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Abstract: Concrete is a composite material that has complex mechanical properties. The mechanical
properties of each of its components are different at the mesoscopic scale. Studying the relationship
between the macroscopic and mesoscopic parameters of concrete can help better understand its
mechanical properties at these levels. When using the discrete element method to model the macro-
mesoscopic parameters of concrete, their calibration is the first challenge. This paper proposes a
numerical model of concrete using the particle discrete element software particle flow code (PFC). The
mesoscopic parameters required by the model need to be set within a certain range for an orthogonal
experimental design. We used the proposed model to perform numerical simulations as well as
response surface design and analysis. This involved fitting a set of mapping relationships between
the macro–micro parameters of concrete. An optimization model was established in the MATLAB
environment. The program used to calibrate the mesoscopic parameters of concrete was written
using the genetic algorithm, and its macro-micro parameters were inverted. The following three
conclusions can be drawn from the orthogonal test: First, the tensile strength and shear strength of
the parallel bond between the particles of mortar had a significant influence on the peak compressive
strength of concrete, whereas the influence of the other parameters was not significant. Second, the
elastic modulus of the parallel bonding between particles of mortar, their stiffness ratio and friction
coefficient, and the elastic modulus and stiffness ratio of contact bonding in the interfacial transition
zone had a significant influence on the elastic modulus, whereas the influence of the other parameters
was not significant. Third, the elastic modulus, stiffness ratio, and friction coefficient of the particles
of mortar as well as the ratio of the contact adhesive stiffness in their interfacial transition zone had
a significant influence on Poisson’s ratio, whereas the influence of the other parameters was not
significant. The fitting effect of the response surface design was good.

Keywords: discrete element method; test design; parameter calibration; genetic algorithm; macro–
mesoscopic parameters

1. Introduction

No unified method is available to describe the macroscopic parameters of particles
of geotechnical materials by using their microscopic parameters. Although laboratory
experiments are a feasible approach, they have such problems as low efficiency, high cost,
and a large dispersion in the results. Cundall established the discrete element method
(DEM) to solve this problem [1]. The DEM is a numerical method to examine the mechanics
of discontinuous media based on Newton’s second law of motion. It represents the given
geotechnical material as a rigid particle model in which its mesoscopic and macroscopic
parameters can be related. It is directly related to the geometrical characteristics of the
assignment particles and particle contact between mesoscopic mechanics parameters of the
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mesoscopic parameters of macroscopic mechanical properties of the change means that
significant changes.

The problem of matching the macro-meso parameters of materials is essentially one
of mapping them. A few scholars have examined this relationship using the bonded
particle model (BPM). Yang et al. [2] considered the relationship between the results
of theory and a simulation from two perspectives to examine the relationship between
the macro–micro parameters of the parallel-bond model (PBM). They found that the
microparameters had significant influence on each macroparameter, and gave a simple
quantitative relationship between them. Yoon [3] combined the Plackett–Burman design
(PBD) and the central composite design (CCD) to study the relationship between the
macroscopic and mesoscopic parameters of the contact bonded model (CBM) and gave the
second-order response surface of each macroscopic parameter. Hanley [4], Nohut [5], and
Chehreghani [6] used different experimental designs and methods of statistical analysis
to study the relationship between the macroscopic and microscopic parameters of 2D
and 3D models based on the PBM and gave different forms of quantitative Equation.
The above research shows that numerical simulations, the design of experiment (DOE),
and corresponding statistical analyses can be used to obtain the quantitative relationship
between macroscopic and mesoscopic parameters. This significantly reduces the amount
of work required for parameter matching, but considerable effort is still needed to find
the best match. To solve this problem, Yoon [3] introduced an optimization method to
automatically match macroscopic and mesoscopic parameters. Tawadrous et al. [7] matched
the macroscopic and mesoscopic parameters of 3D models by using an artificial neural
network algorithm. Wang et al. [8] combined the Python language and the particle flow
code (PFC), and used the simulated annealing algorithm to match the microparameters of
both the CBM and the PBM in the PFC.

Concrete is a composite material composed of aggregate, cement mortar and an
interfacial transition zone. Under a load, the stiffness of each component varies greatly,
resulting in uneven distributions of the stress and strain fields inside concrete. At the
mesoscale, aggregate particles of concrete exhibit heterogeneity and contain a variety
of microcracks. Examining the relationship between the macro - meso parameters of
concrete is important for understanding its mechanical properties. Selecting appropriate
microscopic parameters and reasonably controlling the scale of model calculations are key
to obtaining ideal results in simulations using the particle discrete element model. No
unified method is available for quantitatively determining the microscopic parameters of
concrete for this model. Trial-and-error testing is typically used, in which the microscopic
parameters are constantly adjusted until suitable results are obtained. However, this
method is time consuming and labor intensive, and struggles to find the optimal matching
scheme due to the randomness of the model. At present, the quantitative relationship
between the macro–micro parameters of the DEM cannot be derived theoretically, and
thus it cannot be directly used to calibrate them. This paper proposes a DEM based on the
discrete element software PFC2D. The experimental design method is used to obtain a set
of mapping relations between the macro–micro parameters of concrete, and a calibration
program for the mesoscopic parameters is compiled to invert the macro–micro parameters.

2. Basic Parameter Setting and Model Building
2.1. Parameter Selection

Concrete is an artificial mixed material with cement as the main cementing material.
Sand, stone, and water are mixed in certain ratios, and the mixture gradually solidifies
and hardens after molding injection, vibration, curing, and other procedures. It is a kind
of non-uniform quasi-brittle material with complex mechanical properties. In this paper,
we set the parameters of the model according to the difference in bond strength between
aggregate and mortar. The particle contact model (Figure 1a) and particle bond model
(Figure 1b) form the foundation of the PFC2D model. The stick model can only relay
contact force, and the parallel bond model in 2D/3D represents the line/surface bonding



Materials 2021, 14, 1627 3 of 25

rather than that at a point. This can better reflect the capability of concrete mortar to resist
torque as well as the interfacial transition zone between particles. Therefore, in the concrete
model in this paper, different contact models are set between aggregate and aggregate,
and between mortar and mortar, so as to more truly reflect the actual performance of
concrete. The parallel bonding model was used to simulate the mechanical behaviors of
mortar and the aggregate, and the linear contact bonding model was used to simulate the
contact-related behavior of coarse aggregate.
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Figure 1. Contact model. (a) Linear contact bonding model (b) Parallel bonding model.

The strength and deformation characteristics of concrete were preliminarily charac-
terized by using the three macroscopic parameters of peak strength, elastic modulus, and
Poisson’s ratio, and were measured using uniaxial compression tests. The peak strength
σu, elastic modulus E and Poisson’s ratio ν were then used as test indices (objects), and the
influence of the test factors (mesoscopic parameters of concrete) on them was examined. In
the process of uniaxial compression in the particle discrete element model, σu is taken as
the stress corresponding to the apex of the stress-strain curve, E is the tangent slope of the
curve when the stress reaches half the peak stress for the first time, and ν is the absolute
value of the ratio of lateral strain to axial strain at this time.

In simulations of the uniaxial compression test, the geometric parameters (L,W,n,
Rmax/Rmin), load parameters (Ew

c , kw
n /kw

s , νw, µw), parameters of the particles (ρ, Ec, kn/ks, µ)
and key binding parameters (λ, Ec, kn/ks, σc, τc) affect the results. Because the parameters
of the particles (including particles of cement mortar (ball) and aggregate particles (clump))
and bonds are the focus of this study, the geometric and load parameters were controlled
in advance. The compression of members in engineering is mostly prismatic, because of
which prismatic specimens can better reflect the compressive capacity of concrete than
cubic specimens. A model size of 200 × 100 mm2 was thus set. Porosity (n) was set to 0.12,
the radius ratio of the particles of cement mortar (Rmax/Rmin) was 2.5, particle density (ρball)
was 2000 kg/m3, and aggregate density was 2650 kg/m3. We preset the average radius of
particles of cement mortar ( R ) to 0.5 mm. The bonding radius factor ( λ ) is normally set to
one, and remains constant during the calculation; thus, it was not be considered. To reduce
the number of unknown parameters, the stiffness parameters of the particles of cement
mortar, their bonds, and the upper and lower loading plates were set to be consistent, that
is, kn/ks = kn/ks = kw

n /kw
s , Ec = Ec = Ew

c . Parameters of the particles of aggregate were set to
be consistent with those of contact stiffness, i.e., (kn/ks)g = (kn/ks)g and (EC)g = (Ec)g given
a wall loading rate ( vw) of 0.02 m/s, the friction coefficient of the wall (µw) was zero.

Finally, the three macroscopic parameters σu, E and ν were determined as test indi-
cators. Parameters of the particles of cement mortar and their bonds (Ec, kn/ks, σc, τc,
and µ), the aggregate ((Ec)g, (kn/ks)g, µg), and the interfacial transition zone and its bonds
((EC)j, (kn/ks)j, (σc)j, (τc)j, µj), a total of 13 mesoscopic parameters, were unknown. They
were chosen as the experimental factors. y = Ec, kn/ks, σc, τc, µ, (Ec)g, (kn/ks)g, µg, (Ec)j,
(kn/ks)j, (σc)j, (τc)j, µj.
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The relationship is as follows:

σu = fσ(y) (1)

E = fE(y) (2)

ν = fν(y) (3)

As concrete is a complex three-phase composite material with obvious anisotropy, the
microscopic parameters of the aggregate, cement mortar, and the weak interfacial transition
zone all need to be considered. The interfacial transition zone features both the aggregate
particles and the cement paste, where the distribution of the cement particles is affected by
the aggregate surface at the parts in contact. Due to the presence of many original cracks in
the interior, most of the damage under external load starts from the interfacial transition
zone, because of which it is the weakest part of concrete. The strength of the zone affects
the overall mechanical properties and failure characteristics of concrete [9] as well as the
fluctuation in its stress–strain curve. Therefore, it must be considered to enable the model
to represent empirical scenarios involving concrete. The aggregate is the “skeleton” of
concrete that plays an important load-bearing role. In the PFC2D software, the thickness of
the interfacial transition zone cannot be expressed because the bond between particles is
set through contact. In this paper, the influence of the thickness of the interfacial transition
zone on the mechanical properties of concrete was ignored.

The parameters of the model are shown in Table 1.

Table 1. Model parameters.

L ×W/
mm2 n R/

mm
Rmax/Rmin

ρball
kg/m3 λ

νw/
m/s

200 × 100 0.12 0.5 2.5 2000 1 0.02

2.2. Particle Formation

The literature has shown that when the number of particles in the sample is greater
than 2000, the peak axial stress of the given sample is relatively stable, and the precision of
the parameters of concrete obtained using a simulation is acceptably close to that obtained
through laboratory experiments [10], The particles in the sample were filled using the
radius expansion method. The number N of particles to be placed was estimated according
to Equation (4). The number of particles was calculated to be 22,000, which is acceptable:

N =

⌊
(L×W)(1− n)

πR2

⌋
(4)

where L is the height of the model (mm), W is its width (mm), n is its porosity (-), R is the
average particle radius (mm), and b c is the rounded down result of the calculation.

To restrict the magnitude of the overlap between the randomly generated particles,
they were first produced at half the final particle size, and the porosity n0 and average
radius R0 of the model were calculated. Then, the particle radius was amplified to obtain
the desired particle size:

Va(1− n)

πR2
=

Va(1− n0)

πR2
0

(5)

The amplification coefficient m is given by:

m =
R
R0

=

√
1− n
1− n0

(6)
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2.3. Aggregate Generation

Past work has used the CT scanning technique to simulate the aggregate, and the
scanned images are subjected to threshold processing using third-party software to obtain
the boundary information to establish the model. However, this often reflects only one or
more conditions while ignoring the random aggregate model. This paper uses a random
algorithm for generating a convex polygonal aggregate.

In this algorithm, the circle is used as the base to generate the aggregate to ensure
that the model is convex polygonal. The number of points on the circle determines the
number of sides of a convex polygon. To ensure the randomness of the number of edges
of the generated aggregate, a minimum value and a maximum value were set for the
number of points on the circle. The range of the number of edges of the convex polygon
was determined by calculating the difference between them, which was then multiplied by
a random number. To round up the results, the resulting integer was set as the number of
points on the circle, which was also the number of sides of the convex polygon:

N= round[N min + range× (Nmax − Nmin)] (7)

where N is the number of points on the boundary of the circle, Nmin is the minimum
number of points generated. Nmax is the maximum number of points generated, range
is a pseudo-random number uniformly distributed between zero and one, and round is a
rounding of the entire function.

Assuming that one of the circles has radius R and coordinates (X,Y), the point coordi-
nates (X1,Y1) on each circle are calculated by Equation (8):{

X1 = X + Rcosθ
Y1 = Y + Rsinθ

(8)

where θ is the anticlockwise angle between the line of each point and the center of the circle
and has a positive value along the X-axis.

Given the randomness to ensure the positional angle, the normal vector of the convex
polygon contains information on internal damage that is used to determine the scope of
the convex polygons generated after the outline. The aim is to build a set of algorithms to
calculate the convex polygons of each edge point with respect to its internal normal vector.

Based on the proposed algorithm, multiple aggregate models were built. The fewer
edges the aggregate model had, the sharper was its shape. The model was used to simulate
an elongated aggregate. The more edges the aggregate model had, the smoother the shape
of the aggregate was, and the more round it tended to be. This model was used to simulate
the circular aggregate.

To simulate aggregate of any shape for the numerical analysis of concrete, multiple
particles can be combined in the particle flow program to form a “block.” The block formed
by a clump participates in the cyclic calculation as a rigid body. During the calculation
process, the distance and contact force between the internal particles do not change with
the steps of calculation, and the deformation of the block occurs only along the boundary.
Previous studies have shown that the compressive strength of the aggregate is twice as
high as that of cement mortar, and it is not damaged in the process of concrete compression.
Therefore, the unbreakable unit “clump” is used as the object of generation of aggregate in
the simulation. In the calculation cycle, contact between the particles inside the “block” is
ignored, which reduces calculation time.

The range of sizes of the coarse aggregate used was 5~15 mm, and the Walraven
Equation [11] (Equation (9)) was used to calculate its gradation. The percentage (Pk) of the
volume of coarse aggregate in the concrete specimen was 75%. The average gradation curve
obtained by using a slice of the non-circular aggregate concrete specimen and subjecting it to
image processing using the “equivalent particle size” (Dequivalent particle size = 2(Sarregate area/π)0.5)
conformed to a 3D gradation curve and a 2D conversion curve. Therefore, the circular
area of the aggregate was used as the equivalent area of the convex polygonal aggregate.
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Aggregate sizes of 5~7 mm, 7~9 mm, 9~11 mm, 11~13 mm, and 13~15 mm was used, and
the results are shown in Table 2:

PC(D < D0) = PK[1.065
(

D0
Dmax

)0.5
− 0.053

(
D0

Dmax

)4
− 0.012

(
D0

Dmax

)6

−0.0045
(

D0
Dmax

)8
+ 0.0025

(
D0

Dmax

)10
]

(9)

where Pk is the percentage by volume of coarse aggregate in the concrete specimen,
PC (D < D0) is the probability that the particle size D in the section is less than the size of
the sieve D0, and Dmax is the maximum aggregate particle size.

Table 2. Particle size distribution and content of aggregate in concrete.

Particle Size Range/mm 5~7 7~9 9~11 11~13 13~15

Number of particles 59 28 15 8 4

The number of particles within the range of each particle size is calculated according
to the following equation:

ni = (pi − pi−1)A/Ai (10)

where ni is the number of particles in a certain range, pi is the probability that the particle
size in the section is smaller than the sieve in the Walraven Equation, and A and Ai are the
sectional area and aggregate area, respectively.

We set-up four to six polygons sides in MATLAB to generate a random aggregate
model and imported it into the PFC2D model for use as a model of the concrete aggregate.
The generation model is shown in Figure 2.
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2.4. Verifying Model Feasibility

Because the mesoscopic parameters cannot be directly obtained from experiments,
numerical simulations were used, and the results were compared with those of experiments
to verify the feasibility of the numerical model. According to the literature review, the elastic
modulus of concrete increases with Ec, and its peak strength increases with σc, and τc. Ec
and kn/ks have a significant influence on the elastic modulus of concrete and its Poisson’s
ratio. The compressive strength and elastic modulus of the interfacial transition zone
should be lower than those of cement mortar by the same proportion [12,13]. Based on this,
a trial-and-error method was used to model the mesoscopic parameters following a set
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of mesoscopic parameters (Table 3), with the macroscopic parameters of C30 concrete as
reference (30 MPa, compressive strength; elastic modulus, 30 GPa; Poisson’s ratio, 0.2) to
obtain the numerical macroscopic parameters σu = 32.23 MPa, E = 28.37 GPa, and ν = 0.197.
The error was very small, which shows that the numerical model is feasible.

Table 3. Values of microparameters of model.

Variety Variable Value

Mortar-mortar interface

Ec/GPa 16
kn/ks 1.45

σc /MPa 10
τc/MPa 30

µ 0.5

Aggregate-aggregate interface
(Ec)g/GPa 20
(kn/ks)g 2

µg 1

Aggregate-mortar interface

(Ec)j/GPa 8
(kn/ks)j 1.45

(σc)j/MPa 5
(τc)j/MPa 15

µj 0.5

3. Determining Research Methods and Research Interval
3.1. Research Methods

A preliminary analysis showed that to get a set of mapping relations between the
mesoscopic parameters of concrete, 13 factors need to be considered on three test indices.
Considering the nonlinear relationship between the macroscopic and microscopic param-
eters, the number of levels should be three or more. A long time and considerable effort
are required to study the multi-level and multi-factor problems of a comprehensive test.
The DOE is an efficient procedure for planning experiments so that the results obtained
can be analyzed to yield valid and objective conclusions. It begins by determining the
objectives of a given experiment and selecting the process variables for it. We used the
DOE to arrange our test to reduce the time needed and applied it to determine the bonding
between microparticles of the model during contact in a sensitivity analysis.

The test points selected by using an orthogonal test design are more representative
and can give reliable research conclusions by significantly reducing the number of tests.
This design can be used to screen out the microscopic parameters of concrete that have
a significant influence on its macroscopic parameters, and to estimate the quantitative
relationship between the two types of parameters. Although a screening test can achieve
the same goal with fewer trials, it can select only two horizontal values for each factor and
cannot consider nonlinear influences. Incorrect conclusions are thus easily drawn when the
scope being considered is wide. We used the orthogonal experimental design for parameter
sensitivity analysis.

Response surface design represents the nonlinear relationship between the test indices
and factors. We used the second-order response surface equation. The experimental design
idea is shown in Figure 3.
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3.2. Determining the Research Interval

An orthogonal experiment was carried out to determine the first sites to arrange an
orthogonal test table and generate the test scheme. The mesoscopic parameters of the C30
concrete used as reference, shown in in Table 3, were used.

4. Orthogonal Experimental Design

Orthogonal experiment design refers to the examination of multiple factors using
the experimental design method. According to orthogonality, representative points are
selected from the overall test that have the characteristics of uniform dispersion and neat
comparison. Orthogonal experimental design is the main method of factorial design. When
three or more factors are involved in the experiment that may interact, the test workload
becomes large and difficult to implement. The orthogonal design of an experiment is a good
choice in such cases. The main tool of orthogonal experimental design is the orthogonal
table. According to the requirements of the number of factors, the level of factors, and
whether interaction among them occurs, the participants looked up the corresponding
orthogonal table, and selected representative points from a comprehensive test based on
the orthogonality of the table. By doing so, it became possible to achieve results equivalent
to those of a large number of full tests using the minimum number of tests, Therefore, the
orthogonal table design is an efficient and economical multi-factor test design method. The
distribution of orthogonal test points is shown in Figure 4.
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According to the research interval shown in Table 4, the three factor levels were
determined as shown in Table 5. The SPSS experimental design software was used to
construct the orthogonal experiment design scheme. In the analysis of variance of the
orthogonal experiment, leaving an appropriate blank column improves the accuracy of the
results. Thus, L64314 was used to arrange the orthogonal experiment table and the 14th
column was left out. The test scheme and results are shown in Table 6.

Table 4. Research interval of microparameters.

Variety Variable Value Range

Mortar-mortar interface

Ec/GPa 10~30
kn/ks 1~4

σc/MPa 10~30
τc/MPa 10~30

µ 0.5~1.5

Aggregate-aggregate interface
(Ec)g/GPa 20~40
(kn/ks)g 1~4

µg 0.5~1.5

Aggregate-mortar interface

(Ec)j/GPa 5~15
(kn/ks)j 1~4

(σc)j/MPa 5~25
(τc)j/MPa 5~25

µj 0.5~1.5

Table 5. Horizontal table of design factors of orthogonal experiment.

Factor Levels 1 2 3

Ec/GPa 10 20 30
kn/ks 1 2.5 4

σc/MPa 10 20 30
τc/MPa 10 20 30

µ 0.1 1 1.5
(Ec)g/GPa 20 30 40
(kn/ks)g 1 2.5 4

µg 0.5 1 1.5
(Ec)j/GPa 5 10 15
(kn/ks)j 1 2.5 4

(σc)j/MPa 5 15 25
(τc)j/MPa 5 15 25

µj 0.5 1 1.5
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Table 6. Orthogonal test scheme and results.

Serial
Number

Ec/
GPa

kn/ks σc/
MPa

τc/
MPa

µ (Ec)g/
GPa

(kn/ks)g µg
(Ec)j/
GPa

(kn/ks)j
(σc)j/
MPa

(τc)j/
Mpa

µj
Null

Columns
σu/

MPa
E/

GPa
ν

1 20 1 10 10 1.5 20 2.5 0.5 5 2.5 15 25 0.5 3 21.74 38.22 0.100
2 10 1 30 30 0.5 20 4 1.5 10 2.5 15 5 0.5 1 53.96 21.29 0.158
3 10 2.5 20 20 0.5 30 1 0.5 15 2.5 5 25 1.5 2 37.56 18.17 0.316
4 20 1 30 30 0.5 20 1 0.5 5 1 15 5 1.5 2 56.86 37.29 0.112
5 30 1 20 10 1 30 1 1 5 2.5 15 5 0.5 2 24.27 53.38 0.110
6 10 2.5 30 10 1.5 20 1 1 10 1 5 25 0.5 2 30.63 18.55 0.266
7 10 1 10 20 1.5 30 1 1 5 4 5 5 1.5 1 26.86 20.69 0.104
8 10 1 10 10 1 20 1 1 15 1 15 25 1.5 1 20.81 23.42 0.116
9 20 1 20 20 1 20 1 1.5 10 1 5 25 0.5 3 42.12 42.16 0.094
10 20 2.5 20 30 0.5 40 2.5 1.5 5 1 5 15 0.5 1 44.38 31.40 0.261
11 30 4 20 20 0.5 40 2.5 1 5 1 5 25 0.5 1 37.91 40.60 0.322
12 10 4 30 30 1 40 1 1 5 4 15 5 0.5 3 56.01 15.07 0.370
13 30 1 10 30 1.5 40 4 0.5 15 1 5 5 0.5 2 27.70 64.53 0.085
14 20 1 10 10 0.5 20 2.5 1 15 4 5 5 1 2 20.37 40.96 0.012
15 10 1 10 10 1.5 20 1 1.5 10 1 25 15 1 1 21.85 23.09 0.095
16 10 4 10 20 1.5 20 2.5 0.5 5 4 15 15 0.5 2 22.94 15.33 0.342
17 10 4 20 30 0.5 30 1 0.5 10 2.5 5 15 1 2 38.73 15.99 0.383
18 30 2.5 30 30 1.5 30 2.5 0.5 15 1 15 5 1 1 62.41 51.82 0.256
19 10 4 10 10 0.5 40 4 1 5 1 25 15 1.5 2 20.95 15.43 0.343
20 30 1 30 20 0.5 20 1 0.5 5 1 25 5 1 2 40.65 53.43 0.112
21 10 1 30 10 0.5 30 2.5 1.5 5 1 5 25 0.5 1 24.53 20.46 0.122
22 30 1 30 10 0.5 40 1 0.5 10 4 5 15 1 3 24.44 56.35 0.139
23 10 2.5 20 10 0.5 20 1 0.5 5 1 15 5 1 3 25.96 17.01 0.275
24 10 1 30 20 0.5 20 4 1 15 2.5 25 5 0.5 1 40.87 22.07 0.160
25 10 1 20 10 1 40 2.5 0.5 15 1 25 5 1 1 24.58 23.40 0.119
26 20 1 10 20 1 40 4 0.5 10 1 5 5 0.5 2 26.64 43.96 0.105
27 20 1 20 10 1.5 30 1 1.5 5 2.5 25 5 0.5 2 25.79 38.25 0.095
28 20 1 30 10 0.5 40 1 0.5 15 4 5 25 1.5 3 24.93 41.63 0.147
29 10 1 20 30 1 20 4 0.5 5 4 5 15 1.5 1 48.30 20.38 0.122
30 10 4 10 10 1.5 30 4 0.5 10 1 5 5 0.5 3 20.23 16.68 0.347
31 20 2.5 30 10 1.5 20 4 0.5 5 2.5 5 15 1.5 1 30.86 31.66 0.247
32 10 4 20 10 0.5 20 1 0.5 5 1 25 5 1.5 3 26.04 15.39 0.347
33 30 2.5 10 20 0.5 20 1 0.5 5 1 5 5 0.5 1 22.99 44.78 0.254
34 20 4 20 10 0.5 20 4 1.5 15 4 15 5 0.5 1 25.98 31.11 0.366
35 10 1 10 10 0.5 20 1 0.5 5 1 5 5 0.5 1 20.15 20.47 0.124
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Table 6. Cont.

Serial
Number

Ec/
GPa

kn/ks σc/
MPa

τc/
MPa

µ (Ec)g/
GPa

(kn/ks)g µg
(Ec)j/
GPa

(kn/ks)j
(σc)j/
MPa

(τc)j/
Mpa

µj
Null

Columns
σu/

MPa
E/

GPa
ν

36 10 2.5 30 20 1.5 40 1 1.5 5 4 25 5 0.5 3 49.30 16.93 0.276
37 10 1 10 10 0.5 20 1 0.5 5 1 5 5 0.5 1 20.15 20.47 0.124
38 30 4 10 30 1.5 20 1 1.5 15 1 25 25 1.5 1 24.16 47.83 0.325
39 10 4 10 20 0.5 20 2.5 1.5 15 2.5 5 5 1 3 20.35 16.49 0.381
40 20 1 10 30 0.5 30 4 1 5 1 25 25 1 3 30.09 37.85 0.110
41 10 1 20 10 1.5 40 2.5 0.5 10 1 15 5 1.5 1 25.77 23.06 0.096
42 30 2.5 10 10 1 40 1 1.5 5 2.5 5 5 1.5 1 21.03 44.48 0.251
43 30 1 20 30 1.5 20 1 1 15 1 5 15 0.5 3 50.86 64.18 0.085
44 10 2.5 10 30 0.5 20 2.5 1 10 2.5 5 5 1.5 3 22.85 17.68 0.300
45 10 2.5 10 10 0.5 40 4 1.5 5 1 15 25 1 2 20.68 16.99 0.273
46 30 4 10 10 0.5 30 1 0.5 10 4 15 25 0.5 1 21.17 45.68 0.352
47 20 2.5 10 10 0.5 30 1 0.5 15 4 25 15 0.5 1 21.42 34.27 0.296
48 30 1 10 20 0.5 30 4 1.5 5 1 15 15 1.5 3 27.53 53.99 0.106
49 10 2.5 10 30 1 20 2.5 0.5 5 4 25 25 0.5 2 25.38 16.82 0.272
50 10 1 10 20 0.5 40 1 0.5 15 2.5 15 15 0.5 1 26.90 22.22 0.153
51 20 4 10 30 0.5 20 1 0.5 5 1 5 5 0.5 1 21.06 28.43 0.330
52 30 4 30 10 1 20 4 0.5 5 2.5 5 25 1 1 29.19 40.27 0.324
53 10 1 10 30 1 30 1 1.5 5 4 5 5 1 1 27.12 20.43 0.116
54 10 1 30 10 0.5 30 2.5 1 5 1 5 15 0.5 1 24.54 20.46 0.123
55 10 4 30 10 1 20 1 1.5 15 1 5 15 0.5 2 29.22 16.86 0.366
56 20 4 10 10 1.5 40 1 1 5 2.5 5 5 1 1 20.69 28.55 0.323
57 30 2.5 20 10 0.5 20 4 1 10 4 25 5 0.5 1 26.11 46.86 0.285
58 10 1 20 20 1.5 20 4 0.5 5 4 5 25 1 1 39.86 20.56 0.114
59 20 2.5 10 20 1 20 1 1 10 1 15 15 1 1 25.58 34.85 0.253
60 30 1 10 10 0.5 20 2.5 1.5 10 4 5 5 1.5 2 19.98 56.56 0.139
61 20 4 30 20 1 30 2.5 0.5 10 1 25 5 1.5 1 49.94 30.98 0.337
62 30 1 10 10 1 20 2.5 0.5 5 2.5 25 15 0.5 3 20.01 53.50 0.112
63 10 2.5 10 10 1 30 4 0.5 15 1 5 5 0.5 3 19.90 18.89 0.284
64 10 1 10 30 0.5 40 1 0.5 10 2.5 25 25 0.5 1 29.37 21.46 0.147
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4.1. Range Analysis

Range analysis is also called the direct analysis method. It has the advantages of
simple calculation, a visual representation, and the ease of understanding of the results. It
is the most commonly used method for analyzing the results of orthogonal experiments.
The trends of changes in the test index average effect are shown in Figures 5–7. A simple
calculation can be used to obtain the influence of the factors on the test index. Range
analysis was carried out using Minitab, and the results were plotted (Figures 8–10).
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The results show that σc and τc had a significant influence on σu because their sizes
determined the difficulty of relative sliding between particles after bond failure. Ec and
kn/ks, which are directly related to the bond stiffness coefficient, had a significant influence
on E, kn/ks and µ influenced ν.

4.2. Analysis of Variance

Range analysis of the orthogonal experimental design has the advantages of simplicity
and requiring a small number of calculations, but it cannot estimate the size of the error or
the importance of the influence each factor on the results. To compensate for the deficiencies
of range analysis, the analysis of variance was used to analyze the results of the orthogonal
experiment (Table 7).
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Table 7. Results of analysis of variance.

Factors
σu/MPa E/GPa ν/−

F Significance F Significance F Significance

Ec/GPa 0.17 - 3003.42 Highly
significant 12.84 Highly

significant

kn/ks 0.22 - 248.39 Highly
significant 1117.1 Highly

significant

σc/MPa 42.37 Highly
significant 0.64 - 2.24 -

τc/MPa 36.8 Highly
significant 3.16 - 0.54 -

µ 1.15 - 8.9 Highly
significant 10.48 Highly

significant
(Ec)g/GPa 0.05 - 0.69 - 0.75 -
(kn/ks)g 0.19 - 0.2 - 1.44 -

µg 0 - 0.12 - 1.81 -

(Ec)j/GPa 0 - 49.03 Highly
significant 3.24 -

(kn/ks)j 0.21 - 7.28 Highly
significant 5.87 Highly

significant
(σc)j/MPa 2.05 - 0.2 - 0.67 -
(τc)j/MPa 0.38 - 3.08 - 0.18 -

µj 0.06 - 0.31 - 1.79 -

The results of the analysis of variance were as follows:

(1) σc and τc had a significant influence on σu while the influence of other parameters
was not significant.

(2) Ec, kn/ks, µ, (Ec)j and (kn/ks)j had a significant influence on E while the influence of
other parameters was not significant.

(3) Ec, kn/ks, µ and (kn/ks)j had a significant influence on ν in the interfacial transition
zone of the mortar particles.

Combined with the above analysis, the relationship can be simplified as follows:

σu = fσ(σc, τc) (11)

E = fE(Ec, kn/ks, µ, (Ec)j, (kn/ks)j) (12)

ν = fν(Ec, kn/ks, µ, (kn/ks)j) (13)

The degree of fitting R2 of each fitting equation was between 0.7598 and 0.9777,
indicating that the fitting effect was relatively good. However, due to limitations on the
number and form of distribution of test points in the orthogonal experimental design, the
Equation in Table 8 cannot accurately predict the macro–micro parameter relationship
beyond the test points. Therefore, to increase the accuracy of the fitting Equation, another
numerical test was needed.
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Table 8. Regression analysis of orthogonal experimental design.

Fitting Equation R2
Domain of Definition

Ec/GPa kn/ks σc/Mpa τc/Mpa µ (Ec)j/GPa (kn/ks)j

σu =
−12.58 + 0.934σc + 0.7797τc

0.7598 - - (10,30) (10,30) - - -

E = 5.15 + 1.6058 Ec −
3.015 kn/ks+

1.691µ + 0.4063(Ec)j −
0.282(kn/ks)j

0.9777 (10,30) (1,4) - - (0.5,1.5) ( 5,15) (1,4)

ν = −0.0725− 0.001096Ec +
0.08025 kn/ks

−0.02369µ + 0.00424(kn/ks)j

0.9382 (10,30) (1,4) - - (0.5,1.5) - (1,4)

5. Response Surface Design

Response surface design is a statistical method used to solve multi-variable problems
by using reasonable experimental design methods, obtaining certain data through experi-
ments, and using multiple quadratic regression equations to fit the functional relationships
between the factors and the response values. and requires two to seven factors for a range
of tests to identify nonlinear relationships (second order). It can be used to carry out
tests with two to seven factors, and to estimate the nonlinear relationship (second order)
between the test index and the factors. The fitting equation is as shown in Equation (14):

y = β0 +
p

∑
j=1

β0xj + ∑
i<j

β

ij

xixj +
p

∑
j=1

β jjxj
2 + ε (14)

where β is an undetermined parameter, xk is the kth independent variable, p is the number
of factors, and ε is the error term.

To calculate the test factors and indicators in general, the quadratic regression equation
between the levels of each factor number should be greater than or equal to three. Using
a comprehensive design to estimate the above undetermined parameters leads to the
problem of too much residual freedom and too high a cost. Response surface design, by
testing only reasonable arrangements, avoids these problems. The Box-Behnken test is a
common response surface design.

5.1. Central Composite Test

As shown in Figure 11, the test point designed for the two-factor center composite
test consisted of three parts: cubic points, axial points, and center points. Cubic points
represent the two-level factorial design, center points represent the nonlinear test and error
estimates, and axial points consider conditions of the nonlinear effect.

To enable the design to meet the requirements of rotation and sequencing, the factor
level of the axial point is usually calculated according to Equation (15) [13]:

α = 2k/4 (15)

where α is the number of factors.
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5.2. Box-Behnken Experimental Design

Compared with the central composite test mentioned above, the Box-Behnken test has
fewer tests designed with the same number of factors. There is no axial point in the test
design, because of which its horizontal setting does not exceed the range of safe operation.
Axial points generated by the central composite test with axial points may exceed the error
threshold for safe operation area. As is shown in Figure 12, the Box-Behnken test takes
each test point as the middle point of each edge of the cube and uses the center point to
estimate the test error.
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5.3. Test Plan

According to Equation (11), two factors that had a significant impact on the peak
intensity corresponding to its response surface. Therefore, a two-factor CCD test table with
13 test sites (Table 9) was used for the experiment. According to Equations (12) and (13),
the elastic modulus and Poisson’s ratio had significant impact factors of five and four. For
the response surface corresponding to the elastic modulus and Poisson’s ratio, five and
four variables were considered respectively. Considering that the axial point generated
by CCD exceeded the actual value represented by the factors, a five-factor BBD test table
(Table 6) with 46 test points and a four-factor BBD test table (Table 7) with 27 test points
were selected for the experiment. In Table 9, point type “0” represents the center, “−1”
represents the axial point, and “1” represents the cubic point. In Tables 10 and 11, point
type “0” represents the center point and type “2” represents the middle point. The other
factors that had no significant influence on σu, E and ν are not discussed. Their values were
(Ec)g = 30 GPa, (kn/ks)g = 2, µg = 1, (σc)j = 15 MPa, (τc)j = 15 MPa, and µj = 1.

Table 9. Peak intensity of the CCD test table.

Point Type σc/Mpa τc/Mpa σu/MPa

0 20 20 42.23
0 20 20 39.53
−1 34.142 20 52.2
1 30 10 30.24
1 30 30 62.09
−1 20 34.142 50.85
1 10 10 22.41
0 20 20 41.73
0 20 20 40.04
1 10 30 27.85
−1 5.858 20 17
−1 20 5.858 18.83
0 20 20 43.17

Table 10. BBD test table of the elastic modulus.

Point
Type

Ec/
GPa

kn/ks µ (Ec)j/
GPa

(kn/ks)j E/GPa

2 10 2.5 1 15 2.5 18.716
2 20 2.5 0.5 10 4 32.299
2 20 1 1 10 1 42.465
0 20 2.5 1 10 2.5 34.058
2 20 2.5 1.5 5 2.5 31.608
2 20 1 1 10 4 40.867
2 20 4 1 5 2.5 28.351
2 30 2.5 1 10 1 50.275
2 20 1 1 15 2.5 43.257
2 30 4 1 10 2.5 44.084
2 20 4 1 10 1 31.469
0 20 2.5 1 10 2.5 36.364
0 20 2.5 1 10 2.5 34.442
2 20 4 1.5 10 2.5 30.973
2 10 4 1 10 2.5 16.384
2 20 1 0.5 10 2.5 40.007
2 20 2.5 0.5 10 1 33.951
2 10 2.5 1 5 2.5 17.028
2 30 2.5 1 15 2.5 51.058
0 20 2.5 1 10 2.5 33.646
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Table 10. Cont.

Point
Type

Ec/
GPa

kn/ks µ (Ec)j/
GPa

(kn/ks)j E/GPa

2 20 4 1 10 4 30.449
2 20 2.5 1.5 10 1 35.234
2 20 4 1 15 2.5 32.006
2 20 2.5 1 15 4 35.126
2 10 2.5 1 10 1 18.448
2 30 2.5 1 5 2.5 44.425
2 30 2.5 0.5 10 2.5 47.56
2 10 2.5 1 10 4 18.081
2 10 1 1 10 2.5 22.25
2 20 2.5 1 15 1 36.099
2 20 2.5 1.5 15 2.5 35.794
0 20 2.5 1 10 2.5 33.962
2 30 2.5 1.5 10 2.5 49.165
2 20 2.5 1 5 1 32.324
2 20 2.5 1.5 10 4 34.048
2 30 2.5 1 10 4 48.192
2 20 2.5 1 5 4 30.878
2 10 2.5 0.5 10 2.5 17.708
2 20 1 1 5 2.5 37.769
2 20 2.5 0.5 5 2.5 30.533
2 20 2.5 0.5 15 2.5 34.623
2 20 4 0.5 10 2.5 30.159
2 20 1 1.5 10 2.5 41.986
2 30 1 1 10 2.5 58.904
0 20 2.5 1 10 2.5 34.163
2 10 2.5 1.5 10 2.5 18.331

Table 11. BBD test table for Poisson’s ratio.

Point Type Ec/GPa kn/ks µ (kn/ks)j ν

2 30 2.5 1.5 2.5 0.248
2 30 2.5 1 4 0.263
2 20 1 0.5 2.5 0.131
0 20 2.5 1 2.5 0.26
2 10 2.5 1 1 0.264
2 30 2.5 0.5 2.5 0.273
2 10 2.5 0.5 2.5 0.291
2 10 2.5 1.5 2.5 0.265
2 30 1 1 2.5 0.103
2 20 4 1 1 0.324
2 20 1 1 1 0.085
0 20 2.5 1 2.5 0.256
2 20 1 1 4 0.113
0 20 2.5 1 2.5 0.213
2 20 4 0.5 2.5 0.347
2 20 4 1.5 2.5 0.33
2 20 4 1 4 0.341
2 30 2.5 1 1 0.238
2 10 4 1 2.5 0.347
2 30 4 1 2.5 0.327
2 10 1 1 2.5 0.131
2 20 2.5 0.5 1 0.267
2 20 1 1.5 2.5 0.092
2 10 2.5 1 4 0.277
2 20 2.5 1.5 4 0.261
2 20 2.5 0.5 4 0.285
2 20 2.5 1.5 1 0.241
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5.4. Quantitative Equation

We used the test design scheme of Minitab to design the response surface experiment
(Tables 9–11), and the results were imported for response surface analysis to obtain the
second-order response surface Equation of σu, E and ν, as shown in Table 12.

Table 12. Fitting Equation of σu, E and ν.

Response Surface Equation R2

Domain of Definition

Ec/
GPa kn/ks σc/Mpa τc/Mpa µ

(Ec)j/
GPa

(kn/ks)j

σu = −0.48 + 1.083σc + 0.919τc−
0.03138σc

2 − 0.03018τc
2 + 0.06602σc × τc

0.9881 - - (10,30) (10,30) - - -

E = 0.30 + 1.998Ec − 3.647kn/ks + 4.71µ

+0.715(Ec)j − 0.396(kn/ks)j − 0.00771Ec
2

+0.7972kn/ks
2 − 1.959µ2 − 0.03420(Ec)j

2

+0.0129(kn/ks)j
2 − 0.1492Ec× kn/ks

+0.0491Ec × µ + 0.02473Ec × (Ec)j
−0.0286 Ec × (kn/ks)j − 0.388 kn/ks × µ

−0.0611 kn/ks × (Ec)j + 0.064 kn/ks×
(kn/ks)j + 0.010µ× (Ec)j

+0.155µ× (kn/ks)j + 0.0158(Ec)j × (kn/ks)j

0.9981 (10,30) (1,4) - - (0.5,1.5) (5,15) (1,4)

ν = 0.1499− 0.00726 Ec + 0.1378kn/ks
−0.1582µ− 0.0057(kn/ks)j + 0.000134 Ec

2

−0.01383kn/ks
2 + 0.0555µ2 + 0.00217

(kn/ks)j
2 +

0.000133 Ec× kn/ks + 0.00005
Ec × µ + 0.000200 Ec × (kn/ks)j + 0.00733

kn/ks × µ− 0.00122 kn/ks × (kn/ks)j
+0.00067µ× (kn/ks)j

0.9911 (10,30) (1,4) - - (0.5,1.5) - (1,4)

The table shows that the degree of fitting of each response surface σu, E and ν was
greater than 0.988, indicating a good fitting effect and adequate reflection of information
on the test site.

6. Calibration Program for Microscopic Parameters

The mesoscopic parameters of the PFC2D model cannot be obtained directly. Multiple
numerical simulations are needed to determine them corresponding to the macroscopic
physical parameters through continual selection and trial calculations to establish the
relationship between them. This process is called parameter calibration. Microscopic
parameter calibration is essentially a mapping problem between macroscopic and micro-
scopic parameters. As long as a qualitative or quantitative relationship between them
can be identified, the macroscopic parameters of the model can be calculated from its
microscopic parameters, and the latter can be matched based on the former. We use an
optimization method to calibrate the mesoscopic parameters. Based on the macro - meso
parameters obtained from the previous section, the calibration problem is transformed
into an optimization problem on the basis of the quantitative relationship between the
mesoscopic parameters. The characteristics of the objective function and constraints on it
are used to choose the appropriate optimization algorithm.

6.1. Optimization Model and Algorithm

The purpose of mesoscopic parameter calibration is to find a set of appropriate meso-
scopic parameters for the particle discrete element model for concrete. We assumed that
the macroscopic parameters of the granular discrete element concrete model derived from
an empirical Equation or a quantitative relation are yi

* (i = 1, 2, 3 . . . . . . ), and those of
concrete measured through laboratory tests are yi

lab (I = 1, 2, 3 . . . ,s). Then, the goal of
mesoscopic parameter calibration can be converted into finding a set of mesoscopic param-
eters x1, x2, x3, . . . , xk (k is the total number of microscopic parameters involved) such that
the difference between yi

* and yi
lab is as small as possible. Considering the different orders
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of magnitude of various macroscopic parameters, the dimensionless number for relative
deviation |yi

* − yi
lab|/yi

lab is used to describe the difference between yi
* and yi

lab. The
ultimate goal is to find a set of microscopic parameters x1, x2, x3, . . . , xk that minimizes the
relative deviation of all macroscopic parameters.

Finally, we set the range of values of each mesoscopic parameter to [aj,bj] (j = 1, 2, 3, . . . ,k).
The general form of the calibration model for mesoscopic parameters is then given by:
Objective function:

min f (x) =
s

∑
i=0

∣∣∣∣∣yi
∗ − yi

lab

yi
lab

∣∣∣∣∣ (16)

Constraint: aj ≤ xj ≤ bj (1 ≤ j ≤ k)
According to the above numerical test and analysis, the fitting Equation for the

macroscopic parameters σu, E and ν in the specified domain were obtained (Table 12). The
microscopic parameters used as variables included Ec, kn/ks, σc, τc, µ, (Ec)j and (kn/ks)j.
We set σu, E and ν as macroscopic parameters for y1, y2, and y3, and used the parameters
Ec, kn/ks, σc, τc, µ, (Ec)j and (kn/ks)j for x1, x2, x3, x4, x5, x6, and x7 to obtain the optimal
model as follows:

Objective function:

min f (x) =
∣∣∣∣σu − σu

∗

σu∗

∣∣∣∣+ ∣∣∣∣E− E∗

E∗

∣∣∣∣+ ∣∣∣∣µ− µ∗

µ∗

∣∣∣∣ (17)

Constraint: 

10 ≤ x1 ≤ 30
1 ≤ x2 ≤ 4
10 ≤ x3 ≤ 30
10 ≤ x4 ≤ 30
0.5 ≤ x5 ≤ 1.5
5 ≤ x6 ≤ 15
1 ≤ x7 ≤ 4

(18)

6.2. Implementation of Microscopic Parameter Calibration Program

MATLAB is among the most widely used scientific computing software, and is power-
ful and easy to use. It provides the user with the freedom of an interactive programming
interface as well as strong functional encapsulation in the form of a toolbox for users. Our
work here required the MATLAB’s built-in genetic algorithm toolbox.

The algorithm used was the default one for the fitness function in the genetic algorithm
toolbox. The lower the smallest value of the individual fitness value is, the close the given
individual is to the optimum solution. The fitness function of the problem of microscopic
parameter calibration has the same form as the objective function in Equation (17), which
can be expressed as Equation (19):

Fitness function:

Fit(x) =

∣∣∣∣∣σu
lab − σu

∗

σu∗

∣∣∣∣∣+
∣∣∣∣∣Elab − E∗

E∗

∣∣∣∣∣+
∣∣∣∣∣µlab − µ∗

µ∗

∣∣∣∣∣ (19)

where x is an independent variable (x = [Ec, kn/ks, σc, τc, µ, (Ec)j, (kn/ks)j]), Fit(x) is

the fitness value, σu
lab is a constant obtained by the peak intensity of an indoor uniaxial

compression test of rocks, Elab is a constant representing the elastic modulus measured
using the same test, νlab is a constant representing Poisson’s ratio, and σu

∗, E∗ and ν∗ are
dependent variables calculated by the quantitative Equation in Table 12.

The genetic algorithm toolbox allows the user to give equality, inequality, and bound-
ary constraints. According to the optimization model given in Equation (17), only the
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boundary constraints were set to limit the upper and lower limits of each mesoscopic
parameter, as shown in Equation (20):

Constraint :



10 ≤ Ec ≤ 30
1 ≤ kn/ks ≤ 4
10 ≤ σc ≤ 30
10 ≤ τc ≤ 30
0.5 ≤ µ ≤ 1.5
5 ≤ (Ec)j ≤ 15
1 ≤ (kn/ks)j ≤ 4

(20)

The evolutionary process in the genetic algorithm is one of iterative optimization com-
pleted by the evolution of the population from one generation to the next. Each generation
of population consists of several individuals, and the “excellence” of individuals or the
fitness of the environment is evaluated by the fitness function. “Excellent” individuals are
chosen for the crossover and mutation operator to form a new generation of the population,
whereas suboptimal individuals are “erased.” Each generation forms a new group in this
way. The optimal solution is obtained when the process of evolution of the individuals
is completed.

The process of solving the optimization model shown in Equation (17) by using the
genetic algorithm is described as follows (Figure 13):
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(1) The initial population {x}0 is generated, and N individuals are randomly generated
(300 in this paper).

(2) Fitness evaluation is performed for each individual in the population:
1© Assume that k = 1.
2© Judge the interval of each microscopic parameter in the kth individual {xk}0.
3© Select the quantitative relation between the calculated σu

∗, E∗ and ν∗.
4© According to Equation (19), calculate the fitness value of individual {xk}0.
5© k = k + 1.
6© If k ≤ N, continue the calculation; if k > N, exit the calculation as it is complete.

(3) Select excellent individuals and deposit them in the mating pool.
(4) Use the crossover and mutation operators to form the population {x}i for the next

generation in the mating pool.
(5) Repeat the steps in (2) to evaluate the fitness of individuals in the new population;
(6) If the end condition is met, stop and obtain the optimal solution; otherwise, go to

step (3) to continue the calculation.
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MATLAB’s built-in graphical user interface (GUI) module can help users write inter-
active programs. Based on the MATLAB environment, the author wrote the mesoscopic
parameter calibration program and designed its interface based on the GUI module. To
enable the program to run independently of MATLAB’s operational environment, the
MATLAB complier module was used to encapsulate the above program, and its icon and
interface were designed and added. Finally, a calibration program for the microscopic
parameters that could run independently was obtained.

6.3. Verifying Effect of Calibration Program

Tables 9 and 10 are used to assess the range of calculation of the microscopic parameter
calibration program, which is shown in Table 13.

Table 13. Calculation range of the microscopic parameter calibration program.

Mesoscopic
parameters

Ec/GPa kn/ks σc/MPa τc/MPa µ (Ec)j/GPa (kn/ks)j

(10, 30) (1, 4) (10, 30) (10, 30) (0.5, 1.5) (5, 15) (1, 4)

Macro
parameters

σu/MPa E/GPa ν

(17, 62.09) (16.384, 58.904) (0.085, 0.347)

Five groups of macroscopic parameters were selected for parameter calibration, and
the corresponding optimal solution was obtained from the above program (Table 14).

Table 14. Five groups of parameters and their optimal solutions.

Concrete
Number

Input: Macro Parameters Output: Mesoscopic Parameters

σu/MPa E/GPa ν Ec/GPa kn/ks σc/MPa τc/MPa µ (Ec)j/GPa (kn/ks)j

1 59.67 32.68 0.201 17.522 1.983 28.700 27.884 1.356 10.236 2.626
2 42.67 26.78 0.209 13.944 1.750 18.938 22.454 0.830 10.552 3.797
3 36.54 25.66 0.218 13.435 2.000 14.277 23.109 0.867 11.360 2.205
4 47.67 21.54 0.222 11.013 1.938 24.447 21.680 0.930 11.622 2.923
5 43.6 24.67 0.222 12.815 1.980 26.243 18.139 1.292 11.263 3.783

When the obtained microscopic parameters were input into the DEM, the random
characteristics of particle structure and aggregate distribution led to differences in the re-
sults of the simulation even if the microscopic parameters of the model remained consistent.
The results were thus calculated five times to ensure the accuracy of the verification test.

Table 15 shows that the coefficients of variation of the various macroscopic parameters
measured by the uniaxial compression numerical test of the concrete model were between
2.0928% and 6.3849%, indicating that the calculated mechanical parameter calculations
were stable. The relative error between the measured macroscopic parameters and the
target macroscopic parameters is between 0.0093%~6.4246%, which has achieved a very
good calibration effect. This verified the effect of calibration and precision of the program
to calibrate the microscopic parameters.
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Table 15. Results and errors of macroscopic parameter matching.

Concrete
Number

Macro
Parameters

Target
Value

Macroscopic Parameters of
Numerical Simulation Relative

Error/%Average
Value

Standard
Deviation

Coefficient of
Variation/%

1
σu/MPa 59.67 57.74 3.5224 6.1007 3.3461
E/GPa 32.68 34.08 1.3190 3.8701 4.1136

ν 0.201 0.21 0.0058 2.7002 6.4246

2
σu/MPa 42.67 41.24 1.8370 4.4547 3.4750
E/GPa 26.78 26.77 0.9748 3.6419 0.0523

ν 0.209 0.22 0.0046 2.0928 4.9136

3
σu/MPa 36.54 34.34 2.1924 6.3849 6.4158
E/GPa 25.66 25.69 1.0284 4.0031 0.1168

ν 0.218 0.23 0.0053 2.3043 5.2174

4
σu/MPa 47.67 45.45 2.7454 6.0406 4.8868
E/GPa 21.54 21.54 0.8966 4.1629 0.0093

ν 0.222 0.24 0.0061 2.5738 6.3291

5
σu/MPa 43.6 43.09 1.5989 3.7109 1.1906
E/GPa 24.67 24.62 0.9439 3.8339 0.2031

ν 0.222 0.23 0.0059 2.5279 4.7210

7. Conclusions

This paper proposed and tested a discrete element model of concrete using the particle
discrete element software PFC2D. Based on the ideas of an orthogonal experimental design
and response surface design, a set of mapping relationships between the macro-micro
parameters of concrete were obtained. The MATLAB environment was used to write a
procedure to calibrate the mesoscopic parameters. The work here can serve as a reference
for future research. The main conclusions of this study are as follows:

(1) An orthogonal test of the analysis of variance showed that σc and τc had a significant
influence on σu, while the influence of the other parameters was not significant. Ec,
kn/ks, µ (Ec)j and (kn/ks)j had a significant influence on E, and Ec, kn/ks, µ and
(kn/ks)j had a significant influence on ν in the interfacial transition zone of mortar
particles, while the influence of the other parameters was not significant.

(2) The response surface design method was adopted to obtain a set of quantitative rela-
tions of the macro - meso parameters of concrete within a certain range that accurately
described the nonlinear relationship between them. In addition, by increasing their
range of values, the mesoscopic parameters could be calibrated more precisely and,
thus, more accurately inverted.

(3) The selection of an appropriate contact model of concrete, test design method, mathemat-
ical model, and optimization algorithm is key to achieving good parameter calibration.

The research results of this paper aim to provide a parameter inversion method. Due
to reasons of time, test equipment and so on, no real concrete block testing was carried out
in the laboratory, and only the numerical simulation part was done. In this paper, for the
convenience of calculation, some parameters of the model are selected in advance, and only
13 meso-parameters within a certain range were selected as test factors. If possible, we will
continue to study the relationship between other meso-parameters and macro-parameters
in the future. In addition, this paper only selects concrete in the case of aggregate gradation
for research, which only provides a method of mutual inversion between macro and micro
parameters of concrete. If other aggregate gradations are used, this model is also applicable
according to the research ideas in this paper. If we simulate materials such as reinforced
concrete, more problems need to be considered. Although the modeling will be more
complex, the method in this paper is also applicable. In the future, we plan to conduct
further research to solve more practical problems.
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