Influence of Cement Replacement with Fly Ash and Ground Sand with Different Fineness on Alkali-Silica Reaction of Mortar
Abstract
:1. Introduction
2. Research Significance
3. Experiment
3.1. Materials
3.2. ASR Testing Procedure
4. Results and Discussion
4.1. ASR Expansion of Mortars Containing FA
4.2. ASR Expansion of Mortars Containing RS
4.3. ASR Expansion of Mortars Containing FA and RS
4.4. Filler Effect of Different Finenesses of RS on the ASR Expansion of Mortar
4.5. Effectiveness of FA in Controlling ASR Expansion of Mortar
5. Conclusions
- The use of FA with 5 and 33 wt.% of its particles retained on a No. 325 sieve to replace 20% of OPC reduced the ASR expansion of the mortar. The extent of the reduction depended on the replacement of OPC by FA rather than on the fineness of FA.
- The use of RS to partially substitute OPC reduced ASR expansion of the mortar by decreasing the Ca(OH)2 content available from OPC.
- The filler effect of RS is a factor that contributed to the reduced ASR expansion of the mortar. Moreover, the filler effect of RS with a higher fineness was more effective than that of RS with a lower fineness.
- The use of Class C FA with different levels of fineness (retained on No. 325 sieve at 5 and 33% by weight) to replace OPC at 20% reduced the ASR expansion by more than 50% at 14 days. In addition, it is suggested that reducing the CaO content (by reducing the OPC content) in mortar could be more effective in mitigating the ASR expansion than the filler effect of the cement replacement material.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, V.; Chandra, S.; Choudhary, R. Characterization of fly ash bituminous concrete mixes. J. Mater. Civ. Eng. 2010, 22, 1666–1673. [Google Scholar] [CrossRef]
- Tangchirapat, W.; Rattanashotinunt, C.; Buranasing, R.; Jaturapitakkul, C. Influence of fly ash on slump loss and strength of concrete fully incorporating recycled concrete aggregates. J. Mater. Civ. Eng. 2013, 25, 243–251. [Google Scholar] [CrossRef]
- Hsu, S.; Chi, M.; Huang, R. Effect of fineness and replacement ratio of ground fly ash on properties of blended cement mortar. Construct. Build. Mater. 2018, 176, 250–258. [Google Scholar] [CrossRef]
- Choi, S.J.; Lee, S.S.; Monteiro-Paulo, J.M. Effect of fly ash fineness on temperature rise, setting, and strength development of mortar. J. Mater. Civ. Eng. 2012, 24, 499–505. [Google Scholar] [CrossRef]
- Chalee, W.; Jaturapitakkulm, C.; Chindaprasirt, P. Predicting the chloride penetration of fly ash concrete in seawater. Mar. Struct. 2009, 22, 341–353. [Google Scholar] [CrossRef]
- Jaturapitakkul, C.; Kiattikomol, K.; Sata, V.; Leekeeratikul, T. Use of ground coarse fly ash as a replacement of condensed silica fume in producing high-strength concrete. Cem. Concr. Res. 2004, 34, 549–555. [Google Scholar] [CrossRef]
- Cheerarot, R.; Jaturapitakkul, C. A study of disposed fly ash from landfill to replace Portland cement. Waste Manag. 2004, 24, 701–709. [Google Scholar] [CrossRef]
- Somna, R.; Jaturapitakkul, C.; Made, A.M. Effect of ground fly ash and ground bagasse ash on the durability of recycled aggregate concrete. Cem. Concr. Compos. 2012, 34, 848–854. [Google Scholar] [CrossRef]
- Dueramae, S.; Tangchirapat, W.; Jaturapitakkul, C. Strength and heat generation of concrete using carbide lime and fly ash as a new cementitious material without Portland cement. Adv. Powder Techol. 2018, 29, 672–681. [Google Scholar] [CrossRef]
- Dueramae, S.; Tangchirapat, W.; Sukontasukkul, P.; Chindaprasirt, P.; Jaturapitakkul, C. Investigation of compressive strength and microstructures of activated cement free binder from fly ash–calcium carbide residue mixture. J. Mater. Res. Technol. 2019, 8, 4757–4765. [Google Scholar] [CrossRef]
- Turk, K.; Kina, C.; Bagdiken, M. Use of binary and ternary cementitious blends of F-Class fly-ash and limestone powder to mitigate alkali-silica reaction risk. Constr. Build. Mater. 2017, 151, 422–427. [Google Scholar] [CrossRef]
- Saha, A.K.; Khan, M.N.N.; Sarker, P.K.; Shaikh, F.A.; Pramanik, A. The ASR mechanism of reactive aggregates in concrete and its mitigation by fly ash: A critical review. Constr. Build. Mater. 2018, 171, 743–758. [Google Scholar] [CrossRef]
- Moser, R.D.; Jayapalan, A.R.; Garas, V.Y.; Kurtis, K.E. Assessment of binary and ternary blends of metakaolin and Class C fly ash for alkali-silica reaction mitigation in concrete. Cem. Concr. Res. 2010, 40, 1664–1672. [Google Scholar] [CrossRef]
- ASTM C150/150M. Standard Specification for Portland Cement; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- ASTM C430. Standard Test Method for Fineness of Hydraulic Cement by the 45-µm (No. 325) Sieve; ASTM International: West Conshohocken, PA, USA, 2008. [Google Scholar]
- ASTM C618. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- Chindaprasirt, P.; Jaturapitakkul, C.; Sinsiri, T. Effect of fly ash fineness on microstructure of blended cement paste. Constr. Build. Mater. 2007, 21, 1534–1541. [Google Scholar] [CrossRef]
- Kroehong, W.; Sinsiri, T.; Jaturapitakkul, C.; Chindaprasirt, P. Effect of palm oil fuel ash fineness on the microstructure of blended cement paste. Constr. Build. Mater. 2011, 25, 4095–4104. [Google Scholar] [CrossRef]
- Paya, J.; Monzo, J.; Borrachero, M.V.; Peris, E. Mechanical treatments of fly ashes. Part I: Physico-chemical characterization of ground fly ashes. Cem. Concr. Res. 1995, 25, 1469–1479. [Google Scholar] [CrossRef]
- ASTM C1567. Standard Test Method for Determining the Potential Alkali-Silica Reactivity of Combinations of Cementitious Materials and Aggregate (Accelerated Mortar-Bar Method); ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- ASTM C1260. Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method); ASTM International: West Conshohocken, PA, USA, 2014. [Google Scholar]
- ASTM C441. Standard Test Method for Effectiveness of Pozzolans or Ground Blast-Furnace Slag in Preventing Excessive Expansion of Concrete due to the Alkali-Silica Reaction; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- Tapan, M. Alkali–silica reactivity of alkali volcanic rocks. Eur. J. Environ. Civ. Eng. 2015, 19, 94–108. [Google Scholar] [CrossRef]
- Penacho, P.; Brito, J.; Silva, A.S.; Veiga, M.R. Risk of ASR in coating mortars incorporating glass aggregates and a Portland–limestone cement. Eur. J. Environ. Civ. Eng. 2017, 23, 1–19. [Google Scholar] [CrossRef]
- Bleszynski, R.F.; Thomas, M.D. Microstructural studies of alkali-silica reaction in fly ash concrete immersed in alkaline solutions. Adv. Cem. Based Mater. 1998, 7, 66–78. [Google Scholar] [CrossRef]
- Shehata, M.H.; Thomas, M.D. The effect of fly ash composition on the expansion of concrete due to alkali-silica reaction. Cem. Concr. Res. 2000, 30, 1063–1072. [Google Scholar] [CrossRef]
- Hou, X.; Struble, L.J.; Kirkpatrick, R.J. Formation of ASR gel and the roles of C-S-H and portlandite. Cem. Concr. Res. 2004, 34, 1683–1696. [Google Scholar] [CrossRef]
- García-Lodeiro, I.; Palomo, A.; Fernández-Jiménez, A. Alkali–aggregate reaction in activated fly ash systems. Cem. Concr. Res. 2007, 37, 175–183. [Google Scholar] [CrossRef]
- Ramyar, K.; Çopuroğlu, O.; Andiç, Ö.; Fraaij, A. Comparison of alkali-silica reaction products of fly-ash- or lithium-salt-bearing mortar under long-term accelerated curing. Cem. Concr. Res. 2004, 34, 1179–1183. [Google Scholar] [CrossRef]
- Topçu, İ.B.; Boğa, A.R.; Billir, T. Alkali–silica reactions of mortars produced by using waste glass as fine aggregate and admixtures such as fly ash and Li2CO3. Waste Manag. 2008, 28, 878–888. [Google Scholar] [CrossRef] [PubMed]
- Aydın, S.; Karatay, Ç.; Baradan, B. The effect of grinding process on mechanical properties and alkali-silica reaction resistance of fly ash incorporated cement mortar. Powder Technol. 2010, 197, 68–72. [Google Scholar] [CrossRef]
- Lindgård, J.; Andiç-Çakır, Ö.; Fernandes, I.; Rønning, T.F.; Thomas, M.D. Alkali–silica reactions (ASR): Literature review on parameters influencing laboratory performance testing. Cem. Concr. Res. 2012, 42, 223–243. [Google Scholar] [CrossRef] [Green Version]
- Duchesne, J.; Bérubé, M.A. The effectiveness of supplementary cementing materials in suppressing expansion due to ASR: Another look at the reaction mechanisms part 1: Concrete expansion and portlandite depletion. Cem. Concr. Res. 1994, 24, 73–82. [Google Scholar] [CrossRef]
- Ichikawa, T. Alkali–silica reaction, pessimum effects and pozzolanic effect. Cem. Concr. Res. 2009, 39, 716–726. [Google Scholar] [CrossRef]
- Turanli, L.; Uzal, B.; Bektas, F. Effect of large amounts of natural pozzolan addition on properties of blended cements. Cem. Concr. Res. 2005, 35, 1106–1111. [Google Scholar] [CrossRef]
- Hong, S.Y.; Glasser, F.P. Alkali sorption by C-S-H and C-A-S-H gels: Part II. Role of alumina. Cem. Concr. Res. 2002, 32, 1101–1111. [Google Scholar] [CrossRef]
- Tangpagasit, J.; Cheerarot, R.; Jaturapitakkul, C.; Kiattikomol, K. Packing effect and pozzolanic reaction of fly ash in mortar. Cem. Concr. Res. 2005, 35, 1145–1151. [Google Scholar] [CrossRef]
- Jaturapitakkul, C.; Tangpagasit, J.; Songmue, S.; Kiattikomol, K. Filler effect and pozzolanic reaction of ground palm oil fuel ash. Constr. Build. Mater. 2011, 25, 4287–4293. [Google Scholar] [CrossRef]
- Kroehong, W.; Sinsiri, T.; Jaturapitakkul, C. Effect of palm oil fuel ash fineness on packing effect and pozzolanic reaction of blended cement paste. Procedia Eng. 2011, 14, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Esteves, T.C.; Rajamma, R.; Soares, D.; Silva, A.; Ferreira, V.M.; Labrincha, J.A. Use of biomass fly ash for mitigation of alkali-silica reaction of cement mortars. Constr. Build. Mater. 2012, 26, 687–693. [Google Scholar] [CrossRef]
- Shon, C.S.; Zollinger, D.G.; Sarkar, S.L. Evaluation of modified ASTM C1260 accelerated mortar bar test for alkali-silica reactivity. Cem. Concr. Res. 2002, 32, 1981–1987. [Google Scholar] [CrossRef]
Sample | Chemical Composition (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | SO3 | MgO | Na2O | K2O | Na2Oeq | LOI | |
OPC | 20.8 | 4.7 | 3.3 | 65.4 | 2.7 | 1.3 | 0.3 | 0.4 | 0.6 | 1.0 |
5FA | 33.2 | 17.1 | 12.8 | 25.2 | 3.2 | 1.9 | 1.2 | 2.5 | 2.8 | 2.9 |
5RS | 92.0 | 5.0 | 0.6 | 0.2 | 0.2 | 0.0 | 0.4 | 0.8 | 0.9 | 0.1 |
Sample | Specific Gravity | Retained on a No. 325 Sieve (%) | Strength Activity Index (%) | |
---|---|---|---|---|
7 days | 28 days | |||
OPC | 3.14 | 20.0 | — | — |
5FA | 2.41 | 5.0 | 86 | 105 |
33FA | 2.33 | 32.8 | 81 | 93 |
5RS | 2.72 | 4.8 | 67 | 68 |
33RS | 2.63 | 32.5 | 62 | 62 |
Mortar Bars | Mix Proportions (By Weight) | |||||
---|---|---|---|---|---|---|
Cement | FA | RS | Fine Aggregate | W/B | Flow (%) | |
CT | 1.00 | — | — | 2.25 | 0.47 | 100 |
5FA | 0.80 | 0.20 | — | 2.25 | 0.47 | 101 |
33FA | 0.80 | 0.20 | — | 2.25 | 0.47 | 99 |
5RS | 0.80 | — | 0.20 | 2.25 | 0.47 | 92 |
33RS | 0.80 | — | 0.20 | 2.25 | 0.47 | 88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramjan, S.; Tangchirapat, W.; Jaturapitakkul, C.; Chee Ban, C.; Jitsangiam, P.; Suwan, T. Influence of Cement Replacement with Fly Ash and Ground Sand with Different Fineness on Alkali-Silica Reaction of Mortar. Materials 2021, 14, 1528. https://doi.org/10.3390/ma14061528
Ramjan S, Tangchirapat W, Jaturapitakkul C, Chee Ban C, Jitsangiam P, Suwan T. Influence of Cement Replacement with Fly Ash and Ground Sand with Different Fineness on Alkali-Silica Reaction of Mortar. Materials. 2021; 14(6):1528. https://doi.org/10.3390/ma14061528
Chicago/Turabian StyleRamjan, Suwat, Weerachart Tangchirapat, Chai Jaturapitakkul, Cheah Chee Ban, Peerapong Jitsangiam, and Teewara Suwan. 2021. "Influence of Cement Replacement with Fly Ash and Ground Sand with Different Fineness on Alkali-Silica Reaction of Mortar" Materials 14, no. 6: 1528. https://doi.org/10.3390/ma14061528
APA StyleRamjan, S., Tangchirapat, W., Jaturapitakkul, C., Chee Ban, C., Jitsangiam, P., & Suwan, T. (2021). Influence of Cement Replacement with Fly Ash and Ground Sand with Different Fineness on Alkali-Silica Reaction of Mortar. Materials, 14(6), 1528. https://doi.org/10.3390/ma14061528