance of FFD. 

In this research, for focusing the hot air flow into the heating area, a flow focusing 
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in the heating process was observed to assess the temperature distribution on the insert 
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Figure 1. The heating steps of external gas-assisted mold temperature control with the assistance of a flow focusing device
(FFD) in the injection molding process: Two-half molds are moved to the heating position (1); the hot gas source is moved to
the heating area (2); the heating area is heated by the hot gas (3); the hot gas source is removed (4); and the two-half molds
are closed for starting the molding cycle (5).
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In this research, for focusing the hot air flow into the heating area, a flow focusing
device (FFD) was applied. The design of the FFD is presented in Figure 3. Its application in
the heating process was observed to assess the temperature distribution on the insert plate,
as shown in Figure 4. The insert plate had dimensions of 50 mm × 50 mm and a thickness
of 2 mm. The FFD was connected to the hot gas generator and the insert, as shown in
Figure 5.
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With this structure, to investigate the effect of the air cover on the gas heating process
more specifically, many experimental cases were proposed with different FFD types, as
shown in Figures 6 and 7. For application in the molding process, the distance between the
hot sprue of gas and the cavity surface is an important element, which strongly impacts
the heating rate and temperature distribution, especially with the depth cavity. Therefore,
in this research, the air sprue gap (h) was studied by changing the h from 5 to 15 mm. In
addition, the air focusing volume is also an important element in FFD geometry. With
an FFD volume that is too small, the flow of hot air will be reduced. However, with an
FFD volume that is too large, the focusing function will not be clear. Therefore, in this
paper, the air focusing volume is observed through different FFDs, with the height of the
device (V) ranging from 5 to 15 mm. Figure 6 illustrates the experiment conducted to assess
the impact of the air sprue gap (h) and the height of the flow focusing device (V) on the
efficiency of the gas heating process using many types of air covers with three outlet holes
on the top surface. Moreover, for observing the influence of the outlet gate on the heating
process, the position and number of outlet holes of FFD were also designed, as shown in
Figure 7. This FFD was manufactured with 12 outlet holes at the top and side. Therefore,
depending on each case, these outlet holes were opened or closed, in order to observe the
influence of the location and number of outlet holes on the heating result.
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After investigating the impact of applying an air cover during the heating process,
the air cover was applied to detect the change in the melt flow length when Ex-GMTC
was carried out with and without the application of FFD. A thin-walled model, which is
presented in Figure 8, was observed to assess any development in the melt flow length.
This part had dimensions of 170 mm × 12 mm and a thickness of 0.4 mm. An injection
mold with one cavity was designed and manufactured, as shown in Figure 8. In this
application, the mold was designed with an insert, as shown in Figure 9. A structure with
an insert can help to increase the heating efficiency, while the heating area can also be more
easily controlled. Figure 10 shows the dimensions of the insert. The insert has a thickness
of 3.6 mm in the heating area. To observe the heating effect, the temperature on lines L1
and L2 was collected and compared. In the heating step, the temperature uniformity of the
cavity surface could be increased by the heating of four gates. The element positions of the
heating step are shown in Figure 10. Due to the time taken to remove the gas drier to the
outside of the molding area, as well as the time taken for the infrared camera to measure
the temperature distribution, the experimental results of the temperature distribution were
collected at the end of the heating step, with a delay time of 3 s.

To estimate its application to a real mold, Ex-GMTC with the assistance of FFD, as
shown in Figures 11 and 12, was applied to increase the heating efficiency of the cavity area
before the filling step started. In the experiment, the melt flow length was compared for
the cases of “without heating”, and heating “with” and “without” the FFD, as presented
in Figure 13. In all cases, the initial temperature of the mold insert was set to 30 ◦C.
For the molding experiment, acrylonitrile butadiene styrene (ABS 750SW from Kumho
Petrochemical Company, Seoul, Korea) was used for the molding process, with a filling
pressure of 60 kg/cm2, filling time of 1.5 s, melt temperature of 200 ◦C, and cooling time
of 20 s. In all experiments, the molds and Ex-GMTC module were assembled by means
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of an SW-120B molding machine (Shine Well Machinery Co., Ltd., Taichung City, Taiwan)
and other equipment, as shown in Figure 2. Figure 13 presents the heating step and the
positions of the hot gas generator, hot gas gate, and heating area in the heating step.
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2.2. Simulation Methods

For analyzing the temperature distribution of the mold surface, a simulation model
was built and run using the ANSYS software (ANSYS, Inc., Hochiminh City, Vietnam).
Based on the design of the cavity insert, the simulation models contained two volumes: The
insert and hot gas volumes. Figures 14 and 15 show the meshing model and the boundary
conditions for simulation, whereas the simulation parameters are presented in Table 1. In
the case of the FFD verification model, hot gas was applied at 400 ◦C under a pressure of
7 bar. The direction of this hot gas flow was set perpendicular to the heating surface. In the
simulation, the initial gas volume was set at 30 ◦C with a pressure of 1 atm. The outlet of
the hot gas was set as the opening area, with the environment air at 30 ◦C and a pressure of
1 atm. In addition, the initial temperature of the insert was set at 30 ◦C and was comprised
of P20 steel. For the FFD application model, the simulation model was operated with four
inlets and five outlets of hot gas. In this simulation, the boundary condition was the same
as that used in the FFD verification model. In order to improve the simulation precision, a
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hex-dominant element was used for meshing the insert part. The inflation meshing method
was applied with ten layers at the contact surfaces. Moreover, a tetrahedron element was
used for the air volume, with a smaller element size applied for the inlet and outlet of
the hot air gate. In the simulation, the heat transfer mode around all external surfaces
of the mold plate was set to free convection to the air, with an ambient temperature of
30 ◦C and a heat transfer coefficient of 10 W/m2 K. For comparing the influence of the
FFD on the heating efficiency, the temperature distribution at the heating surface and the
temperature on lines L (Figure 4), L1, and L2 (Figure 10) were collected and compared with
the experimental results. For line L, 65 temperature points were collected. For lines L1 and
L2, 120 temperature points were collected for a comparison with the experimental results.Materials 2021, 14, x 12 of 27 
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Table 1. Parameters employed for the Ex-GMTC simulation.

Parameters Unit Value

Hot air temperature ◦C 400
Density of hot air [25] kg/m3 0.524

Heat capacity of hot air [25] J/kg·K 1068
Thermal expansion coefficient of hot air [25] ×10−3/K 1.52

Density of steel P20 (ASTM A681) kg/m3 7861
Heat capacity of steel P20 (ASTM A681) kJ/kg·K 1926

Thermal conductivity of steel P20 (ASTM A681) W/m·K 41.5
Simulation type - Transient
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3. Results and Discussion
3.1. Influence of the Air Sprue Gap (h) and Height of the Flow Focusing Device (V) on the
Heating Process

Previous studies [22–24] have indicated an improvement in the heating effectiveness
when external GMTC is operated to increase the mold surface temperature. However, this
heating technique is not efficient due to the divergence of the hot gas, as well as the negative
influence of the environment. In this paper, for improving the efficiency of Ex-GMTC,
the application of an FFD in the mold heating process was suggested, with the heating
efficiency being estimated by the temperature distribution on the insert plate. In this step,
for heating the insert plate, one hot gas gate was used. The heating step was simulated
with the model, as shown in Figure 14, with a gas temperature of 400 ◦C and a heating time
of 20 s. Various types of FFDs were used to find the best shape for the heating process.

In previous research, the results showed that the narrower the air sprue gap, the higher
the heating rate. However, the temperature distribution was poor. In this research, the
temperature distribution on line L (Figure 4) was collected and compared via simulations
and experiments. In terms of the simulation, Figure 16 presents the temperature distribution
on the insert surface with different air sprue gaps (h) and with and without the FFD. When
the FFD was used, the height of the FFD was 10 mm and three outlet holes on top were
used. Compared with cases without the FFD, FFD-assisted ex-GMTC proved that the
FFD could help to increase the heating rate due the possibility of hot gas being focused at
the heating area, which helped to heat the insert surface to over 275 ◦C. Meanwhile, for
cases without the FFD, the heating process could only increase the surface temperature to
over 165 ◦C due to the dispersion of hot air to the environment. With the assistance of the
FFD, these results show that the highest temperature was reached with an air sprue gap
of 3 mm and a maximum temperature of 322.2 ◦C; meanwhile, the highest temperature
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was 305.2 ◦C with an air sprue gap of 7 mm. With the examination of the temperature
difference, the air sprue gap of 7 mm had the best temperature distribution on the insert
plate, with the temperature difference being 33.2 ◦C. In contrast, the 3 mm air sprue gap
displayed a slightly higher temperature difference at 35.2 ◦C. From the simulation results,
it can be seen that the air sprue gap greatly affects the temperature and thermal distribution
of the insert. The smaller the air sprue gap, the higher the cavity temperature, because a
small air sprue gap leads to a greater heat absorption capacity in the insert plate. Moreover,
a larger air sprue gap can lead to a better temperature distribution due to hot air moving
throughout the cover before escaping.Materials 2021, 14, x 14 of 27 
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The simulation results given in Figure 17 also illustrate that the height of the FFD (V)
also has an effect on the heating rate and temperature distribution. With the height of the
FFD varying from 5 to 15 mm, the air sprue gap was 3 mm, and it can be seen that, with the
case of the 5 mm FFD height, the temperature reached the maximum value of 332.2 ◦C, but
had the worst temperature distribution. In contrast, in the case of V = 15 mm, although the
center temperature was only 310.4 ◦C, the temperature difference was reduced. Therefore,
the results show that the height of the FFD has a significant effect on the temperature
and thermal distribution of the insert. The smaller the height of the FFD, the higher the
cavity temperature, because FFDs with a smaller height lead to a better heat absorption
capacity within the insert plate. In contrast, FFDs with larger heights can allow for a better
temperature distribution because of the hot air condensation that occurs in the cover before
the air escapes, meaning that the hot air will transmit heat to lower temperature regions.Materials 2021, 14, x 15 of 27 
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distribution with and without air cover by simulation.

In order to validate the simulation results, an experiment was carried out with the same
simulation boundary conditions. The surface temperatures at the insert plate were mea-
sured by an infrared thermal camera and compared with the simulation results. Figure 18
shows that the air sprue gap significantly affects the temperature of the insert and the air
sprue gap of 3 mm gives the best results (321.2 ◦C). Likewise, in Figure 19, the actual results
show that the volume of air actually influences the temperature of the insert plate and an
FFD height of 5 mm gives the best results (332.3 ◦C). In both cases, the actual thermal dia-
gram has the same parabolic shape as the simulation result. In this study, the temperature
on line L was collected 10 times, and the standard deviation (σ) was calculated and present
as in Figures 18 and 19. In the experiment, the temperature standard deviation varies from
6.53 to 10.14 ◦C. For comparing the simulation and experiment results, the temperature on
line L was collected and compared, as shown in Figure 20. This comparison shows that
the temperature profiles of the simulation and experiment exhibit good agreement, with
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the highest temperature at the center and the lowest temperature at the side of the insert.
In all cases, the highest temperature of the experimental cases is slightly lower than the
experimental cases; meanwhile, the simulation temperatures at the side are lower in the
simulation than in the experimental cases. Comparing the temperature distribution on line
L, these results show that the maximum temperature was reached with an air sprue gap of
3 mm. The difference in temperature follows line L in cases from 25 to 32 ◦C and, in the case
of the air sprue gap, 3 mm is the highest. The temperature at the end of the heating step, in
the case of the FFD, is always higher than in the case without the FFD, by about 50–70 ◦C.
In addition, the height of the FFD was also investigated. With a height of 5 mm, the insert
temperature reached the highest values. The difference in temperature in these cases is
about 10–15 ◦C; the max-min temperature difference is about 30–40 ◦C; and, in the case of
an FFD height of 5 mm, the temperature when using a cover is always higher than without
a cover, by about 70–90 ◦C. The heat transfer from the insert center to the side is the main
reason for this phenomenon. In the heating process, the insert center absorbs the thermal
energy more easily than in other areas due to closing to the hot sprue air; thus, at the
end of the heating process, the temperature at the center is the highest. When the heating
process is finished, the heat support to the insert will be stopped, so heat is only transferred
from the higher temperature to lower temperature, meaning that the temperature at the
center is decreased and the temperature at the side is increased due to the heat transfer
from the center. Therefore, as displayed in Figure 20, the simulation profile shows the
temperature at the end of the heating step. However, in the experiment, there is a delay in
the time taken for the thermal camera to capture the temperature value; thus, heat transfer
occurred and led to a decreasing temperature at the center and increasing temperature
at the side. Figure 20 also shows that the temperature uniformity is improved after the
heating step is finished due to the heat transfer from the higher temperature location to the
lower temperature area, which is an advantage for the application of this method in the
injection molding process, which needs about 3 s to remove the heating equipment and for
the mold to close, as shown in steps 4 and 5 of Figure 1.

3.2. Influence of the Outlet Gates on the Heating Process

Figures 21 and 22 indicate the effect of the number of outlet holes in the air cover and
its position on the heating rate and temperature distribution by simulation. The simulation
was conducted with h = 3 mm and V = 10 mm, and 3, 6, and 12 holes on both the top and
side surfaces were tested. The results show that, in both cases, a smaller number of outlet
holes leads to a higher insert plate temperature because, in this case, the air will hardly be
able to escape, leading to a higher air density and more heat energy, resulting in a higher
insert temperature. In contrast, the more outlet holes there are, the more uniform the
heat distribution is, but the temperature drops very quickly and the air flow velocity also
decreases. Specifically, the highest temperatures were reached with three outlet holes on
the top surface and side surface. These temperatures were 313.5 and 309.6 ◦C, respectively,
but resulted in a poor temperature distribution. On the other hand, an air cover with
12 outlet holes on the top and side surface provided the lowest temperature (288.9 and
290.3 ◦C, respectively); however, this air cover had the best temperature distribution. It
can be noted that outlet holes on the top surface result in a higher temperature on the
side surface because the distance traveled to the top surface is longer than to the side
surface, while the higher air density leads to a higher insert plate temperature. Moreover,
air escapes at the top surface more easily than it escapes on the side surface, so new air
is continuously exchanged, resulting in higher insert plate temperatures. Therefore, the
number of air holes has the greatest effect on the temperature and thermal uniformity of
the insert, and we should choose as small values as possible to increase the temperature
and distribute the air holes properly.

The results of the temperature for line L with various numbers of outlet holes on
the top and side surface of the FFD also show that, with three outlet holes, the insert
plate reached the highest temperature and reached the lowest temperature when using the



Materials 2021, 14, 965 17 of 27

air cover with 12 outlet holes. Moreover, the difference in temperature was about 20 ◦C
and the max-min difference in temperature was about 34 ◦C, and it can be noted that the
temperature when using the air cover is always higher than without the FFD, leading to a
50−80 ◦C temperature difference.
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and the air flow velocity also decreases. Specifically, the highest temperatures were 

reached with three outlet holes on the top surface and side surface. These temperatures 

were 313.5 and 309.6 °C, respectively, but resulted in a poor temperature distribution. 

On the other hand, an air cover with 12 outlet holes on the top and side surface provided 

the lowest temperature (288.9 and 290.3 °C, respectively); however, this air cover had 

the best temperature distribution. It can be noted that outlet holes on the top surface 

result in a higher temperature on the side surface because the distance traveled to the 

Figure 19. Effects of the height of the FFD V = 5, 10, and 15 mm with the air sprue gap h = 3 mm for the temperature
distribution with and without an air cover in the experiment.
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heights of the flow focusing device (b).

As demonstrated in Figures 23 and 24, the number of outlet holes and the position
of the air cover were also examined by an experiment. The actual results show that the
air outlet holes actually affect the temperature of the insert. In both cases, the fewer
outlet holes there are, the higher the insert plate temperature, and the air cover with three
outlet holes gives the best results, with maximum temperatures of 312.4 and 309.7 ◦C for
outlet holes on the top and side surfaces, respectively. In addition, the actual thermal
diagram has the same profile as the simulation result. Moreover, the actual results show
that the distribution of the upper outlet holes will lead to a higher insert temperature.
In our assessment of various numbers of outlet holes on the top surface, the maximum
temperature was reached with three outlet holes, and the difference in temperature for line
L varied from 10 to 20 ◦C, while the max-min temperature difference of the heating surface
was about 28 ◦C. Without the FFD, it was about 31 ◦C. In addition, with the same heating
time, the temperature when using the FFD was always higher than without the air cover (by
about 50–80 ◦C). In our assessment of various numbers of outlet holes on the top surface,
the maximum temperature was reached with three outlet holes, while the difference in
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temperature ranged from about 15 to 30 ◦C, and the max-min temperature difference
ranged from about 28 to 37 ◦C. With the same heating time, the temperature when using
the air cover was always higher than without the cover, by about 40–70 ◦C. With different
outlet hole locations and different numbers of holes, it is clear that using the FFD in the
heating process can increase the mold temperature more effectively than the heating process
without the air cover. In this research, the temperature on line L was collected 10 times,
and the standard deviation (σ) was calculated and is presented in Figures 23 and 24. In
the experiment, the temperature standard deviation varied from 7.89 to 10.42 ◦C. After
investigating the simulation and experimental results, a comparison was conducted, as
shown in Figure 25. In all cases, it can be seen that the thermal lines representing the results
of the experiments and the simulations are quite close together. The same is true for the air
sprue gap (h) and the height of the flow focusing device (V), but the heat transfer from the
higher temperature area to the lower temperature area causes the max-min temperature
difference of the experiment to be slightly smaller than the simulation results, so the actual
temperature distribution on the insert is more uniform than the thermal distribution on the
simulation. However, although there is a small difference in the distribution of heat, the
simulation results basically show the same results as the experiment.
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Figure 21. Effects of outlet holes on the top with the air sprue gap h = 3 mm and height of the FFD V = 10 mm for the
temperature distribution with and without the air cover in the simulation.
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Figure 22. Effects of outlet holes on the side with the air sprue gap h = 3 mm and height of the FFD V = 10 mm for the 

temperature distribution with and without the air cover in the simulation. 

As demonstrated in Figures 23 and 24, the number of outlet holes and the position 

of the air cover were also examined by an experiment. The actual results show that the 

air outlet holes actually affect the temperature of the insert. In both cases, the fewer 

outlet holes there are, the higher the insert plate temperature, and the air cover with 

three outlet holes gives the best results, with maximum temperatures of 312.4 and 309.7 

°C for outlet holes on the top and side surfaces, respectively. In addition, the actual 

thermal diagram has the same profile as the simulation result. Moreover, the actual re-

sults show that the distribution of the upper outlet holes will lead to a higher insert 

temperature. In our assessment of various numbers of outlet holes on the top surface, 

the maximum temperature was reached with three outlet holes, and the difference in 

temperature for line L varied from 10 to 20 °C, while the max-min temperature differ-

ence of the heating surface was about 28 °C. Without the FFD, it was about 31 °C. In 

addition, with the same heating time, the temperature when using the FFD was always 

higher than without the air cover (by about 50–80 °C). In our assessment of various 

numbers of outlet holes on the top surface, the maximum temperature was reached with 

three outlet holes, while the difference in temperature ranged from about 15 to 30 °C, 

and the max-min temperature difference ranged from about 28 to 37 °C. With the same 

heating time, the temperature when using the air cover was always higher than without 

the cover, by about 40–70 °C. With different outlet hole locations and different numbers 

of holes, it is clear that using the FFD in the heating process can increase the mold tem-

perature more effectively than the heating process without the air cover. In this re-

search, the temperature on line L was collected 10 times, and the standard deviation (σ) 

was calculated and is presented in Figures 23 and 24. In the experiment, the temperature 

standard deviation varied from 7.89 to 10.42 °C. After investigating the simulation and 

experimental results, a comparison was conducted, as shown in Figure 25. In all cases, 

it can be seen that the thermal lines representing the results of the experiments and the 

simulations are quite close together. The same is true for the air sprue gap (h) and the 

height of the flow focusing device (V), but the heat transfer from the higher temperature 

Figure 22. Effects of outlet holes on the side with the air sprue gap h = 3 mm and height of the FFD V = 10 mm for the
temperature distribution with and without the air cover in the simulation.
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Figure 23. Effects of outlet holes on the top with the air sprue gap h = 3 mm and height of the FFD V = 10 mm for the
temperature distribution with and without the air cover in the experiment.
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temperature distribution with and without the air cover in the experiment.

Materials 2021, 14, x 21 of 27 

Materials 2021, 14, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/materials 

 

T
em

pe
ra

tu
re

 (
° C

)

T
em

pe
ra

tu
re

 (
° 
C

)

LocationLocation

(a) (b) 

Si_3 outlet holes

Si_6 outlet holes

Si_12 outlet holes

Ex_3 outlet holes

Ex_6 outlet holes

Ex_12 outlet holes
(*) Si: Simulation ; Ex: Experiment

Si_3 outlet holes

Si_6 outlet holes

Si_12 outlet holes

Ex_3 outlet holes

Ex_6 outlet holes

Ex_12 outlet holes

(*) Si: Simulation ; Ex: Experiment

 

Figure 25. Temperature distribution comparison with various outlet gates on the top (a) and side (b) of the FFD. 
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3.3. Apply the Ex-GMTC with the Assistance of the FFD in the Mold Heating Step for Increasing
the Melt Flow Length in Thin Wall Injection Molding

After assessing the advantages of applying an air cover in the heating process based on
the results described above, an FFD for melt flow length research was designed, as shown
in Figure 12, for application in the injection molding process of a long, thin-walled product,
in order to observe its effect on the melt flow length. Figure 26 shows the simulation
results for temperature. It is clear that, when using the FFD, the temperature is higher than
when no cover is used, by about 70 ◦C. The simulation results show that the temperature
difference between line L1 and line L2 in both cases (with and without the FFD) is not
clear and the temperature lines tend to decrease in the middle of the insert plate. To verify
the simulation results, an experiment was conducted, and the results of the temperature
distribution are shown in Figure 27. In general, the maximum temperature when using the
FFD is about 50 ◦C higher than in the case without the air cover. On the contrary, with the
simulation, the difference between the temperature of lines L1 and L2 in the experimental
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cases with and without the FFD are quite clear, especially without the FFD. In addition,
both the simulation and experimental results show that the higher temperatures tend to
appear at the two sides of the insert. In conclusion, through the results of the experiments,
it can be noted that the application of FFD leads to a significant increase in the mold cavity
surface compared to heating without an air cover.
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Figure 25. Temperature distribution comparison with various outlet gates on the top (a) and side (b) of the FFD. 
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Figure 27. Temperature distribution of the mold insert in the heating process with (a) and without
(b) the FFD in the experiment.
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To compare the simulation and experiment in more detail, the temperatures on lines
L1 and L2 (Figure 10) were collected and compared, as shown in Figure 28. According to
this result, the simulation results show that, at the end of the heating time, the influence
of the hot gas inlet locations is very clear, and the result is a higher temperature at these
locations. This simulation result appeared in cases with and without the FFD. The reason
for this is that the closer the hot gas inlet is, the higher the thermal energy supported will
be, meaning that these locations of the insert will rapidly acquire more thermal energy than
other areas. As a result, the insert surface reaches a higher temperature close to the inlet
of hot gas. In addition, both the simulation and experiment show that the temperature
at the center of the mold insert is clearly lower than that in other areas. This result is
due to the structure of the insert, which has more material in the center area (Location
C in Figure 10), meaning that more energy is required to increase the temperature in this
location. In other words, location C can absorb the thermal energy from other areas, and
also from hot air. As a result, areas close to location C will easily lose thermal energy,
resulting in a lower temperature.Materials 2021, 14, x 23 of 27 
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Figure 28. Temperature distribution on the center line of the insert with and without the FFD. 
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Compared with the experimental results, the temperature profiles also change. With
the simulation, the highest temperature also appears at hot gas inlets 1 and 4. However,
the temperature will decrease continuously in the center of the side of the mold insert.
Moreover, the higher temperature found at the hot gas inlets 2 and 3 has almost completely
disappeared. This result is due to the fact that, during the time delay used to measure the
temperature distribution, which is about 3 s, the thermal energy from a higher temperature
location was transferred to a lower temperature location, which is location C (Figure 10).
As a result, the temperature cap at hot gas inlets 2 and 4 was removed. In addition,
the experimental temperatures close to location C tend to be higher than the simulation
because of the thermal energy received from the higher temperature area. This phenomenon
appeared with or without the FFD.

In the experiment, the temperature profiles of lines L1 and L2 were also different with
and without the FFD. When the FFD is applied, the temperature balance between L1 and
L2 is quite good. However, without the FFD, the temperature of L1 is clearly lower than
that of L2. As found in other research, this phenomenon is due to the influence of air flow
from the environment, which impacts the flow of hot air. In other words, without the FFD,
the hot air flow was interfered with, so the heating effect was unstable. With the FFD, the
stability of the heating step is proved by the balance of the temperature profiles between
L1 and L2.

In general, the FFD assisted ex-GMTC, which reduced the imbalance in heating
between the L1 and L2 sides and improved the heating rate. With the design of the mold
insert, as shown in Figure 10, a lower temperature will occur at the center; however, this
type of temperature distribution (Figures 26 and 28) is good for assisting with the melt
flow, which requires a higher temperature in the area furthest from the melt entrance
(Figure 9). The temperature on line L1 and L2 was collected 10 times under the cases of
with and without the FFD, and the standard deviation (σ) was calculated and is presented
in Figure 28. This result shows that the temperature standard deviation varies from 12.4 to
20.05 ◦C. In general, the standard deviation of the temperature in the case without the FFD
is always higher than in the case with the FFD. This means that the heating step with the
FFD assistance is more stable than the case of without the FFD.

For estimating the influence of Ex-GMTC with the assistance of FFD on the filling
step, the heating process was achieved with a 400 ◦C gas temperature and a 20 s heating
time. When the heating step finished, the gas drier was removed from the molding area
and the filling step was started by completely closing the two-half mold plates. In this
stage, the temperature distribution of the cavity surface will change, and the temperature
distribution at the end of this step impacts the filling of the melt. In a real molding cycle, it
takes about 3 s from the end of the heating period to the start of the filling step. In each
case, the molding cycle was operated until the system was stable; then, 10 molding samples
were collected for measuring the melt flow length. These results were used to compare the
influence of the heating step.

In the experiment, the injection molding process was run with the application of an
FFD. The molding parts were measured, and the results are shown in Figure 29. With the
same molding conditions, the experiment was performed for three cases: A traditional
molding cycle (without heating); heating by Ex-GMTC without an FFD; and heating by
Ex-GMTC with the assistance of an FFD. The results show that the application of an FFD
in Ex-GMTC has a positive influence on the filling of the hot melt. Without heating, the
melt flow length only reached 23.5% of its fill capacity, with a total length of 38.6 mm;
however, with the application of Ex-GMTC, the melt flow length could be increased to
82.7% (L = 140.8 mm). However, in this case, an imbalance in the melt flow was observed
with a length difference between the left and right, which measured 75.7 and 65.1 mm,
respectively. This imbalance in filling is due to the difference in the insert temperature,
which was mentioned above. Next, when applying the FFD for Ex-GMTC, the melt
flow length reached its full capacity at 100% (L = 170 mm). For this experiment, the
improvement in flow length is presented in Figure 30. The improvement in filling is caused



Materials 2021, 14, 965 25 of 27

by the reduction in the frozen layer of the melt flow, which allowed the melt to flow much
more easily in the filling step of the molding cycle. The standard deviation was calculated
for these cases. The results show that without the FFD assistance, the standard deviation of
the melt flow length tends to be higher than in the traditional case. This is due to the fact
that heating without the FFD let the temperature difference at the cavity surface become
larger, so the stability of the filling step was reduced. In the case of FFD-assisted Ex-GMTC,
because the cavity was full, the standard deviation was close to zero.
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4. Conclusions

In this research, simulations and experiments were conducted in order to estimate the
temperature distribution when using an air cover in the heating process and its application
in terms of improving the melt flow length in the filling step of the injection molding cycle.
The most important conclusions drawn can be simplified as follows:

• The air sprue gaps, height of the FFD, location of the hot air outlet, and number of hot
air outlets are the main elements that have an effect on the heating process. Through
experiments and simulations, the best heating process was found to be the one with
the smallest air sprue gaps and lowest FFD. The three hot air outlet holes at the top of
the FFD show a better heating efficiency than the side outlet;

• The heating rate was clearly improved by applying an FFD for the assistance of
Ex-GMTC due to its ability to focus the hot air to the heating location;

• After finished the heating process, the temperature distribution of the insert is changed
due to the heat transfer from the higher temperature to lower temperature area. This
is a positive effect because it improves the temperature uniformity;

• In the application case, the melt flow length model was used to test the ability of
Ex-GMTC with the assistance of an FFD. The results show that the insert thickness
has a strong impact on the temperature distribution, as well as the change in the
temperature profile after the heating step. In this research, the heating step was
carried out for 20 s, and the cavity surface was heated to over 180 ◦C, which was
high enough to reduce the negative effects of the frozen layers found in almost all
common plastic materials. From the melt flow length results, we can see that, in the
case without the FFD, an imbalance in the melt flow was observed, with a difference
between the left and right sides of about 10.6 mm. Ex-GMTC with the FFD was proven
to provide a stable heating step, which helped to improve the temperature balance
between the two sides of the cavity and the result is an improved melt flow balance.
For the molding cycle test, the heating process with the FFD helped to raise the mold
temperature, allowing the melt to completely fill the cavity.
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