Microstructural Investigation of a Friction-Welded 316L Stainless Steel with Ultrafine-Grained Structure Obtained by Hydrostatic Extrusion
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Optical Metallography of Friction-Welded Joint
3.2. SEM Investigation of Welded Joints
3.3. TEM Investigation of Friction-Welded Joint
3.4. EBSD Investigation of Friction-Welded Joint
3.5. Hardness Measurements
4. Discussion and Conclusions
4.1. Base Material
4.2. Heat-Affected Zone
4.3. Friction Weld
4.4. Micro Discontinuities of the Friction Weld Joint
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hansen, N. Hall-petch relation and boundary strengthening. Scr. Mater. 2004, 51, 801–806. [Google Scholar] [CrossRef]
- Górka, J. Assessment of steel subjected to the thermomechanical control process with respect to weldability. Metals 2018, 8, 169. [Google Scholar] [CrossRef] [Green Version]
- Tsuji, N.; Gholizadeh, R.; Ueji, R.; Kamikawa, N.; Zhao, L.; Tian, Y.; Bai, Y.; Shibata, A. Formation mechanism of ultrafine grained microstructures: Various possibilities for fabricating bulk nanostructured metals and alloys. Mater. Trans. 2019, 60, 1518–1532. [Google Scholar] [CrossRef] [Green Version]
- Rosochowski, A. Processing metals by severe plastic deformation. In Solid State Phenomena; Trans Tech: Bach, Switzerland, 2005. [Google Scholar]
- Azushima, A.; Kopp, R.; Korhonen, A.; Yang, D.Y.; Micari, F.; Lahoti, G.D.; Groche, P.; Yanagimoto, J.; Tsuji, N.; Rosochowski, A.; et al. Severe plastic deformation (SPD) processes for metals. CIRP Ann. Manuf. Technol. 2008. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Estrin, Y.; Horita, Z.; Langdon, T.G.; Zehetbauer, M.J.; Zhu, Y. Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation: Ten Years Later. Jom 2016. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Yu, J.; Lin, J.; Dean, T. Manufacturing a curved profile with fine grains and high strength by differential velocity sideways extrusion. Int. J. Mach. Tools Manuf. 2019, 140, 77–88. [Google Scholar] [CrossRef]
- Garbacz, H.; Semenova, I.; Zherebtsov, S.; Motyka, M. Nanocrystalline Titanium. In Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2019; pp. 37–53. ISBN 9780128145999. [Google Scholar]
- Sillekens, W.H.; Schade van Westrum, J.A.F.M.; Den Bakker, A.J.; Vet, P.J. Hydrostatic extrusion of magnesium: Process mechanics and performance. Mater. Sci. Forum 2003, 426, 629–636. [Google Scholar] [CrossRef]
- Pugh, H.L.D. Mechanical Behavior of Materials Under Pressure; Elsevier: Amsterdam, The Netherlands, 1970. [Google Scholar]
- Zdunek, J. Crystalline Texture in Metals and Alloys with Cubic Structure and Wall Centered Cubic Lattice After Hydrostatic Extrusion; Warsaw University of Technology: Warsaw, Poland, 2019. [Google Scholar]
- Kulczyk, M.; Przybysz, S.; Skiba, J.; Pachla, W. Severe plastic deformation induced in Al, Al-Si, Ag and Cu by hydrostatic extrusion. Arch. Metall. Mater. 2014, 59, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Kulczyk, M.; Skiba, J.; Przybysz, S.; Pachla, W.; Bazarnik, P.; Lewandowska, M. High strength silicon bronze (C65500) obtained by hydrostatic extrusion. Arch. Metall. Mater. 2012, 57, 859–862. [Google Scholar] [CrossRef] [Green Version]
- Pachla, W.; Kulczyk, M.; Sus-Ryszkowska, M.; Mazur, A.; Kurzydlowski, K.J. Nanocrystalline titanium produced by hydrostatic extrusion. J. Mater. Process. Technol. 2008. [Google Scholar] [CrossRef]
- Sitek, R.; Krajewski, C.; Kamiński, J.; Spychalski, M.; Garbacz, H.; Pachla, W.; Kurzydłowski, K.J. Microstructure and properties of ultrafine grain nickel 200 after hydrostatic extrusion processes. Mater. Sci. Pol. 2012, 30, 282–289. [Google Scholar] [CrossRef]
- Budniak, J.; Lewandowska, M.; Pachla, W.; Kulczyk, M.; Kurzydłowski, K.J. The influence of hydrostatic extrusion on the properties of an austenitic stainless steel. Solid State Phenom. 2006, 114, 57–62. [Google Scholar] [CrossRef]
- Pachla, W.; Skiba, J.; Kulczyk, M.; Przybysz, S.; Przybysz, M.; Wróblewska, M.; Diduszko, R.; Stepniak, R.; Bajorek, J.; Radomski, M.; et al. Nanostructurization of 316L type austenitic stainless steels by hydrostatic extrusion. Mater. Sci. Eng. A 2014, 615, 116–127. [Google Scholar] [CrossRef]
- Jenő, G. Thermal Stability of Defect Structures in Nanomaterials. In Defect Structure and Properties of Nanomaterials, 2nd ed.; Woodhead: Cambridge, UK, 2017; pp. 317–371. ISBN 9780081019177. [Google Scholar]
- Skiba, J.; Kulczyk, M.; Pachla, W.; Wiśniewski, T.S.; Smalc-Koziorowska, J.; Kubiś, M.; Wróblewska, M.; Przybysz, M. Effect of Severe Plastic Deformation Realized by Hydrostatic Extrusion on Heat Transfer in CP Ti Grade 2 and 316L Austenitic Stainless Steel. J. Nanomed. Nanotechnol. 2018, 9, 511. [Google Scholar] [CrossRef]
- El-Tahawy, M.; Huang, Y.; Um, T.; Choe, H.; Lábár, J.L.; Langdon, T.G.; Jenő, G. Store energy in ultrafine-grained 316L stainless steel processed by high-pressure torsion. J. Mater. Res. Technol. 2017, 6, 339–347. [Google Scholar] [CrossRef] [Green Version]
- Górka, J.; Janicki, D.; Fidali, M.; Jamrozik, W. Thermographic Assessment of the HAZ Properties and Structure of Thermomechanically Treated Steel. Int. J. Thermophys. 2017, 38, 183. [Google Scholar] [CrossRef] [Green Version]
- Krawczynska, A.T.; Lewandowska, M.; Kurzydlowski, K.J. Recrystallization in nanostructured austenitic stainless steel. Mater. Sci. Forum 2008, 584, 966–970. [Google Scholar] [CrossRef]
- Górka, J.; Stano, S. Microstructure and properties of hybrid laser arc welded joints (laser beam-MAG) in thermo-mechanical control processed S700MC steel. Metals 2018, 8, 132. [Google Scholar] [CrossRef] [Green Version]
- Skowronska, B.; Chmielewski, T.; Golanski, D.; Szulc, J. Weldability of S700MC steel welded with the hybrid plasma + MAG method. Manuf. Rev. 2020, 7. [Google Scholar] [CrossRef] [Green Version]
- Skowronska, B.; Chmielewski, T.; Salacinski, T.; Szulc, J.; Swiercz, R. Selected properties of hybrid PTA-MAG welded joints of thermomechanically rolled s700mc steel. In Proceedings of the METAL 2020 29th International Conference on Metallurgy and Materials, Brno, Czech Republic, 20–22 May 2020. [Google Scholar]
- Górka, J. Assessment of the effect of laser welding on the properties and structure of TMCP steel butt joints. Materials 2020, 13, 1312. [Google Scholar] [CrossRef] [Green Version]
- Fydrych, D.; Łabanowski, J.; Rogalski, G.; Haras, J.; Tomków, J.; Świerczyńska, A.; Jakóbczak, P.; Kostro, Ł. Weldability of S500MC Steel in Underwater Conditions. Adv. Mater. Sci. 2015, 14, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Tomków, J. Weldability of Underwater Wet-Welded HSLA Steel: Effects of Electrode Hydrophobic Coatings. Materials 2021, 14, 1364. [Google Scholar] [CrossRef]
- Vairis, A.; Papazafeiropoulos, G.; Tsainis, A.A. A comparison between friction stir welding, linear friction welding and rotary friction welding. Adv. Manuf. 2016, 4, 296–304. [Google Scholar] [CrossRef]
- Uday, M.B.; Ahmad Fauzi, M.N.; Zuhailawati, H.; Ismail, A.B. Advances in friction welding process: A review. Sci. Technol. Weld. Join. 2010, 15, 534–558. [Google Scholar] [CrossRef]
- AlHazaa, A.; Haneklaus, N. Diffusion Bonding and Transient Liquid Phase (TLP) Bonding of Type 304 and 316 Austenitic Stainless Steel—A Review of Similar and Dissimilar Material Joints. Metals 2020, 10, 613. [Google Scholar] [CrossRef]
- Ambroziak, A. Friction welding of molybdenum to molybdenum and to other metals. Int. J. Refract. Met. Hard Mater. 2011, 29, 462–469. [Google Scholar] [CrossRef]
- Stütz, M.; Buzolin, R.; Pixner, F.; Poletti, C.; Enzinger, N. Microstructure development of molybdenum during rotary friction welding. Mater. Charact. 2019, 151, 506–518. [Google Scholar] [CrossRef]
- Chmielewski, T.; Hudycz, M.; Krajewski, A.; Salaciński, T.; Skowrońska, B.; Świercz, R. Structure investigation of titanium metallization coating deposited onto AlN ceramics substrate by means of friction surfacing process. Coatings 2019, 9, 845. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Aoki, Y.; Aoki, Y.; Ushioda, K.; Hidetoshi, F. Principle for obtaining high joint quality in dissimilar friction welding of Ti-6Al-4V alloy and SUS316L stainless steel. J. Mater. Sci. Technol. 2020, 46, 211–224. [Google Scholar] [CrossRef]
- Włosiński, W.; Chmielewski, T.; Kucharczyk, M. Friction welding of NiAl and FeAl alloys with St3S carbon steel. Weld. Technol. Rev. 2004, 76, 6–12. [Google Scholar]
- Orłowska, M.; Olejnik, L.; Campanella, D.; Buffa, G.; Morawiński, Ł.; Fratini, L.; Lewandowska, M. Application of linear friction welding for joining ultrafine grained aluminium. J. Manuf. Process. 2020, 56, 540–549. [Google Scholar] [CrossRef]
- Wang, Y.F.; An, J.; Yin, K.; Wang, M.S.; Li, Y.S.; Huang, C.X. Ultrafine-Grained Microstructure and Improved Mechanical Behaviors of Friction Stir Welded Cu and Cu-30Zn Joints. Acta Metall. Sin. 2018, 31, 878–886. [Google Scholar] [CrossRef] [Green Version]
- Skowrońska, B.; Chmielewski, T.; Pachla, W.; Kulczyk, M.; Skiba, J.; Presz, W. Friction weldability of UFG 316L stainless steel. Arch. Metall. Mater. 2019, 64, 1051–1058. [Google Scholar] [CrossRef]
- Morawiński, Ł.; Chmielewski, T.; Olejnik, L.; Buffa, G.; Campanella, D.; Fratini, L. Welding abilities of UFG metals. AIP Conf. Proc. 2018, 1960, 050012. [Google Scholar]
- Pachla, W.; Skiba, J.; Kulczyk, M.; Przybysz, M. High-pressure equipment for cold severe plastic deformation working of materials. Met. Form. 2015, 26, 283–306. [Google Scholar]
- Orłowska, M.; Brynk, T.; Hütter, A.; Goliński, J.; Enzinger, N.; Olejnik, L.; Lewandowska, M. Similar and dissimilar welds of ultrafine grained aluminium obtained by friction stir welding. Mater. Sci. Eng. A 2020, 777, 139076. [Google Scholar] [CrossRef]
- Humphreys, F.J. A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures-I. The basic model. Acta Mater. 1997, 45, 4231–4240. [Google Scholar] [CrossRef]
- Zháňal, P.; Václavová, K.; Hadzima, B.; Harcuba, P.; Stráský, J.; Janeček, M.; Polyakova, V.; Semenova, I.; Hájek, M.; Hajizadeh, K. Thermal stability of ultrafine-grained commercial purity Ti and Ti-6Al-7Nb alloy investigated by electrical resistance, microhardness and scanning electron microscopy. Mater. Sci. Eng. A 2016. [Google Scholar] [CrossRef]
- Fonda, R.W.; Bingert, J.F. Microstructural evolution in the heat-affected zone of a friction stir weld. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2004, 35, 1487–1499. [Google Scholar] [CrossRef]
- Turner, R.P.; Perumal, B.; Lu, Y.; Ward, R.M.; Basoalto, H.C.; Brooks, J.W. Modeling of the Heat-Affected and Thermomechanically Affected Zones in a Ti-6Al-4V Inertia Friction Weld. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2019, 50, 1000–1011. [Google Scholar] [CrossRef] [Green Version]
- Maalekian, M. Friction welding—Critical assessment of literature. Sci. Technol. Weld. Join. 2007, 12, 738–759. [Google Scholar] [CrossRef]
- Erbel, S. Mechanism of Changes in Properties of Metals Subjected to Severe Plastic Deformation, 38th ed.; Warsaw University of Technology: Warsaw, Poland, 1976. [Google Scholar]
- Klassek, D.; Suter, T.; Schmutz, P.; Pachla, W.; Lewandowska, M.; Kurzydlowski, K.J.; Von Trzebiatowski, O. The role of inclusions in the corrosion resistance of hydrostatically extruded steel products. Solid State Phenom. 2006, 114, 189–198. [Google Scholar] [CrossRef]
C | Si | Mn | P | S | N | Cr | Mo | Ni | Cu | Co | |
---|---|---|---|---|---|---|---|---|---|---|---|
316L | 0.017 | 0.36 | 1.82 | 0.30 | 0.026 | 0.077 | 16.88 | 2.04 | 10.14 | 0.38 | 0.10 |
Ultimate Tensile Strength | Yield Stress | Elongation to Fracture | Hardness | ||||||||
UTS (MPa) | YS (MPa) | εf (%) | HV0.2 | ||||||||
316L | 610 | 285 | 65 | 205 | |||||||
316L after HE | 1250 | 1180 | 11.9 | 355 | |||||||
UFG 316L after HSFW | 1080 | 1017 | 0.63 | ‒ |
Rotational speed set in the friction phase | 8000 [rpm] |
Friction phase duration | 60 [ms] |
Pressure on the front of the samples in the friction phase | 255 [MPa] |
Pressure on joint surface of the samples in the upset phase | 318 [MPa] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skowrońska, B.; Chmielewski, T.; Kulczyk, M.; Skiba, J.; Przybysz, S. Microstructural Investigation of a Friction-Welded 316L Stainless Steel with Ultrafine-Grained Structure Obtained by Hydrostatic Extrusion. Materials 2021, 14, 1537. https://doi.org/10.3390/ma14061537
Skowrońska B, Chmielewski T, Kulczyk M, Skiba J, Przybysz S. Microstructural Investigation of a Friction-Welded 316L Stainless Steel with Ultrafine-Grained Structure Obtained by Hydrostatic Extrusion. Materials. 2021; 14(6):1537. https://doi.org/10.3390/ma14061537
Chicago/Turabian StyleSkowrońska, Beata, Tomasz Chmielewski, Mariusz Kulczyk, Jacek Skiba, and Sylwia Przybysz. 2021. "Microstructural Investigation of a Friction-Welded 316L Stainless Steel with Ultrafine-Grained Structure Obtained by Hydrostatic Extrusion" Materials 14, no. 6: 1537. https://doi.org/10.3390/ma14061537
APA StyleSkowrońska, B., Chmielewski, T., Kulczyk, M., Skiba, J., & Przybysz, S. (2021). Microstructural Investigation of a Friction-Welded 316L Stainless Steel with Ultrafine-Grained Structure Obtained by Hydrostatic Extrusion. Materials, 14(6), 1537. https://doi.org/10.3390/ma14061537