Mechanical Properties of the Composite Material consisting of β-TCP and Alginate-Di-Aldehyde-Gelatin Hydrogel and Its Degradation Behavior
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. β-TCP Ceramics
2.3. Characterization of the β-TCP Ceramics
2.3.1. Weight and Dimensions
2.3.2. Microstructure and Elemental Analysis
2.3.3. Porosity
2.3.4. Surface Roughness
2.4. Preparation of the Hydrogels
2.4.1. Alginate
2.4.2. Alginate-Di-Aldehyde (ADA)
2.4.3. Gelatin
2.4.4. ADA-Gelatin
2.5. Preparation of the Buffers
2.5.1. Simulated Body Fluid (SBF)
2.5.2. TRIS–Buffer
2.6. Loading via Flow Chamber
2.7. Degradation Tests
2.7.1. Degradation of β-TCP Ceramics
2.7.2. Determination of the Protein Concentration Out of ADA-Gelatin Hydrogel
2.8. Compression Test
2.9. Statistics
3. Results
3.1. Dimensions and Weight
3.2. Microstructure and Elementary Analysis
3.2.1. Microstructure by Means of ESEM
3.2.2. Elementary Analysis by Means of EDX
3.2.3. X-Ray Diffraction Analysis
3.2.4. Porosimetry
3.2.5. Surface Roughness
3.2.6. MicroCT
3.3. Degradation Experiments
3.3.1. Degradation of β-TCP Ceramics
3.3.2. Degradation ADA-Gelatin Hydrogel
3.4. Compression Test
4. Discussion
4.1. Dimensions
4.2. Elemental Analysis
4.3. Degradations Experiments
4.4. Compression Test
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Destatis. Mitten im Demografischen Wandel. 2020. Available online: https://www.destatis.de/DE/Themen/Querschnitt/Demografischer-Wandel/demografie-mitten-im-wandel.html (accessed on 2 September 2020).
- Eurostat. European Union: Age Structure in the Member States in 2019. Available online: https://de.statista.com/statistik/daten/studie/248981/umfrage/altersstruktur-in-den-eu-laendern (accessed on 23 March 2020).
- Destatis, Gesundheit–Fallpauschalenbezogene Krankenhausstatistik (DRG-Statistik). In Operationen und Prozeduren der Vollstationären Patientinnen und Patienten in Krankenhäusern (4-Steller); Statistisches Bundesamt (Destatis): Wiesbaden, Germany, 2020.
- Eurostat. Surgical Operations and Procedures Statistics; Eurostat: Brussels, Belgium, 2020.
- Schulte, L.M. Orthopädenkongress: Wenn die Prothese nicht mehr hält. Dtsch. Arztebl Int. 2017, 114, 2281. [Google Scholar]
- Carson, M.K.J.; Meyer, T.B.; Smith, J.K.; Lambe, D.W.; Costerton, J.W. Bacterial adherence and glycocalyx formation in osteomyelitis experimentally induced with Staphylococcus aureus. Infect. Immun. 1984, 43, 825–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochsner, P.E.; Borens, O.; Bodler, P.M.; Broger, I.; Eich, G.; Hefti, F.; Maurer, T.; Nötzli, H.; Seiler, S.; Suvà, D.; et al. Infektionen des Bewegungsapparates–Grundlagen, Prophylaxe, Diagnostik und Therapie; Eigenverlag Swiss Orthopaedics: Wehrheim, Germany, 2015. [Google Scholar]
- Rissing, J.P. Antimicrobial Therapy for Chronic Osteomyelitis in Adults: Role of the Quinolones. Clin. Infect. Dis. 1997, 25, 1327–1333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toma, M.B.; Smith, K.M.; Rapp, R.P.; Martin, C.A. Pharmacokinetic Considerations in the Treatment of Methicillin-resistant Staphylococcus aureus Osteomyelitis. Orthopedics 2006, 29, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Frommelt, L. Principles of systemic antimicrobial therapy in foreign material associated infection in bone tissue, with special focus on periprosthetic infection. Injury 2006, 37, S87–S94. [Google Scholar] [CrossRef] [PubMed]
- Kanellakopoulou, K.; Bourboulis, G.E.J. Carrier systems for the local delivery of antibiotics in bone infections. Drugs 2000, 59, 1223–1232. [Google Scholar] [CrossRef] [PubMed]
- Mayr, H.O.; Dietrich, M.; Fraedrich, F.; Hube, R.; Nerlich, A.; von Rothe, E.R.; Hein, W.; Bernstein, A. Microporous pure beta-tricalcium phosphate implants for press-fit fixation of anterior cruciate ligament grafts: Strength and healing in a sheep model. Arthroscopy 2009, 25, 996–1005. [Google Scholar] [CrossRef] [PubMed]
- Carrin, V.S.; Garnero, P.; Delmas, P.D. The role of collagen in bone strength. Osteoporos. Int. 2005, 17, 319–336. [Google Scholar] [CrossRef]
- Pecqueux, F.; Tancret, F.; Payraudeau, N.; Bouler, J.M. Influence of microporosity and macroporosity on the mechanical properties of biphasic calcium phosphate bioceramics: Modelling and experiment. J. Eur. Ceram. Soc. 2010, 30, 819–829. [Google Scholar] [CrossRef]
- Jerosch, J.; Bader, A.; Uhr, G. Knochen–Curasan Taschenatlas Spezial; Georg Thieme Verlag: Stuttgart, Germany, 2002. [Google Scholar]
- Seidenstuecker, M.; Ruehe, J.; Suedkamp, N.P.; Serr, A.; Wittmer, A.; Bohner, M.; Bernstein, A.; Mayr, H.O. Composite material consisting of microporous β-TCP ceramic and alginate for delayed release of antibiotics. Acta Biomater. 2017, 51, 433–446. [Google Scholar] [CrossRef]
- Sarker, B.; Papageorgiou, D.G.; Silva, R.; Zehnder, T.; Noor, G.E.F.; Bertmer, M.; Kaschta, J.; Chrissafis, K.; Detsch, R.; Boccaccini, A.R. Fabrication of alginate–gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties. J. Mater. Chem. B 2014, 2, 1470–1482. [Google Scholar] [CrossRef] [Green Version]
- Stahli, C.; Bohner, M.; Zadeh, B.M.; Doebelin, N.; Baroud, G. Aqueous impregnation of porous beta-tricalcium phosphate scaffolds. Acta Biomater. 2010, 6, 2760–2772. [Google Scholar] [CrossRef]
- Jalota, S.; Bhaduri, S.B.; Tas, A.C. Using a synthetic body fluid (SBF) solution of 27 mM HCO3− to make bone substitutes more osteointegrative. Mater. Sci. Eng. C 2008, 28, 129–140. [Google Scholar] [CrossRef]
- Seidenstuecker, M.; Kissling, S.; Ruehe, J.; Suedkamp, N.P.; Mayr, H.O.; Bernstein, A. Novel Method for Loading Microporous Ceramics Bone Grafts by Using a Directional Flow. J. Funct. Biomater. 2015, 6, 1085–1098. [Google Scholar] [CrossRef] [PubMed]
- Seidenstuecker, M.; Kerr, L.; Bernstein, A.; Mayr, H.O.; Suedkamp, N.P.; Gadow, R.; Krieg, P.; Latorre, S.H.; Thomann, R.; Syrowatka, F.; et al. 3D Powder Printed Bioglass and β-Tricalcium Phosphate Bone Scaffolds. Materials 2017, 11, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seidenstuecker, M.; Lange, S.; Esslinger, S.; Latorre, S.H.; Krastev, R.; Gadow, R.; Mayr, H.O.; Bernstein, A. Inversely 3D-Printed β-TCP Scaffolds for Bone Replacement. Materials 2019, 12, 3417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernstein, A.; Niemeyer, P.; Salzmann, G.; Südkamp, N.; Hube, R.; Klehm, J.; Menzel, M.; Von Eisenhart-Rothe, R.; Bohner, M.; Görz, L.; et al. Microporous calcium phosphate ceramics as tissue engineering scaffolds for the repair of osteochondral defects: Histological results. Acta Biomater. 2013, 9, 7490–7505. [Google Scholar] [CrossRef] [PubMed]
- Boanini, E.; Rubini, K.; Panzavolta, S.; Bigi, A. Chemico-physical characterization of gelatin films modified with oxidized alginate. Acta Biomater. 2010, 6, 383–388. [Google Scholar] [CrossRef]
- Liu, A.; Sun, M.; Shao, H.; Yang, X.; Ma, C.; He, D.; Gao, Q.; Liu, Y.; Yan, S.; Xu, S.; et al. The outstanding mechanical response and bone regeneration capacity of robocast dilute magnesium-doped wollastonite scaffolds in critical size bone defects. J. Mater. Chem. B 2016, 4, 3945–3958. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.; He, Y.; Fu, J.; He, D.; Yang, X.; Xie, J.; Yao, C.; Ye, J.; Xu, S.; Gou, Z. 3D printing magnesium-doped wollastonite/β-TCP bioceramics scaffolds with high strength and adjustable degradation. J. Eur. Ceram. Soc. 2016, 36, 1495–1503. [Google Scholar] [CrossRef] [Green Version]
- Ni, S.; Chang, J. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics. J. Biomater. Appl. 2008, 24, 139–158. [Google Scholar] [CrossRef] [PubMed]
- Faruq, O.; Kim, B.; Padalhin, A.R.; Lee, G.H.; Lee, B.-T. A hybrid composite system of biphasic calcium phosphate granules loaded with hyaluronic acid–gelatin hydrogel for bone regeneration. J. Biomater. Appl. 2017, 32, 433–445. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.N.; Vauthier, C.; Huang, N.; Grossiord, J.L.; Moine, L.; Agnely, F. Degradation of hydrolyzable hydrogel microspheres. Soft Matter 2013, 9, 1929–1936. [Google Scholar] [CrossRef]
- Distler, T.; McDonald, K.; Heid, S.; Karakaya, E.; Detsch, R.; Boccaccini, A.R. Ionically and enzymatically dual cross-linked oxidized alginate gelatin hydrogels with tunable stiffness and degradation behavior for tissue engineering. ACS Biomater. Sci. Eng. 2020, 6, 3899–3914. [Google Scholar] [CrossRef] [PubMed]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Kang, M.K.; Dai, J.; Kim, J.C. Ethylcellulose microparticles containing chitosan and gelatin: pH-dependent release caused by complex coacervation. J. Ind. Eng. Chem. 2012, 18, 355–359. [Google Scholar] [CrossRef]
- Torres, A.; Gaspar, V.; Serra, I.; Diogo, G.; Fradique, R.; Silva, A.; Correia, I. Bioactive polymeric–ceramic hybrid 3D scaffold for application in bone tissue regeneration. Mater. Sci. Eng. C 2013, 33, 4460–4469. [Google Scholar] [CrossRef]
- Zhou, Z.; Gao, M.; Wei, F.; Liang, J.; Deng, W.; Dai, X.; Zhou, G.; Zou, X. Shock Absorbing Function Study on Denucleated Intervertebral Disc with or without Hydrogel Injection through Static and Dynamic Biomechanical Tests In Vitro. BioMed Res. Int. 2014, 2014, 1–7. [Google Scholar] [CrossRef]
Reagent | Quantity [g] |
---|---|
Sodium chloride | 6.547 |
Sodium hydrogen carbonate | 2.268 |
Potassium chloride | 0.373 |
Di-sodium hydrogen phosphate dihydrate | 0.178 |
Magnesium chloride anhydrous | 0.142 |
Calcium chloride dihydrate | 0.368 |
Sodium sulfate | 0.071 |
TRIS | 6.057 |
1 M HCl | Until a pH 7.4 was reached |
SBF | TRIS pH 7.4 | TRIS pH 5.0 | |
---|---|---|---|
ADA-gelatin | 15 | 30 | 30 |
Alginate | 15 | 30 | 30 |
Control group | 15 | 10 | 10 |
Curasan | 15 | 15 | 15 |
Geometry of the Sample | Round Sample |
---|---|
Tool distance at start position | 250 mm |
Speed start position | 50 mm/min |
Forward force | 1 N |
Speed of the preload | 50 mm/min |
testing speed | 1 mm/min |
Upper force limit | 5000 N |
Maximum deformation | 50% |
0 d | ||
Blanc | RMS | CUR |
Strand width (µm) | 7.1 ± 2.2 | 9.7 ± 3.2 |
Pore diameter (µm) | 4.8 ± 1.2 | 10.9 ± 3.7 |
60 d | ||
pH 7.4 | RMS | CUR |
Strand width (µm) | 3.6 ± 0.2 | 8.8 ± 4.1 |
Pore diameter (µm) | 6.8 ± 2.2 | 12.6 ± 2.3 |
pH 5.0 | RMS | CUR |
Strand width (µm) | 3.3 ± 0.1 | 6.7 ± 0.1 |
Pore diameter (µm) | 8.7 ± 1.7 | 16.1 ± 4.1 |
Sa [µm] | |||||
Before incubating in SBF/TRIS | |||||
Sample | RMS * | CUR | RMS-SBF | RMS-TRIS 7.4 | RMS-TRIS 5.0 |
Mean ± SD | 3.26 ± 1.1 | 6.34 ± 3.36 | 3.32 ± 0.46 | 3.68 ± 0.65 | 3.50 ± 0.87 |
After incubating in SBF/TRIS | |||||
0.25 ± 0.14 | 3.05 ± 0.96 | 0.16 ± 0.04 | 0.23 ± 0.10 |
Weight [g] | |||
Empty Ceramics | SBF * | TRIS pH 5.0 | TRIS pH 7.4 |
CG | 0.364 ± 0.006 | 0.359 ± 0.008 | 0.360 ± 0.07 |
ALG | 0.360 ± 0.007 | 0.362 ± 0.008 | 0.359 ± 0.008 |
ADA/GEL | 0.362 ± 0.008 | 0.365 ± 0.01 | 0.360 ± 0.007 |
CUR | 0.272 ± 0.005 | 0.280 ± 0.04 | 0.260 ± 0.014 |
Weight after loading | SBF | TRIS pH 5.0 | TRIS pH 7.4 |
Alginate | 0.464 ± 0.024 | 0.463 ± 0.012 | 0.459 ± 0.012 |
ADA/gelatin | 0.469 ± 0.019 | 0.469 ± 0.023 | 0.457 ± 0.013 |
End Weight | SBF | TRIS pH 5.0 | TRIS pH 7.4 |
CG | 0.479 ± 0.027 | 0.466 ± 0.009 | 0.459 ± 0.009 |
ALG | 0.463 ± 0.008 | 0.463 ± 0.012 | 0.465 ± 0.01 |
ADA/gelatin | 0.469 ± 0.019 | 0.473 ± 0.013 | 0.473 ± 0.015 |
CUR ** | 0.260 ± 0.005 | n.a. *** | 0.224 ± 0.007 |
Maximum Failure Load [N] | |||
Sample | Control Group | RMS + Alginate | RMS + ADA/GEL |
TRIS pH 5.0 | 651 ± 287 | 339 ± 111 | 374 ± 99 |
TRIS pH 7.4 | 687 ± 170 | 718 ± 117 | 895 ± 230 |
SBF | 930 ± 171 | 863 ± 145 | 973 ± 200 |
No buffer | 931 ± 223 | 863 ± 82 | 1114 ± 300 |
Compressive Strength [MPa] | |||
Sample | Control Group | RMS + Alginate | RMS + ADA/GEL |
TRIS pH 5.0 | 17 ± 7 | 9 ± 0.3 | 10 ± 3 |
TRIS pH 7.4 | 18 ± 4 | 19 ± 3 | 23 ± 6 |
SBF | 24 ± 4 | 22 ± 4 | 25 ± 5 |
No buffer | 24 ± 6 | 22 ± 2 | 29 ± 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seidenstuecker, M.; Schmeichel, T.; Ritschl, L.; Vinke, J.; Schilling, P.; Schmal, H.; Bernstein, A. Mechanical Properties of the Composite Material consisting of β-TCP and Alginate-Di-Aldehyde-Gelatin Hydrogel and Its Degradation Behavior. Materials 2021, 14, 1303. https://doi.org/10.3390/ma14051303
Seidenstuecker M, Schmeichel T, Ritschl L, Vinke J, Schilling P, Schmal H, Bernstein A. Mechanical Properties of the Composite Material consisting of β-TCP and Alginate-Di-Aldehyde-Gelatin Hydrogel and Its Degradation Behavior. Materials. 2021; 14(5):1303. https://doi.org/10.3390/ma14051303
Chicago/Turabian StyleSeidenstuecker, Michael, Thomas Schmeichel, Lucas Ritschl, Johannes Vinke, Pia Schilling, Hagen Schmal, and Anke Bernstein. 2021. "Mechanical Properties of the Composite Material consisting of β-TCP and Alginate-Di-Aldehyde-Gelatin Hydrogel and Its Degradation Behavior" Materials 14, no. 5: 1303. https://doi.org/10.3390/ma14051303
APA StyleSeidenstuecker, M., Schmeichel, T., Ritschl, L., Vinke, J., Schilling, P., Schmal, H., & Bernstein, A. (2021). Mechanical Properties of the Composite Material consisting of β-TCP and Alginate-Di-Aldehyde-Gelatin Hydrogel and Its Degradation Behavior. Materials, 14(5), 1303. https://doi.org/10.3390/ma14051303