Titania-Containing Bone Cement Shows Excellent Osteoconductivity in A Synovial Fluid Environment and Bone-Bonding Strength in Osteoporosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Cement Preparation
2.3. Animal Experiment—Synovial Fluid Environment Model
2.4. Animal Experiment—Osteoporosis Model
2.5. Micrographic Examination
2.6. Analysis of Osteoporosis
2.7. Push-Out Test—Osteoporosis Model
2.8. Statistical Analysis
3. Results
3.1. Surface Evaluation—Synovial Fluid Environment Model
3.2. Histological Evaluation—Synovial Fluid Environment Model
3.3. Osteoporosis Evaluation—Osteoporosis Model
3.4. Bone-Bonding Evaluation—Osteoporosis Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Webb, J.C.; Spencer, R.F. The role of polymethylmethacrylate bone cement in modern orthopaedic surgery. J. Bone Jt. Surgry Br. 2007, 89, 851–857. [Google Scholar] [CrossRef]
- Freeman, M.A.; Bradley, G.W.; Revell, P.A. Observations upon the interface between bone and polymethylmethacrylate cement. J. Bone Jt. Surgry Br. 1982, 64, 489–493. [Google Scholar] [CrossRef] [Green Version]
- Maloney, W.J.; Jasty, M.; Rosenberg, A.; Harris, W.H. Bone lysis in well-fixed cemented femoral components. J. Bone Jt. Surgry Br. 1990, 72, 966–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, G. Properties of acrylic bone cement: State of the art review. J. Biomed. Mater. Res. 1997, 38, 155–182. [Google Scholar] [CrossRef]
- Breusch, S.J.; Malchau, H. What is modern cementing technique? In The Well-Cemented Total Hip Arthroplasty: Theory and Practice; Breusch, S., Malchau, H., Eds.; Springer: Heidelberg, Germany, 2005; pp. 146–149. [Google Scholar]
- Kenny, S.M.; Buggy, M. Bone cements and fillers: A review. J. Mater. Sci. Mater. Med. 2003, 14, 923–938. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Yang, S.; Cai, K.; Wang, S.; Qiu, Z.; Huang, J.; Jiang, G.; Wang, X.; Fang, X. Bioactive poly (methyl methacrylate) bone cement for the treatment of osteoporotic vertebral compression fractures. Theranostics 2020, 10, 6544–6560. [Google Scholar] [CrossRef] [PubMed]
- Fottner, A.; Nies, B.; Kitanovic, D.; Steinbrück, A.; Mayer-Wagner, S.; Schröder, C.; Heinemann, S.; Pohl, U.; Jansson, V. Performance of bioactive PMMA-based bone cement under load-bearing conditions: An in vivo evaluation and FE simulation. J. Mater. Sci. Mater. Med. 2016, 27, 138. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shirosaki, Y.; Miyazaki, T. Bioactive polymethylmethacrylate bone cement modified with combinations of phosphate group-containing monomers and calcium acetate. J. Biomater. Appl. 2015, 29, 1296–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuda, C.; Goto, K.; Imamura, M.; Nakamura, T. Bioactive bone cement with a low content of titania particles without postsilanization: Effect of filler content on osteoconductivity, mechanical properties, and handling characteristics. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 95, 407–413. [Google Scholar] [CrossRef]
- Fukuda, C.; Goto, K.; Imamura, M.; Neo, M.; Nakamura, T. Bone bonding ability and handling properties of a titania- polymethylmethacrylate (PMMA) composite bioactive bone cement modified with a unique PMMA powder. Acta Biomater. 2011, 7, 3595–3600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goto, K.; Tamura, J.; Shinzato, S.; Fujibayashi, S.; Hashimoto, M.; Kawashita, M.; Kokubo, T.; Nakamura, T. Bioactive bone cements containing nano-sized titania particles for use as bone substitutes. Biomaterials 2005, 26, 6496–6505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goto, K.; Hashimoto, M.; Takadama, H.; Tamura, J.; Fujibayashi, S.; Kawanabe, K.; Kokubo, T.; Nakamura, T. Mechanical, setting, and biological properties of bone cements containing micron-sized titania particles. J. Mater. Sci. Mater. Med. 2008, 19, 1009–1016. [Google Scholar] [CrossRef]
- Imamura, M.; Goto, K.; Kawata, T.; Kataoka, M.; Fukuda, C.; Fujibayashi, S.; Matsuda, S. Titania-containing bioactive bone cement for total hip arthroplasty in dogs. J. Biomed. Mater. Res. B Appl. Biomater. 2019, 107, 1238–1245. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Kangasniemi, I.; de Groot, K.; Kokubo, T. Bonelike hydroxyapatite induction by a gel-derived titania on a titanium substrate. J. Am. Ceram. Soc. 1994, 77, 1307–1312. [Google Scholar] [CrossRef]
- Aspenberg, P.; Van Der Vis, H. Fluid pressure may cause periprosthetic osteolysis. Particles are not the only thing. Acta Orthop. Scand. 1998, 69, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Sundfeldt, M.; Carlsson, L.V.; Johansson, C.B.; Thomsen, P.; Gretzer, C. Aseptic loosening, not only a question of wear: A review of different theories. Acta Orthop. 2006, 77, 177–197. [Google Scholar] [CrossRef] [PubMed]
- Cankaya, D.; Tabak, Y.; Ozturk, A.M.; Gunay, M.C. Perioperative alendronate, risedronate, calcitonin and indomethacin treatment alters femoral stem fixation and periprosthetic bone mineral density in ovariectomized rats. J. Orthop. Sci. 2015, 20, 728–733. [Google Scholar] [CrossRef] [Green Version]
- Ehlinger, M.; Favreau, H.; Eichler, D.; Adam, P.; Bonnomet, F. Early mechanical complications following fixation of proximal femur fractures: From prevention to treatment. Orthop. Traumatol. Surg. Res. 2020, 106, S79–S87. [Google Scholar] [CrossRef] [PubMed]
- Permuy, M.; López-Peña, M.; Muñoz, F.; González-Cantalapiedra, A. Rabbit as model for osteoporosis research. J. Bone Miner. Metab. 2019, 37, 573–583. [Google Scholar] [CrossRef]
- Baofeng, L.; Zhi, Y.; Bei, C.; Guolin, M.; Qingshui, Y.; Jian, L. Characterization of a rabbit osteoporosis model induced by ovariectomy and glucocorticoid. Acta Orthop. 2010, 81, 396–401. [Google Scholar] [CrossRef] [Green Version]
- Dall’Oca, C.; Maluta, T.; Cavani, F.; Morbioli, G.P.; Bernardi, P.; Sbarbati, A.; Degl’Innocenti, D.; Magnan, B. The biocompatibility of porous vs non-porous bone cements: A new methodological approach. Eur. J. Histochem. 2014, 58, 2255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fini, M.; Giavaresi, G.; Aldini, N.N.; Torricelli, P.; Botter, R.; Beruto, D.; Giardino, R. A bone substitute composed of polymethylmethacrylate and α-tricalcium phosphate: Results in terms of osteoblast function and bone tissue formation. Biomaterials 2002, 23, 4523–4531. [Google Scholar] [CrossRef]
- Shinzato, S.; Nakamura, T.; Kawanabe, K.; Kokubo, T. PMMA-based bioactive cement: Effect of CaF2 on osteoconductivity and histological change with time. J. Biomed. Mater. Res. B Appl. Biomater. 2003, 65, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Müller, R.; Ruffoni, D. Bone remodeling and mechanobiology around implants: Insights from small animal imaging. J. Orthop. Res. 2018, 36, 584–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Powder | TBC | PBC |
---|---|---|
Titania | 20 w/w | - |
Barium sulfate | - | 6.7 w/w |
Polystyrene/MMA copolymer | 42.5 w/w | 50 w/w |
PMMA | 7.5 w/w | 10 w/w |
Benzoyl peroxide | 5.4 wt% of MMA. | (a) * |
Liquid | - | - |
MMA | 30 w/w | 32.5 w/w |
N,N-dimethyl-p-toluidine | 0.95 wt% of MMA. | 0.9 w/w |
Hydroquinone | 70 ppm | 1.5 mg |
Cement | 6 Weeks | 12 Weeks * | 26 Weeks * |
---|---|---|---|
TBC | 19.6 ± 7.68 | 40.9 ± 16.8 | 40.2 ± 12.7 |
PBC | 15.3 ± 10.7 | 24.5 ± 9.02 | 21.2 ± 14.2 |
Cement | Sham | OVX + PSL * |
---|---|---|
TBC | 5.08 ± 3.95 | 3.69 ± 1.89 |
PBC ** | 3.94 ± 3.49 | 1.71 ± 1.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawata, T.; Goto, K.; Imamura, M.; Okuzu, Y.; Kawai, T.; Kuroda, Y.; Matsuda, S. Titania-Containing Bone Cement Shows Excellent Osteoconductivity in A Synovial Fluid Environment and Bone-Bonding Strength in Osteoporosis. Materials 2021, 14, 1110. https://doi.org/10.3390/ma14051110
Kawata T, Goto K, Imamura M, Okuzu Y, Kawai T, Kuroda Y, Matsuda S. Titania-Containing Bone Cement Shows Excellent Osteoconductivity in A Synovial Fluid Environment and Bone-Bonding Strength in Osteoporosis. Materials. 2021; 14(5):1110. https://doi.org/10.3390/ma14051110
Chicago/Turabian StyleKawata, Tomotoshi, Koji Goto, Masashi Imamura, Yaichiro Okuzu, Toshiyuki Kawai, Yutaka Kuroda, and Shuichi Matsuda. 2021. "Titania-Containing Bone Cement Shows Excellent Osteoconductivity in A Synovial Fluid Environment and Bone-Bonding Strength in Osteoporosis" Materials 14, no. 5: 1110. https://doi.org/10.3390/ma14051110
APA StyleKawata, T., Goto, K., Imamura, M., Okuzu, Y., Kawai, T., Kuroda, Y., & Matsuda, S. (2021). Titania-Containing Bone Cement Shows Excellent Osteoconductivity in A Synovial Fluid Environment and Bone-Bonding Strength in Osteoporosis. Materials, 14(5), 1110. https://doi.org/10.3390/ma14051110