Chemical and Structural Characterization of Maize Stover Fractions in Aspect of Its Possible Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Maize Stover Fractions
2.2. Chemical Analysis
2.2.1. CHNSO Concentration Analysis
2.2.2. Cellulose and Lignin Content
2.2.3. X-ray Diffraction Analysis
2.2.4. Fourier-Transform Infrared Spectroscopy (FTIR)
2.3. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition
3.2. The Supermolecular Structure
3.3. The FTIR Spectra
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gramig, B.M.; Reeling, C.J.; Cibin, R.; Chaubey, I. Environmental and economic trade-offs in a watershed when using corn stover for bioenergy. Environ. Sci. Technol. 2013, 47, 1784–1791. [Google Scholar] [CrossRef]
- Sokhansanj, S.; Mani, S.; Tagore, S.; Turhollow, A.F. Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant- Part 1: Cost of feedstock supply logistics. Biomass Bioenergy 2010, 34, 75–81. [Google Scholar] [CrossRef]
- Wojcieszak, D.; Przybył, J.; Ratajczak, I.; Goliński, P.; Janczak, D.; Waśkiewicz, A.; Szentner, K.; Woźniak, M. Chemical composition of maize stover fraction versus methane yield and energy value in fermentation process. Energy 2020, 198. [Google Scholar] [CrossRef]
- Shinners, K.J.; Binversie, B.N. Fractional yield and moisture of corn stover biomass produced in the Northern US Corn Belt. Biomass Bioenergy 2007, 31, 576–584. [Google Scholar] [CrossRef]
- Chen, Y.; Dong, B.; Qin, W.; Xiao, D. Xylose and cellulose fractionation from corncob with three different strategies and separate fermentation of them to bioethanol. Bioresour. Technol. 2010, 101, 6994–6999. [Google Scholar] [CrossRef]
- Pinto, J.; Cruz, D.; Paiva, A.; Pereira, S.; Tavares, P.; Fernandes, L.; Varum, H. Characterization of corn cob as a possible raw building material. Constr. Build. Mater. 2012, 34, 28–33. [Google Scholar] [CrossRef]
- Youssef, A.M.; El-Gendy, A.; Kamel, S. Evaluation of corn husk fibers reinforced recycled low density polyethylene composites. Mater. Chem. Phys. 2015, 152, 26–33. [Google Scholar] [CrossRef]
- Wu, T.; Wang, X.; Kito, K. Effects of pressures on the mechanical properties of corn straw bio-board. Eng. Agric. Environ. Food 2015, 8, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Sekaluvu, L.; Tumutegyereize, P.; Kiggundu, N. Investigation of factors affecting the production and properties of maize cob-particleboards. Waste Biomass Valori. 2014, 5, 27–32. [Google Scholar] [CrossRef]
- Onkarappa, H.S.; Prakash, G.K.; Pujar, G.H.; Rajith Kumar, C.R.; Betageri, V.S. Facile synthesis and characterization of nanocellulose from Zea mays husk. Polym. Compos. 2020, 41, 3153–3159. [Google Scholar] [CrossRef]
- Rehman, N.; de Miranda, M.I.G.; Rosa, S.M.L.; Pimentel, D.M.; Nachtigall, S.M.B.; Bica, C.I.D. Cellulose and nanocellulose from maize straw: An insight on the crystal properties. J. Polym. Environ. 2014, 22, 252–259. [Google Scholar] [CrossRef]
- Obodai, M.; Cleland-Okine, J.; Vowotor, K.A. Comparative study on the growth and yield of Pleurotus ostreatus mushroom on different lignocellulosic by-products. J. Ind. Microbiol. Biotechnol. 2003, 30, 146–149. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, Y.; Li, Z.; Feng, R.; Zhang, Y. Characterization of corncob-derived biochar and pyrolysis kinetics in comparison with corn stalk and sawdust. Bioresour. Technol. 2014, 170, 76–82. [Google Scholar] [CrossRef]
- Menardo, S.; Airoldi, G.; Cacciatore, V.; Balsari, P. Potential biogas and methane yield of maize stover fractions and evaluation of some possible stover harvest chains. Biosyst. Eng. 2015, 129, 352–359. [Google Scholar] [CrossRef]
- Kadam, K.L.; McMillan, J.D. Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresour. Technol. 2003, 88, 17–25. [Google Scholar] [CrossRef]
- Xing, X.; Fan, F.; Jiang, W. Characteristics of biochar pellets from corn straw under different pyrolysis temperatures. R. Soc. Open Sci. 2018, 5. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Park, S.Y.; Zhu, J. Solid-state anaerobic digestion for methane production from organic waste. Renew. Sustain. Energy Rev. 2011, 15, 821–826. [Google Scholar] [CrossRef]
- Yuan, X.; Li, P.; Wang, H.; Wang, X.; Cheng, X.; Cui, Z. Enhancing the anaerobic digestion of corn stalks using composite microbial pretreatment. J. Microbiol. Biotechnol. 2011, 21, 746–752. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Keshwani, D.R.; Xu, Y.; Hanna, M.A. Alkali combined extrusion pretreatment of corn stover to enhance enzyme saccharification. Ind. Crops Prod. 2012, 37, 352–357. [Google Scholar] [CrossRef]
- Soudham, V.P.; Gräsvik, J.; Alriksson, B.; Mikkola, J.-P.; Jönsson, L.J. Enzymatic hydrolysis of Norway spruce and sugarcane bagasse after treatment with 1-allyl-3-methylimidazolium formate. J. Chem. Technol. Biotechnol. 2013, 88, 2209–2215. [Google Scholar] [CrossRef]
- Rodriguez, C.; Alaswad, A.; Benyounis, K.Y.; Olabi, A.G. Pretreatment techniques used in biogas production from grass. Renew. Sustain. Energy Rev. 2017, 68, 1193–1204. [Google Scholar] [CrossRef] [Green Version]
- Tezcan, E.; Atıcı, O.G. A new method for recovery of cellulose from lignocellulosic bio-waste: Pile processing. Waste Manag. 2017, 70, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Wang, H.; Li, J.; Fu, Y.; Zhu, W. Methane production performances of different compositions in lignocellulosic biomass through anaerobic digestion. Energy 2019, 189, 116190. [Google Scholar] [CrossRef]
- Park, Y.C.; Kim, J.S. Comparison of various alkaline pretreatment methods of lignocellulosic biomass. Energy 2012, 47, 31–35. [Google Scholar] [CrossRef]
- ISO—ISO 16948:2015-Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen; Polish Committee for Standarization: Warsaw, Poland, 2015.
- T 204 cm-07 Solvent Extractives of Wood and Pulp; Technical Association of the Pulp and Paper Industry (TAPPI): Atlanta, GA, USA, 2007.
- Seifert, K. Zur Frage der Cellulose-Schnellbestimmung nach der Acetylaceton-Methode. Papier 1960, 14, 104–106. [Google Scholar]
- T 222 om-06 Acid-Insoluble Lignin in Wood and Pulp; Technical Association of the Pulp and Paper Industry (TAPPI): Atlanta, GA, USA, 2006.
- Hindeleh, A.M.; Johnson, D.J. The resolution of multipeak data in fibre science. J. Phys. D. Appl. Phys. 1971, 4, 259. [Google Scholar] [CrossRef]
- Rabiej, S. A comparison of two X-ray diffraction procedures for crystallinity determination. Eur. Polym. J. 1991, 27, 947–954. [Google Scholar] [CrossRef]
- Kumar, A.; Jones, D.; Hanna, M. Thermochemical biomass gasification: A review of the current status of the technology. Energies 2009, 2, 556–581. [Google Scholar] [CrossRef] [Green Version]
- Medic, D.; Darr, M.; Shah, A.; Rahn, S. The effects of particle size, different corn stover components, and gas residence time on torrefaction of corn stover. Energies 2012, 5, 1199–1214. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhai, H.; Zhang, Y.; Yu, L. Cell morphology and chemical characteristics of corn stover fractions. Ind. Crops Prod. 2012, 37, 130–136. [Google Scholar] [CrossRef]
- Shariff, A.; Aziz, N.S.M.; Ismail, N.I.; Abdullah, N. Corn cob as a potential feedstock for slow pyrolysis of biomass. J. Phys. Sci. 2016, 27, 123–137. [Google Scholar] [CrossRef]
- Demirbas, A. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J. Anal. Appl. Pyrolysis 2004, 72, 243–248. [Google Scholar] [CrossRef]
- Demiral, I.; Eryazici, A.; Şensöz, S. Bio-oil production from pyrolysis of corncob (Zea mays L.). Biomass Bioenergy 2012, 36, 43–49. [Google Scholar] [CrossRef]
- Trninić, M.; Wang, L.; Várhegyi, G.; Grønli, M.; Skreiberg, Ø. Kinetics of corncob pyrolysis. Energy Fuels 2012, 26, 2005–2013. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.X.; Gan, J.; Sheng, L.X.; Tan, Z.L.; Tayo, G.O.; Sun, Z.H.; Wang, M.; Ren, G.P. Morphological fractions, chemical composition and in vitro fermentation characteristics of maize stover of five genotypes. Animal 2008, 2, 1772–1779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.S.; Steinberger, Y.; Wang, X.Y.; Hu, L.; Chen, X.; Xie, G.H. Variations of chemical composition in corn stover used for biorefining. J. Biobased Mater. Bioenergy 2014, 8, 633–640. [Google Scholar] [CrossRef]
- Garlock, R.J.; Chundawat, S.P.S.; Balan, V.; Dale, B.E. Optimizing harvest of corn stover fractions based on overall sugar yields following ammonia fiber expansion pretreatment and enzymatic hydrolysis. Biotechnol. Biofuels 2009, 2, 1–14. [Google Scholar] [CrossRef]
- Berchem, T.; Roiseux, O.; Vanderghem, C.; Boisdenghien, A.; Foucart, G.; Richel, A. Corn stover as feedstock for the production of ethanol: Chemical composition of different anatomical fractions and varieties. Biofuels Bioprod. Biorefining 2017, 11, 430–440. [Google Scholar] [CrossRef]
- Khalid, A.; Arshad, M.; Anjum, M.; Mahmood, T.; Dawson, L. The anaerobic digestion of solid organic waste. Waste Manag. 2011, 31, 1737–1744. [Google Scholar] [CrossRef]
- Choi, Y.; Ryu, J.; Lee, S.R. Influence of carbon type and carbon to nitrogen ratio on the biochemical methane potential, pH, and ammonia nitrogen in anaerobic digestion. J. Anim. Sci. Technol. 2020, 62, 74–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szemmelveisz, K.; Szucs, I.; Palotás, Á.B.; Winkler, L.; Eddings, E.G. Examination of the combustion conditions of herbaceous biomass. Fuel Process. Technol. 2009, 90, 839–847. [Google Scholar] [CrossRef]
- Li, D.; Huang, X.; Wang, Q.; Yuan, Y.; Yan, Z.; Li, Z.; Huang, Y.; Liu, X. Kinetics of methane production and hydrolysis in anaerobic digestion of corn stover. Energy 2016, 102, 1–9. [Google Scholar] [CrossRef]
- Grabber, J.H. How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci. 2005, 45, 820–831. [Google Scholar] [CrossRef] [Green Version]
- Achinas, S.; Achinas, V.; Euverink, G.J.W. A technological overview of biogas production from biowaste. Engineering 2017, 3, 299–307. [Google Scholar] [CrossRef]
- Ogunjobi, J.K.; Lajide, L. Characterisation of bio-oil and bio-char from slow-pyrolysed Nigerian yellow and white corn cobs. J. Sustain. Energy Environ. 2013, 4, 77–84. [Google Scholar]
- Borysiak, S. Influence of wood mercerization on the crystallization of polypropylene in wood/PP composites. J. Therm. Anal. Calor. 2012, 109, 595–603. [Google Scholar] [CrossRef]
- Borysiak, S. Influence of cellulose polymorphs on the polypropylene crystallization. J. Therm. Anal. Calorim. 2013, 113, 281–289. [Google Scholar] [CrossRef] [Green Version]
- Pang, F.; Xue, S.; Yu, S.; Zhang, C.; Li, B.; Kang, Y. Effects of microwave power and microwave irradiation time on pretreatment efficiency and characteristics of corn stover using combination of steam explosion and microwave irradiation (SE-MI) pretreatment. Bioresour. Technol. 2012, 118, 111–119. [Google Scholar] [CrossRef]
- Costa, L.A.S.; de J. Assis, D.; Gomes, G.V.P.; Da Silva, J.B.A.; Fonsêca, A.F.; Druzian, J.I. Extraction and characterization of nanocellulose from corn stover. Mater. Today Proc. 2015, 2, 287–294. [Google Scholar] [CrossRef]
- Kuo, C.H.; Lee, C.K. Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohydr. Polym. 2009, 77, 41–46. [Google Scholar] [CrossRef]
- Fu, S.F.; Wang, F.; Yuan, X.Z.; Yang, Z.M.; Luo, S.J.; Wang, C.S.; Guo, R.B. The thermophilic (55 °C) microaerobic pretreatment of corn straw for anaerobic digestion. Bioresour. Technol. 2015, 175, 203–208. [Google Scholar] [CrossRef]
- Meshitsuka, G.; Isogai, A. chemical structures of cellulose, hemicelluloses, and lignin. In Chemical Modification of Lignocellulosic Materials; Routledge: Oxfordshire, UK, 2018; pp. 11–33. [Google Scholar]
- Zhang, L.; Li, D.; Wang, L.; Wang, T.; Zhang, L.; Chen, X.D.; Mao, Z. Huai Effect of steam explosion on biodegradation of lignin in wheat straw. Bioresour. Technol. 2008, 99, 8512–8515. [Google Scholar] [CrossRef] [PubMed]
- Sasmal, S.; Goud, V.V.; Mohanty, K. Characterization of biomasses available in the region of North-East India for production of biofuels. Biomass Bioenergy 2012, 45, 212–220. [Google Scholar] [CrossRef]
- Naik, S.; Goud, V.V.; Rout, P.K.; Jacobson, K.; Dalai, A.K. Characterization of Canadian biomass for alternative renewable biofuel. Renew. Energy 2010, 35, 1624–1631. [Google Scholar] [CrossRef]
Fraction | C * (%) | N * (%) | C:N * | H (%) | O (%) |
---|---|---|---|---|---|
Cobs | 44.81 a ± 0.04 | 0.53 b ± 0.04 | 84 b ± 7 | 5.93 a ± 0.04 | 45.03 a ± 1.00 |
Husks | 43.79 b ± 0.17 | 0.53 b ± 0.06 | 83 b ± 8 | 6.00 a ± 0.26 | 43.15 ab ± 0.92 |
Leaves | 43.31 c ± 0.06 | 0.96 a ± 0.05 | 45 c ± 2 | 5.72 a ± 0.04 | 41.91 ab ± 0.49 |
Stalks | 43.73 bc ± 0.11 | 0.30 c ± 0.00 | 147 a ± 1 | 5.55 a ± 0.07 | 41.35 b ± 0.78 |
n | 3 | 3 | 3 | 3 | 3 |
Fraction | Crude Material (%) | Cellulose (%) |
---|---|---|
Cobs | 32 | 54 |
Husks | 29 | 48 |
Leaves | 33 | 51 |
Stalks | 38 | 59 |
Fraction | Cellulose | Lignin | C | N | C:N | H | O | Degree of Crystallinity | |
---|---|---|---|---|---|---|---|---|---|
Fraction | - | - | - | - | - | - | - | - | - |
Cellulose | 0.77 | - | - | - | - | - | - | - | - |
Lignin | 0.61 | 0.71 | - | - | - | - | - | - | - |
C | −0.54 | −0.36 | −0.21 | - | - | - | - | - | - |
N | −0.15 | 0.00 | −0.00 | −0.21 | - | - | - | - | - |
C:N | 0.07 | 0.07 | 0.07 | 0.28 | −0.93 | - | - | - | - |
H | −0.77 | −0.57 | −0.71 | 0.50 | 0.28 | −0.21 | - | - | |
O | −0.84 | −0.71 | −0.57 | 0.50 | 0.00 | 0.07 | 0.57 | - | - |
Degree of crystallinity | 0.31 | 0.21 | −0.07 | 0.00 | −0.78 | 0.71 | −0.21 | −0.21 | - |
Degree of crystallinity of isolated cellulose | 0.31 | 0.18 | −0.04 | 0.04 | −0.76 | 0.69 | −0.25 | −0.18 | 0.98 |
Assignment of Selected FTIR Bands of Functional Groups | Relative Absorbance Value for Each Fraction of Maize Stover | ||||||||
---|---|---|---|---|---|---|---|---|---|
Wavenumber (cm−1) | Group and Their Stretching Vibrations | Cobs | Husks | Leaves | Stalks | ||||
Maize Stover * | Cellulose ** | Maize Stover * | Cellulose ** | Maize Stover * | Cellulose ** | Maize Stover * | Cellulose ** | ||
2930 | CH2 and CH3 asymmetric and symmetric stretching vibrations | 1.250 | 0.575 | 1.364 | 0.684 | 1.000 | 0.742 | 1.057 | 2.172 |
1640 | C=C of aromatic vibrations in lignin | 3.125 | 1.200 | 3.364 | 1.684 | 1.800 | 1.871 | 2.019 | 3.724 |
1470 | C-H deformation stretching in lignin and xylan | 1.250 | 0.528 | 1.409 | 0.649 | 1.000 | 0.390 | 1.151 | 1.552 |
1430 | C-H crystalline cellulose | 1.344 | 0.593 | 1.473 | 0.667 | 1.200 | 0.410 | 1.226 | 1.448 |
890 | C-H stretching out of the plane of the aromatic ring, and asymmetric, out of phase ring stretching in cellulose, CH amorphous cellulose | 1.000 | 1.875 | 3.873 | 0.561 | 0.000 | 0.000 | 0.981 | 0.655 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woźniak, M.; Ratajczak, I.; Wojcieszak, D.; Waśkiewicz, A.; Szentner, K.; Przybył, J.; Borysiak, S.; Goliński, P. Chemical and Structural Characterization of Maize Stover Fractions in Aspect of Its Possible Applications. Materials 2021, 14, 1527. https://doi.org/10.3390/ma14061527
Woźniak M, Ratajczak I, Wojcieszak D, Waśkiewicz A, Szentner K, Przybył J, Borysiak S, Goliński P. Chemical and Structural Characterization of Maize Stover Fractions in Aspect of Its Possible Applications. Materials. 2021; 14(6):1527. https://doi.org/10.3390/ma14061527
Chicago/Turabian StyleWoźniak, Magdalena, Izabela Ratajczak, Dawid Wojcieszak, Agnieszka Waśkiewicz, Kinga Szentner, Jacek Przybył, Sławomir Borysiak, and Piotr Goliński. 2021. "Chemical and Structural Characterization of Maize Stover Fractions in Aspect of Its Possible Applications" Materials 14, no. 6: 1527. https://doi.org/10.3390/ma14061527
APA StyleWoźniak, M., Ratajczak, I., Wojcieszak, D., Waśkiewicz, A., Szentner, K., Przybył, J., Borysiak, S., & Goliński, P. (2021). Chemical and Structural Characterization of Maize Stover Fractions in Aspect of Its Possible Applications. Materials, 14(6), 1527. https://doi.org/10.3390/ma14061527