Characterization of High-Temperature Superconductor Bulks for Electrical Machine Application
Abstract
:1. Introduction
2. High-Temperature Superconducting Bulks
2.1. Composition of HTS Bulks
2.2. Critical Quantities
3. HTS Bulk Application in Electrical Machines
3.1. Magnetic Flux Concentration Machines from GREEN Lab
3.2. HTS Permanent Magnet Machine
4. Characterization of HTS Bulks
4.1. Definition of the Complete Penetration Magnetic Field BP
4.2. Presentation of the Characterization Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bean, C.P. Magnetization of high-field superconductors. Rev. Mod. Phys. 1964, 36, 31–39. [Google Scholar] [CrossRef]
- Kim, Y.B.; Hempstead, C.F.; Strnad, A.R. Critical persistent currents in hard superconductors. Phys. Rev. Lett. 1962, 9, 306–309. [Google Scholar] [CrossRef]
- Hulbert, J.A. Magnetization of a cylindrical hard superconductor. Br. J. Appl. Phys. 1965, 16, 1657–1666. [Google Scholar] [CrossRef]
- Sanchez, A.; Navau, C. Critical current density from magnetization loops of finite high-TC superconductors. Supercond. Sci. Technol. 2001, 14, 444–447. [Google Scholar] [CrossRef]
- Shantsev, D.V.; Galperin, Y.M.; Johansen, T.H. Thin superconducting disk with B-dependent JC: Flux and current distributions. Phys. Rev. B 1999, 60, 13112–13118. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.X.; Goldfarb, R.B. Kim model magnetization of type II superconductors. J. Appl. Phys. 1989, 66, 2489–2500. [Google Scholar] [CrossRef]
- Antal, V.; Volochová, D.; Kavečanský, V.; Kováč, J.; Diko, P. Influence of annealing inoxygen and argon on the superconducting properties of Li-doped YBCO single-grain bulks. Physica C 2017, 541, 22–29. [Google Scholar] [CrossRef]
- Antal, V.; Zmorayová, K.; Rajnak, M.; Vojtkova, L.; Hlásek, T.; Plechácek, J.; Diko, P. Relationship between local microstructure and superconducting properties of commercial YBa2Cu3O7−δbulk. Supercond. Sc. Technolo. 2020, 33, 044004. [Google Scholar] [CrossRef]
- Mawatari, Y.; Sawa, A.; Obara, H.; Umeda, M.; Yamasaki, H. Field-sweep rate dependence of magnetization and current–voltage characteristics in superconducting disks. Appl. Phys. Lett. 1997, 70. [Google Scholar] [CrossRef]
- Yamasaki, H.; Mawatari, Y. Current voltage characteristics and flux creep in melt-textured YBaCuO. Supercond. Sci. Technol. 2000, 13, 202–208. [Google Scholar] [CrossRef]
- Vanderbemden, P.; Misson, V.; Ausloos, M.; Cloots, R. Magnetic and transport measurements on melt-textured DyBCO single domains. Physica C 2002, 372–376, 1225–1228. [Google Scholar] [CrossRef] [Green Version]
- Senoussi, S. Review of the critical current densities and magnetic irreversibilities in high Tc superconductors. J. Phys. III 1992, 2, 1041–1257. [Google Scholar] [CrossRef]
- Douine, B.; Leveque, J.; Mezani, S. JC(B) determination method with the help of the virgin magnetization curve of a superconducting cylinder. IEEE Trans. Appl. Supercond. 2010, 20, 82–86. [Google Scholar] [CrossRef]
- Chen, D.X.; Brug, J.A.; Goldfarb, R.B. Demagnetizing factors for cylinders. IEEE Trans. Magn. 1991, 27, 3601–3619. [Google Scholar] [CrossRef]
- Sanchez, A.; Navau, C. Influence of demagnetizing effects in superconducting cylinders. IEEE Trans. Appl. Supercond. 1999, 9, 2195–2198. [Google Scholar] [CrossRef]
- Sanchez, A.; Navau, C. Magnetic properties of finite superconducting cylinders, uniform applied field. Phys. Rev. B 2001, 64, 214506. [Google Scholar] [CrossRef]
- Philippe, M.P.; Fagnard, J.-F.; Kirsch, S.; Xu, Z.; Dennis, A.R.; Shi, Y.-H.; Cardwell, D.A.; Vanderheyden, B.; Vanderbemden, P. Magnetic characterisation of large grain, bulk Y-Ba-Cu-O superconductor-soft ferromagnetic alloy hybrid structures. Physica C 2014, 502, 20–30. [Google Scholar] [CrossRef]
- Douine, B.; Sirois, F.; Leveque, J.; Berger, K.; Bonnard, C.H.; Hoang, T.C.; Mezani, S. A New Direct Magnetic Method for Determining JC in Bulk Superconductors from Magnetic Field Diffusion Measurements. IEEE Trans. Appl. Supercond. 2012, 22, 9001604. [Google Scholar] [CrossRef] [Green Version]
- Douine, B.; Bonnard, C.H.; Sirois, F.; Berger, K.; Kameni, A.; Lévêque, J. Determination of JC and n-value of HTS Pellets by Measurement and Simulation of Magnetic Field Penetration. IEEE Trans. Appl. Supercond. 2015, 25, 8001008. [Google Scholar] [CrossRef]
- Douine, B.; Berger, K.; Bonnard, C.H.; Sirois, F.; Kameni, A.; Lévêque, J. Improved Method for determining the n-value of HTS bulks. IEEE Trans. Appl. Supercond. 2016, 26, 6800704. [Google Scholar] [CrossRef]
- Douine, B.; Berger, K.; Trillaud, F.; Elbaa, M.; Ailam, E.H. Determination of the Complete Penetration Magnetic Field of a HTS Pellet from the Measurements of the Magnetic Field at its Top-Center Surface. IEEE Trans. Appl. Supercond. 2018, 28, 8800104. [Google Scholar] [CrossRef] [Green Version]
- Ginsberg, D.M. Physical Properties of High Temperature Superconductor; World Scientific: Singapore, 1988; 516p. [Google Scholar]
- Durrell, J.H.; Dennis, A.R.; Jaroszynski, J.; Ainslie, M.D.; Palmer, K.G.; Shi, Y.H.; Campbell, A.M.; Hull, J.; Strasik, M.; Hellstrom, E.E.; et al. A trapped field of 17.6 T in melt-processed, bulk Gd-Ba-Cu-O reinforced with shrink-fit steel. Supercond. Sci. Technol. 2014, 27, 082001. [Google Scholar] [CrossRef]
- Masson, P.; Leveque, J.; Netter, D.; Rezzoug, A. Experimental study of a new kind of superconducting inductor. IEEE Trans. Appl. Supercond. 2003, 13, 2239–2242. [Google Scholar] [CrossRef]
- Netter, D.; Leveque, J.; Ailam, E.; Douine, B.; Rezzoug, A.; Masson, P.J. Theoretical study of a new kind HTS motor. IEEE Trans. Appl. Supercond. 2005, 15, 2186–2189. [Google Scholar] [CrossRef] [Green Version]
- Colle, A.; Lubin, T.; Ayat, S.; Gosselin, O.; Lévêque, J. Analytical Model for the Magnetic Field Distribution in a Flux Modulation Superconducting Machine. IEEE Trans. Magn. 2019, 55, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Tomita, M.; Murakami, M. High Temperature Superconductor Bulk Magnet that can trap magnetic fields of over 17 T at 29 K. Nature 2003, 421, 517–520. [Google Scholar] [CrossRef]
- Trillaud, F.; Berger, K.; Douine, B.; Lévêque, J. Comparaison berween modeling and experimental results of magnetic flux trapped. IEEE Trans. Appl. Supercond. 2016, 26, 6800305. [Google Scholar] [CrossRef]
- Berger, K.; Gony, B.; Lévêque, B.D.J. Magnetization and Demagnetization Studies of an HTS Bulk in an Iron Core. IEEE Trans. Appl. Supercond. 2016, 26, 4700207. [Google Scholar] [CrossRef]
- Gony, B.; Berger, K.; Douine, B.; Koblishka, M.; Lévêque, J. Improvement of the Magnetization of a Superconducting Bulk using an Iron Core. IEEE Trans. Appl. Supercond. 2015, 25, 8801005. [Google Scholar] [CrossRef] [Green Version]
- Hirakawa, M.; Inadama, S.; Kikukawa, K.; Suzuki, E.; Nakasima, H. Developments of superconducting motor with YBCO bulk magnets. Physica C 2003, 392–396, 773–776. [Google Scholar] [CrossRef]
- Shaanika, E.; Miki, M.; Bocquel, C.; Felder, B.; Tsuzuki, K.; Ida, T.; Izumi, M. Core Loss of a Bulk HTS Synchronous Machine at 2 and 3 T Rotor Magnetisation. IEEE Trans. Appl. Supercond. 2019, 30, 2927587. [Google Scholar] [CrossRef]
- Matsuzaki, H.; Kimura, Y.; Ohtani, I.; Izumi, M.; Ida, T.; Akita, Y.; Sugimoto, H.; Miki, M.; Kitano, M. An axial gap-type HTS bulk synchronous motor excited by pulsed-field magnetization with vortex-type armature copperwindings. IEEE Trans. Appl. Supercond. 2005, 15, 2222–2225. [Google Scholar] [CrossRef]
- Jiang, Y.; Pei, R.; Xian, W.; Hong, Z.; Coombs, T.A. The design, magnetization and control of a superconducting permanent magnet synchronous motor. Supercond. Sci. Technol. 2008, 21, 065011. [Google Scholar] [CrossRef]
Case (a) | Case (b) | Case (c) | |
---|---|---|---|
TP (10−3 s) | 0.93 | 1.32 | 1.4 |
BPM (T) | 2.57 | 3.02 | 3.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Douine, B.; Berger, K.; Ivanov, N. Characterization of High-Temperature Superconductor Bulks for Electrical Machine Application. Materials 2021, 14, 1636. https://doi.org/10.3390/ma14071636
Douine B, Berger K, Ivanov N. Characterization of High-Temperature Superconductor Bulks for Electrical Machine Application. Materials. 2021; 14(7):1636. https://doi.org/10.3390/ma14071636
Chicago/Turabian StyleDouine, Bruno, Kevin Berger, and Nickolay Ivanov. 2021. "Characterization of High-Temperature Superconductor Bulks for Electrical Machine Application" Materials 14, no. 7: 1636. https://doi.org/10.3390/ma14071636
APA StyleDouine, B., Berger, K., & Ivanov, N. (2021). Characterization of High-Temperature Superconductor Bulks for Electrical Machine Application. Materials, 14(7), 1636. https://doi.org/10.3390/ma14071636