Interface Bonding Behavior of Concrete-Filled Steel Tube Blended with Circulating Fluidized Bed Bottom Ash
Abstract
:1. Introduction
2. Experiment Part
2.1. Materials
2.2. Preparation of the Specimens
2.3. Test Setup and Instrument
3. Results and Discussions
3.1. Load-Slip Curves of CFST
3.2. Longitudinal Strain Distribution of CFST
3.3. Influence Factors on the Interface Bonding Behavior of CFST
4. Conclusions
- The load slip curve of CFST blended with CFB-BA can be divided into four stages. The strains along the longitudinal height of the steel tube are the same as the ordinary CFST without CFB-BA.
- Adding CFB-BA within a certain range has a positive effect on the bonding strength of CFST. When the dosage of CFB-BA is 10%, 30% and 50%, the interface bonding strength of CFST increased by 22.8%, 26.9% and 1.5%, respectively. The micro-expansion property of the CFB-BA can make the concrete squeeze on the sidewall of the steel tube to improve the interface bonding strength. However, too much CFB-BA in concrete will reduce the strength of the concrete, thereby reducing the bonding strength of CFST.
- The W/B has an important influence on the interface bonding strength of CFST with CFB-BA. When the dosage of CFB-BA and the interface bonding length are constant, the higher the W/B, the lower the interface bonding strength of the CFST. W/B has negative correlation with the interface bonding load and bonding strength. When the W/B is 0.3, the interface bonding strength of the CFST reached the maximum, the value reaches 2.50 MPa.
- Bonding length has a significant effect on the ultimate bonding load of CFST. However, because the force-bearing area increases with the increase of the bonding length, the bonding strength of CFST is basically unaffected.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lai, M.H.; Ho, J.C.M. Confinement effect of ring-confined concrete-filled-steel-tube columns under uni-axial load. Eng. Struct. 2014, 67, 123–141. [Google Scholar] [CrossRef]
- Milan, C.C.; Albareda-Valls, A.; Carreras, J.M. Evaluation of structural performance between active and passive preloading systems in circular concrete-filled steel tubes (CFST). Eng. Struct. 2019, 194, 207–219. [Google Scholar] [CrossRef]
- Han, L.-H.; Li, W.; Bjorhovde, R. Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. J. Constr. Steel Res. 2014, 100, 211–228. [Google Scholar] [CrossRef]
- Ibañez, C.; Hernández-Figueirido, D.; Piquer, A. Shape effect on axially loaded high strength CFST stub columns. J. Constr. Steel Res. 2018, 147, 247–256. [Google Scholar] [CrossRef]
- Yu, Z.-W.; Ding, F.-X.; Cai, C.S. Experimental behavior of circular concrete-filled steel tube stub columns. J. Constr. Steel Res. 2007, 63, 165–174. [Google Scholar] [CrossRef]
- Nie, J.-G.; Wang, Y.-H.; Fan, J.-S. Experimental study on seismic behavior of concrete filled steel tube columns under pure torsion and compression–torsion cyclic load. J. Constr. Steel Res. 2012, 79, 115–126. [Google Scholar] [CrossRef]
- Wang, R.; Han, L.-H.; Hou, C.-C. Behavior of concrete filled steel tubular (CFST) members under lateral impact: Experiment and FEA model. J. Constr. Steel Res. 2013, 80, 188–201. [Google Scholar] [CrossRef]
- Roeder, C.W.; Lehman, D.E.; Bishop, E. Strength and Stiffness of Circular Concrete-Filled Tubes. J. Struct. Eng. 2010, 136, 1545–1553. [Google Scholar] [CrossRef]
- Xiong, M.; Xiong, D.; Liew, J.Y.R.J.E.S. Axial performance of short concrete filled steel tubes with high- and ultra-high- strength materials. Eng. Struct. 2017, 136, 494–510. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, X. The hysteretic behavior of recycled aggregate concrete-filled square steel tube columns. Eng. Struct. 2019, 198. [Google Scholar] [CrossRef]
- Virdi, K. Bond Strength in Concrete Filled Steel Tubes; Int Assoc for Bridge & Structural Eng: Zürich, Switzerland, 1980. [Google Scholar]
- Lyu, W.-Q.; Han, L.-H. Investigation on bond strength between recycled aggregate concrete (RAC) and steel tube in RAC-filled steel tubes. J. Constr. Steel Res. 2019, 155, 438–459. [Google Scholar] [CrossRef]
- Tao, Z.; Song, T.-Y.; Uy, B.; Han, L.-H. Bond behavior in concrete-filled steel tubes. J. Constr. Steel Res. 2016, 120, 81–93. [Google Scholar] [CrossRef]
- Qu, X.; Liu, Q. Bond strength between steel and self-compacting lower expansion concrete in composite columns. J. Constr. Steel Res. 2017, 139, 176–187. [Google Scholar] [CrossRef]
- Abendeh, R.; Ahmad, H.S.; Hunaiti, Y.M. Experimental studies on the behavior of concrete-filled steel tubes incorporating crumb rubber. J. Constr. Steel Res. 2016, 122, 251–260. [Google Scholar] [CrossRef]
- Chang, X.; Huang, C.; Jiang, D.; Song, Y. Push-out test of pre-stressing concrete filled circular steel tube columns by means of expansive cement. Constr. Build. Mater. 2009, 23, 491–497. [Google Scholar] [CrossRef]
- Topper, J.M.; Cross, P.J.I.; Goldthorpe, S.H. Clean coal technology for power and cogeneration. Fuel 1993, 73, 1056–1063. [Google Scholar] [CrossRef]
- Beer, J.M. Combustion technology developments in power generation in response to environmental challenges. Prog. Energy Combust. Sci. 2000, 26, 301–327. [Google Scholar] [CrossRef]
- Sondreal, E.A.; Benson, S.A.; Hurley, J.P.; Mann, M.D.; Pavlish, J.H.; Swanson, M.L.; Weber, G.F.; Zygarlicke, C.J.J.F.P.T. Review of advances in combustion technology and biomass cofiring. Fuel Process. Technol. 2001, 71, 7–38. [Google Scholar] [CrossRef]
- Lv, S.Z.; Chen, X.M.; Lu, Z.Y.; Peng, Y.H. Study on high belite cement clinker calcination with ashes from circulating fluidized bed combustion. New Build. Mater. 2011, 8, 1–3. [Google Scholar]
- Tang, S.X.; Wang, Z.; He, Y.F.; Chen, R. Changes of coal ash properties and its effect on concrete. New Build. Mater. 2018, 45, 103–106+132. [Google Scholar]
- Li, X.G.; Chen, Q.B.; Huang, K.Z.; Ma, B.G.; Wu, B. Cementitious properties and hydration mechanism of circulating fluidized bed combustion (CFBC) desulfurization ashes. Constr. Build. Mater. 2012, 36, 182–187. [Google Scholar] [CrossRef]
- Cheng, Z.; Pei, X.; Hou, H.; Han, T.; Liu, L.; Wang, H.; Han, Y. Expansive Behavior in Circular Steel Tube Stub Columns of SCC Blended with CFB Bottom Ashes. J. Mater. Civ. Eng. 2019, 31. [Google Scholar] [CrossRef]
- Cheng, Z.; Cheng, Z.; Hou, H.; Han, T.; Liu, L. Engineering. Research on the Expansion Characteristics and Compressive Strength of Mortars Containing Circulating Fluidized Bed Combustion Desulfurization Slag. Adv. Mater. Sci. Eng. 2018, 2018, 1–11. [Google Scholar]
- China Aggregates Association; Beijing University of Civil Engineering and Architecture; Technical Supervision and Research Center of Building Materials Industry. Pebble and Crushed Stone for Construction. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; Standardization Administration: Beijing, China, 2011; p. 32. [Google Scholar]
- China Aggregates Association; Beijing University of Civil Engineering and Architecture; Technical Supervision and Research Center of Building Materials Industry. Construction Sand. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; Standardization Administration: Beijing, China, 2011; p. 36. [Google Scholar]
Setting Time (min) | Flexural Strength (MPa) | Compressive Strength (MPa) | Density (kg/m3) | Surface Area (m2/kg) | |||
---|---|---|---|---|---|---|---|
Initial | Final | 3 d | 28 d | 3 d | 28 d | ||
183 | 234 | 5.5 | 7.6 | 26.1 | 45.9 | 3100 | 350 |
SiO2 | Al2O3 | CaO | SO3 | Fe2O3 | MgO | K2O | P2O5 | Na2O | Loss on Ignition |
---|---|---|---|---|---|---|---|---|---|
42.19 | 25.9 | 10.1 | 5.91 | 3.1 | 1.35 | 0.79 | 0.12 | 0.06 | 6.09 |
Grinding Time (min) | Specific Surface Area (cm2/g) | X10 (µm) | X50 (µm) | X90 (µm) | X98 (µm) |
---|---|---|---|---|---|
39 | 400 | 1.40 | 15.07 | 63.86 | 97.23 |
Thickness (mm) | Elastic Modulus (GPa) | Yield Strength (MPa) | Ultimate Strength (MPa) | Poisson’s Ratio |
---|---|---|---|---|
2.5 | 206 | 312 | 441 | 0.3 |
SCC | CFB-BA (%) | W/B | PC (kg) | CFB-BA (kg) | W (kg) | S (kg) | G (kg) | PS (%) |
---|---|---|---|---|---|---|---|---|
SCC-1 | 0 | 0 | 548.8 | 0.0 | 164.6 | 790.6 | 885.5 | 1 |
SCC-2 | 10 | 0.3 | 493.7 | 54.9 | 164.7 | 785.4 | 877.8 | 1.2 |
SCC-3 | 30 | 0.3 | 383.6 | 164.4 | 164.4 | 784.7 | 976.9 | 1.3 |
SCC-4 | 50 | 0.3 | 274.3 | 274.3 | 164.6 | 782.2 | 872.2 | 1.7 |
SCC-5 | 30 | 0.34 | 365.8 | 156.8 | 177.7 | 784.7 | 876.9 | 1.3 |
SCC-6 | 30 | 0.38 | 350.7 | 150.3 | 190.4 | 784.5 | 877.1 | 1.2 |
Group | SCC | CFB-BA (%) | W/B | Bonding Length (mm) | D × T × L (mm) |
---|---|---|---|---|---|
GP1 | SCC-1 | 0 | 0.3 | 250 | 89 × 2.5 × 300 |
GP2 | SCC-2 | 10 | 0.3 | 250 | 89 × 2.5 × 300 |
GP3 | SCC-3 | 30 | 0.3 | 250 | 89 × 2.5 × 300 |
GP4 | SCC-4 | 50 | 0.3 | 250 | 89 × 2.5 × 300 |
GP5 | SCC-5 | 30 | 0.34 | 250 | 89 × 2.5 × 300 |
GP6 | SCC-6 | 30 | 0.38 | 250 | 89 × 2.5 × 300 |
GP7 | SCC-5 | 30 | 0.3 | 200 | 89 × 2.5 × 300 |
GP8 | SCC-3 | 30 | 0.3 | 150 | 89 × 2.5 × 300 |
Group | CFB-BA (%) | W/B | Bonding Length (mm) | Compressive Strength at 28 d Age (MPa) | Ultimate Bonding Load (kN) | Ultimate Bonding Strength (MPa) | Relative Slip Value (mm) |
---|---|---|---|---|---|---|---|
GP1 | 0 | 0.3 | 250 | 57.1 | 134.1 | 1.97 | 2.514 |
GP2 | 10 | 0.3 | 250 | 52.4 | 164.5 | 2.42 | 2.486 |
GP3 | 30 | 0.3 | 250 | 55.5 | 169.6 | 2.50 | 2.286 |
GP4 | 50 | 0.3 | 250 | 48.8 | 136.1 | 2.00 | 1.200 |
GP5 | 30 | 0.34 | 250 | 46.6 | 155.0 | 2.13 | 2.199 |
GP6 | 30 | 0.38 | 250 | 37.1 | 134.4 | 1.92 | 2.097 |
GP7 | 30 | 0.3 | 200 | 55.5 | 125.2 | 2.54 | 1.573 |
GP8 | 30 | 0.3 | 150 | 55.5 | 102.5 | 2.51 | 1.017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; He, L.; Cheng, Z.; Wang, X.; Ma, Z.; Cheng, X. Interface Bonding Behavior of Concrete-Filled Steel Tube Blended with Circulating Fluidized Bed Bottom Ash. Materials 2021, 14, 1529. https://doi.org/10.3390/ma14061529
Liu L, He L, Cheng Z, Wang X, Ma Z, Cheng X. Interface Bonding Behavior of Concrete-Filled Steel Tube Blended with Circulating Fluidized Bed Bottom Ash. Materials. 2021; 14(6):1529. https://doi.org/10.3390/ma14061529
Chicago/Turabian StyleLiu, Lan, Lei He, Zhi Cheng, Xiaoyi Wang, Zhe Ma, and Xinrong Cheng. 2021. "Interface Bonding Behavior of Concrete-Filled Steel Tube Blended with Circulating Fluidized Bed Bottom Ash" Materials 14, no. 6: 1529. https://doi.org/10.3390/ma14061529
APA StyleLiu, L., He, L., Cheng, Z., Wang, X., Ma, Z., & Cheng, X. (2021). Interface Bonding Behavior of Concrete-Filled Steel Tube Blended with Circulating Fluidized Bed Bottom Ash. Materials, 14(6), 1529. https://doi.org/10.3390/ma14061529