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Abstract: The kinetics of diffusion-dependent phase transformations (including austenitisation of
ferrite in dual steels or ferritic nodular cast irons) is very often described by the Johnson–Mehl–
Avrami–Kolmogorov (JMAK) equation. This description is not complete when the conversion is
only partial due to insufficient overheating, as the equilibrium fraction of ferrite transformed into
austenite cannot be determined directly from the JMAK equation. Experimental kinetic curves
of partial austenitisation at various temperatures can be fitted using the JMAK equation, but the
equilibrium fraction of the newly formed phase for each temperature has to be calculated as a
regression parameter. In addition, the temperature dependence of the kinetic exponent in the JMAK
equation is quite complicated and cannot be expressed by a simple general function. On the contrary,
the equation of autoinhibition used for the description of austenitisation kinetics in present work
directly gives the equilibrium fraction at partial conversion. It describes transformation kinetics at
various temperatures independently of whether the conversion is complete or partial. Rate constants
of the equation of autoinhibition depend on temperature according to the Arrhenius equation. In
addition, the equation of autoinhibition has no weakness as the JMAK equation has, which consists
in questionable temperature dependence of kinetic exponent.

Keywords: dual phase steel; austenitisation; JMAK equation; equation of autoinhibition; Arrhenius
equation; predictive curves

1. Introduction

Conventional dual phase steels containing soft ferrite and hard martensite are high
strength steels that are widely applicable in industrial production. The high strength
of these materials allows reduction in the weight of structures, leading to energy sav-
ings, decreasing total cost and increasing utility value of products. In addition, dual
steels play a special role in the automotive industry, due in large part to their excel-
lent crash performance [1], and in the armament industry, as their favourable ballistic
performance can be exploited for light armour production [2]. The production and mechan-
ical properties of dual steels were studied in depth many years ago, e.g., by Cairns and
Charles [3,4], Tamura et al. [5] and Davies [6,7]. Some researchers paid special attention to
the martensite content in dual steels [8,9], or showed that martensite particle size [10] and
morphology [11,12] also play important roles. The contributions of ferrite and martensite
to the overall mechanical behaviour of dual steel were described using the modified law of
mixtures [8], or the neural network model [13].

Heat treatment of dual steels leads to partial austenitisation, and during cooling austen-
ite transforms into martensite. The kinetics of austenite formation at given temperature is
mostly described by the Johnson–Mehl–Avrami–Kolmogorov (JMAK) equation [14–20],
including recent papers specifically on dual steels [21–23], only rarely it is replaced by
modelling and simulations, e.g., [24]. Usual form of the JMAK equation is:

p(t) = 1− exp(−k tn), (1)
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where p is conversion, i.e., the relative content of the newly formed phase. Theoretical
considerations lead to integer values of kinetic exponent n between 1 and 4 depending
on nucleation types of the new phase (homogeneous or heterogeneous) and on the shape
of nuclei (spherical, planar or fibrous). Some other considerations taking into account
the subsequent growth of nuclei after their mutual contact lead to half-integer values of
parameter n 0.5, 1.5, or 2.5. Regression of the measured kinetic curves leads to various
values of n without any tendency to approach the above values. It is often explained by the
fact that each stage of the phase transformation needs its own value of parameter n and its
value from regression of the whole kinetic curve is a certain representative average of values
corresponding to different stages of the phase change. Very illustrative demonstration
of more stages of phase transformation described by the JMAK equation with individual
values n is given in [20] (see Figures 10–12 in [20]) where the fit ln t−ln ln [1/(1 − p)]
linearizing the JMAK equation is used. In this fit the whole kinetic curves are presented by
two or three linear parts with individual slopes representing individual values of kinetic
exponent n.

To describe austenitisation at various temperatures, the temperature dependence of
the rate constant k can be described by the Arrhenius equation:

k(T) = k∞ exp
(
− ε

R T

)
, (2)

where ε is the activation energy of the transformation under study, R is the universal gas
constant and T is the absolute temperature of isothermal austenitisation (in all equations
the temperature is expressed in kelvins). The pre-exponential factor k∞ expresses the rate
constant (kinetic coefficient) k at infinite temperature, k∞ = k(T→∞). Also, the kinetic
exponent n in the JMAK equation is usually strongly temperature-dependent, but this
mostly non-monotonic dependence cannot be generally expressed by a simple function.

Phase transformation is a rather complicated process and, therefore, its simple kinetic
description must focus only on one, or a few, crucial stages or influences. The JMAK
equation focuses mainly on the nucleation stage of new phase. In addition, a difference
in specific volumes of original and new phase can play a substantial role, resulting in
suppressing phase conversion. In simple description, this results in a delay in the conver-
sion kinetics, which is proportional to the phase fractions of original phase 1 − p and new
phase p, i.e., to the product of those fractions p(1 − p). If the phase conversion without the
influence of different specific volumes is described by the simplest kinetic equation (for
first-order reaction), then:

dp
dt

= k(1− p)− ks p(1− p) i.e., p(t) = 1− k− ks

k exp[(k− ks)t]− ks
, (3)

where the rate constant ks describes the influence of different specific volumes and its
minus sign means suppressing phase conversion. In addition, here the temperature depen-
dence of the rate constants k and ks can be described by the Arrhenius Equation (2) with
corresponding activation energies ε and εs, respectively.

As Equation (3) describes certain deceleration of phase conversion due to different
specific volumes of original and new phase, it can be called equation of autoinhibition. This
equation describes transformation kinetics with accuracy comparable to that of the JMAK
equation, removes the problem of the temperature dependence of the kinetic exponent
n, and can directly describe partial conversion when the overheating is not sufficient for
complete conversion, as shown in the previous paper [19]. The aim of the current paper is
to apply the equation of autoinhibition to the description of kinetics of austenite formation
in dual phase steels and to introduce certain modification for the case, when dual steel
contains only little part of martensite.
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2. Experimental

The austenitisation kinetics was studied using the experimental dependence of the con-
tent of the transformed phase on time and temperature as published by Asadabad et al. [17].
Steel with a composition of 0.11 wt.% C, 0.14 wt.% Si, 1.30 wt.% Mn, 0.45 wt.% Cr and
0.03 wt.% Al was studied. The 200 × 40 × 16-mm3 slabs were cast in sand mould in the
vertical position, hot rolled at 1200 ◦C to 1.8-mm thickness, homogenised at 950 ◦C for 1 h
and normalised at 900 ◦C for 15 min. The obtained sheets were austenitised in an electric
resistance furnace at constant temperatures of 730 ◦C, 760 ◦C, 790 ◦C, 820 ◦C, and 850 ◦C
with holding times between 5 and 1800 s and then quenched in water. The austenite ratio
was expressed as the martensite volume fraction determined by point counting method,
according to ASTM E562-83 standard [25], using optical and scanning electron microscopy.
More details can be found in the original paper [17]. Experimental results are presented in
Figure 1 (see only experimental points).
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Figure 1. Martensite volume fraction in dual phase steel after austenitisation at various temperatures
during various dwells [17] fitted using the JMAK Equation (4) (for each temperature separately).

3. Regression Using the JMAK Equation

Figure 1 also presents a regression of the experimental results [17] using the JMAK
equation (see fitting lines). As in the original paper [17], individual values of the rate
constant k and the kinetic exponent n are considered for each experimental temperature.
Here the following regression function is used:

p(t) = peq[1− exp(−k tn)], (4)

where peq is the equilibrium conversion reached after a sufficiently long time (equal to 1
for complete conversion and less than 1 for partial conversion), while the authors of the
paper [17] used the same equation in linearised form:

ln ln[1/(1− p/peq)] = n ln t + ln k. (5)

Resulting values of regression parameters k and n obtained by nonlinear regression
(present work) differ considerably from the values obtained using linearized procedure
(paper [17]), see Table 1, while the values of equilibrium conversion peq are the same in
both fits. Nevertheless, the regression curves are hardly distinguishable (cf. Figures 1 and
8 in paper [17]).
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Table 1. Different values of the rate constant k and kinetic exponent n for different forms of the JMAK equation used as regression
function: Equation (4) and linearised Equation (5).

Temperature [◦C] 730 760 790 820 850

Regression function (4) (5) (4) (5) (4) (5) (4) (5) (4) (5)
Rate constant k [s−1] 0.029 0.033 0.032 0.041 0.066 0.070 0.075 0.077 0.080 0.091
Exponent n [1] 0.731 0.712 0.772 0.714 0.731 0.709 0.768 0.775 0.928 0.873

4. Regression Using the Equation of Autoinhibition

Figure 2 presents a regression of the experimental results of Asadabad et al. [17] using
the equation of autoinhibition (3) together with the Arrhenius equation (Equation (2))
used for both k and ks rate constants. The family of curves is determined by only four
parameters: k∞, ks∞, ε, and εs. Although this fit is noticeably worse than that in Figure 1
obtained using the JMAK equation (comparison of both fits is presented in Figure 3), it can
be considered to be very successful: the fit using the JMAK equation requires not 4, but
14 regression parameters (k, n and peq for each of five temperatures with the exception of
peq, which is equal to 1 for 850 ◦C when the conversion is complete). Nevertheless, the
biggest advantage of the equation of autoinhibition is that there is no need for a separate
equilibrium conversion parameter peq for each temperature, but equilibrium conversions
for all temperatures follow directly from the equation of autoinhibition.

Materials 2021, 14, x FOR PEER REVIEW 4 of 12 
 

 

used for both k and ks rate constants. The family of curves is determined by only four 
parameters: k∞, ks∞, ε, and εs. Although this fit is noticeably worse than that in Figure 1 
obtained using the JMAK equation (comparison of both fits is presented in Figure 3), it 
can be considered to be very successful: the fit using the JMAK equation requires not 4, 
but 14 regression parameters (k, n and peq for each of five temperatures with the exception 
of peq, which is equal to 1 for 850 °C when the conversion is complete). Nevertheless, the 
biggest advantage of the equation of autoinhibition is that there is no need for a separate 
equilibrium conversion parameter peq for each temperature, but equilibrium conversions 
for all temperatures follow directly from the equation of autoinhibition. 

Table 1. Different values of the rate constant k and kinetic exponent n for different forms of the 
JMAK equation used as regression function: Equation (4) and linearised Equation (5). 

Temperature [°C] 730 760 790 820 850 
Regression function (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) 
Rate constant k [s–1] 0.029 0.033 0.032 0.041 0.066 0.070 0.075 0.077 0.080 0.091 
Exponent n [1] 0.731 0.712 0.772 0.714 0.731 0.709 0.768 0.775 0.928 0.873 

 
Figure 2. Martensite volume fraction in dual phase steel after austenitisation at various tempera-
tures during various dwells [17] fitted using the equation of autoinhibition (3) and the Arrhenius 
equation (Equation (2)) (all temperatures were fitted together). 

 
Figure 3. Martensite volume fraction in dual phase steel after austenitisation at various tempera-
tures during various dwells [17]: comparison of fits using the equation of autoinhibition (full lines) 
and the JMAK equation (dashed lines). 

Figures 1–3 show that complete conversion is reached at 850 °C, while it is only partial 
at 820 °C and at lower temperatures. This means that the minimum temperature Tmin at 
which complete conversion is reached after a sufficiently long time (theoretically infinite 

Figure 2. Martensite volume fraction in dual phase steel after austenitisation at various temperatures
during various dwells [17] fitted using the equation of autoinhibition (3) and the Arrhenius equation
(Equation (2)) (all temperatures were fitted together).

Materials 2021, 14, x FOR PEER REVIEW 4 of 12 
 

 

used for both k and ks rate constants. The family of curves is determined by only four 
parameters: k∞, ks∞, ε, and εs. Although this fit is noticeably worse than that in Figure 1 
obtained using the JMAK equation (comparison of both fits is presented in Figure 3), it 
can be considered to be very successful: the fit using the JMAK equation requires not 4, 
but 14 regression parameters (k, n and peq for each of five temperatures with the exception 
of peq, which is equal to 1 for 850 °C when the conversion is complete). Nevertheless, the 
biggest advantage of the equation of autoinhibition is that there is no need for a separate 
equilibrium conversion parameter peq for each temperature, but equilibrium conversions 
for all temperatures follow directly from the equation of autoinhibition. 

Table 1. Different values of the rate constant k and kinetic exponent n for different forms of the 
JMAK equation used as regression function: Equation (4) and linearised Equation (5). 

Temperature [°C] 730 760 790 820 850 
Regression function (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) 
Rate constant k [s–1] 0.029 0.033 0.032 0.041 0.066 0.070 0.075 0.077 0.080 0.091 
Exponent n [1] 0.731 0.712 0.772 0.714 0.731 0.709 0.768 0.775 0.928 0.873 

 
Figure 2. Martensite volume fraction in dual phase steel after austenitisation at various tempera-
tures during various dwells [17] fitted using the equation of autoinhibition (3) and the Arrhenius 
equation (Equation (2)) (all temperatures were fitted together). 

 
Figure 3. Martensite volume fraction in dual phase steel after austenitisation at various tempera-
tures during various dwells [17]: comparison of fits using the equation of autoinhibition (full lines) 
and the JMAK equation (dashed lines). 

Figures 1–3 show that complete conversion is reached at 850 °C, while it is only partial 
at 820 °C and at lower temperatures. This means that the minimum temperature Tmin at 
which complete conversion is reached after a sufficiently long time (theoretically infinite 
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Figures 1–3 show that complete conversion is reached at 850 ◦C, while it is only partial
at 820 ◦C and at lower temperatures. This means that the minimum temperature Tmin at
which complete conversion is reached after a sufficiently long time (theoretically infinite
time) lies between these two temperatures. If the equation of autoinhibition is used to
describe the conversion, the relationship for this temperature can be simply derived [19]:

Tmin =
ε− εs

R ln k∞
ks ∞

. (6)

For this temperature, the rate constants k and ks have the same value, i.e., k(Tmin) =
ks(Tmin) = K, which can be expressed in terms of the quartet of parameters k∞, ks∞, ε, and
εs as:

K = ks ∞
ε

ε−εs /k∞
εs

ε−εs . (7)

Then, instead of the quartet of parameters k∞, ks∞, ε, and εs, the quartet of parameters
Tmin, K, ε, and εs can be used and the Arrhenius equation for rate constants k(T) and ks(T)
takes the form [19]:

k(T) = K exp
[
− ε

R

(
1
T −

1
Tmin

)]
(8a)

ks(T) = K exp
[
− εs

R

(
1
T −

1
Tmin

)]
. (8b)

Then the limit temperature Tmin can be calculated not only using Equation (6), but
also directly as regression parameter when regression function (3) is supplemented by the
Arrhenius equation in the form of (8). Its value Tmin = 835.3 ◦C slightly differs from the
temperature Ac3 = 849 ◦C calculated by Asadabad et al. [17] using the phenomenological
equation for Ac3 published by Andrews [26]. Their difference is simply explicable: value
849 ◦C is valid for dwells usually used in thermal treatment, while value 835 ◦C is a limit
for infinite time.

5. Construction of Predictive Curves Using the Equation of Autoinhibition

Conversion p(t,T) expressed as a function of time and temperature using the equation
of autoinhibition (3) and the Arrhenius equation, e.g., in the forms of (2) or (8), allows the
regression of experimentally measured kinetic curves giving the values of the quartet of
regression parameters. For the results of Asadabad et al. [17], the values Tmin = 835.3 ◦C,
K = 0.06864 s−1, ε = 279.6 kJ/mol and εs = 169.6 kJ/mol were obtained. The values of this
parameter quartet fully describe the austenite formation of the studied material within
the model of autoinhibition described here, therefore, substituting them into Equations (3)
and (8) yields the family of predictive curves for temperatures within and near the range
of test temperatures. Starting from 900 ◦C downwards, Figure 4 presents predictive
curves in temperature intervals of 20 ◦C (as well as a predictive curve for Tmin = 835.3 ◦C).
Unfortunately, the validity of the model is limited by the temperature Ac1, below which
austenite is not formed. The value of this temperature calculated by Asadabad et al. [17]
using the phenomenological equation published by Andrews [26] is Ac1 = 721 ◦C. Therefore,
the predictive curve for this temperature (drawn in Figure 4 as a dotted line) is not valid and
must be replaced by the line expressing p = 0 (the solid line below the arrows in Figure 4).
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6. Modification of the Arrhenius Equation Near Temperature Ac1

Figure 4 shows apparently that the prediction can be used only for austenitisation
temperatures higher than 730 ◦C, i.e., for martensite volume fraction higher than 0.2 = 20%.
The cause consists in the fact that rate constant k describing austenite formation (see analogy
to Equations (2) and (8a)):

k(T) = k∞ exp
(
− ε

R T

)
= K exp

[
− ε

R

(
1
T
− 1

Tmin

)]
(9)

is nonzero for all temperatures (excluding absolute zero), while austenite formation can
occur only at temperatures higher than 721 ◦C. Step change:

k(T) = 0 for T ≤ 994 K (721 ◦C)

k(T) = K exp
[
− ε

R

(
1
T −

1
Tmin

)]
for T > 994 K (721 ◦C)

(10)

solves the problem only qualitatively, but transient change using, e.g., tanh function:

k(T) = 0 for T ≤ 994 K (721 ◦C)

k(T) = K exp
[
− ε

R

(
1
T −

1
Tmin

)]
tanh[a (T − 994)] for T > 994 K (721 ◦C)

(11)

where a is the slope of the transition, leads to better fit and especially to better predictive
curves near above 721 ◦C. This slope a is then the fifth regression parameter.

Result of regression using Equation (11) instead of (8a) or (2) for rate constant k(T)
is shown in Figure 5. This regression is better than that in Figure 2, although the sum of
squares decreases only by 6.2% (from 0.0384 to 0.0360). Figure 6 compares regressions
from Figures 2 and 5 differing in functions describing rate constant k(T) by Equation (2)
or (8a) (dashed lines) and (11) (full lines). The comparison shows that better regression is
obtained namely for temperatures of 730, 760 and also 790 ◦C. Using resulting values of
regression parameters Tmin = 836.8 ◦C, K = 0.07198 s−1, ε = 279.1 kJ/mol, εs = 175.2 kJ/mol,
and a = 0.1658 K−1, the family of predictive curves was drawn, see Figure 7, where the
problem with temperatures close above 721 ◦C disappeared.
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7. Discussion

In spite of its simplicity, the JMAK equation is sophisticated and universal because it
can describe practically all types of diffusion-based phase change in all stages, including
the formation of the nuclei of the new phase, the independent growth of those nuclei,
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and the growth when their surfaces reach one another. Different mechanisms of growth
predominate in different stages, for which different values of kinetic exponent n can be
considered [20]. Sinha et al. [27] took this fact into account by considering the temporal
dependence of this exponent. All experimental results show that this exponent depends
on temperature, and Rios [28] took this dependence into account in his theoretical consid-
erations. In fact, both the temporal and temperature dependence of the kinetic exponent
should be considered, but then the JMAK equation loses its basic advantage of simplicity.

While the JMAK equation can be adapted for individual stages of austenite formation
(with individual values of kinetic exponent n), the equation of autoinhibition describes
austenite formation (and many other processes) on a very general level, taking only two
basic driving forces into account: overheating acting in favour of forming a new phase,
and the newly formed phase acting against the continuing conversion (due to factors
such as different specific volumes of origin and the new phase, or also chemical liquation
of alloying additions). The advantage of the equation of autoinhibition is that it is able
to describe the final equilibrium of both these driving forces at any given temperature
(including the equilibrium fraction of the newly formed phase), as well as the temporal
course of arriving at equilibrium (i.e., the kinetics of conversion). The JMAK equation
is not able to describe the equilibrium fraction, but if it is known, the JMAK equation
describes the kinetics in many cases even better than the equation of autoinhibition: (i)
the JMAK equation can describe the kinetics of a nearly arbitrary phase change (based on
diffusion), if the initial and final states are known (by choosing a suitable value for the
kinetic exponent); (ii) the equation of autoinhibition is able to determine that final state
and, to describe the temperature-dependent equilibrium (together with the kinetics of its
formation) of two nearly arbitrary counteracting driving forces with different temperature
dependences (given by different values of activation energy ε and εs). This makes the
equation of autoinhibition a very strong tool for the description (or more strictly speaking,
for the modelling) of a wide variety of processes (not restricted to physical chemistry [29]),
although in some cases this description may be somewhat rough. More details dealing
with using the equation of autoinhibition and the equations of chemical kinetics in the
description of phase transformations and structural changes are available in the previous
paper [19] dealing with austenite formation in ferritic nodular cast iron. In addition, other
papers [30–32] have demonstrated the possible applications of the equations of chemical
kinetics for the rough description and modelling of purely physical processes (usually
based on diffusion).

Comparing the fits obtained using the two regression functions (3) and (4) shows (see
Figure 3) that the fit in the region of increasing curves is comparable, except at 850 ◦C where
the fit obtained using the JMAK equation is much better than that obtained using the equa-
tion of autoinhibition. In horizontal parts of curves describing the equilibrium fraction of
austenite (martensite), the JMAK equation yielded better fits, because for each temperature
(each curve), the equilibrium fraction is calculated as an independent regression parameter,
while for the equation of autoinhibition these equilibrium fractions are the functions of the
regression parameters connected with all temperatures (all curves)—quartets of regression
parameters (k∞, ks∞, ε and εs) or (Tmin, K, ε and εs) in the case of using Equation (8a) for
k(T), or quintets of regression parameters (k∞, ks∞, ε, εs and a), or (Tmin, K, ε, εs, and a) in
the case of using Equation (11) for k(T).

The ability of the autoinhibition model to describe the equilibrium fraction can be
discussed for the middle austenitisation temperature (790 ◦C), where the difference between
the measured value, and the fitted value of the equilibrium fraction using the equation
of autoinhibition is 2% (or 3 ◦C if expressed on temperature scale), see Figure 8. Both
these error values, i.e., 2% error for volume fraction determination and 3 ◦C error for
temperature regulation and measurement, represent acceptable measurement errors when
using standard laboratory equipment and procedures. In addition, the volume fraction
of austenite is determined through the volume fraction of martensite, which causes an
additional error in fraction determination (the specific volume of martensite is about 4%
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greater than the specific volume of austenite [33]). Taking this fact into account together
with the numbers of regression parameters (JMAK: 14; autoinhibition with modification: 5,
see above), the fit obtained using the equation of autoinhibition can be considered to be
relatively very successful.
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austenitisation temperature adjustment on the position of the kinetic curve for 790 ◦C (the equation
of autoinhibition (3) and the modified Arrhenius equation (11) are used).

In practice, it can be useful to know the equilibrium volume fraction of martensite peq
at given temperature T or, vice versa, the austenitisation temperature T that is necessary to
achieve a desired fraction of martensite peq. These values of temperature and martensite
fraction can be determined for peq > 0.2 = 20% and T > 730 ◦C using the family of predictive
curves (see Figure 4) or the following relationships (inverse of each other):

peq = exp
[

ε− εs

R

(
1

Tmin
− 1

T

)]
, (12)

1
T

=
1

Tmin
− R

ε− εs
ln peq. (13)

Generally, including regions peq < 0.2 = 20% and T < 730 ◦C (1003 K), family of predic-
tive curves in Figure 7 can be used, or Equation (12) is replaced by the more exact relation:

peq = exp
[

ε− εs

R

(
1

Tmin
− 1

T

)]
tanh[a (T − 994)], (14)

Whose inverse equivalent for T (i.e., analogy to Equation (13)) cannot be expressed
analytically but Figure 7 is sufficient for determining austenitisation temperature T, at
which asked martensite fraction peq is formed. If unknown steel is studied, for the deter-
mination of the family of predictive curves the values of the martensite volume fraction
is necessary to know for at least two austenitisation temperatures and several holding
periods. Only if also little martensite fractions are asked (peq < 0.2 = 20%), the results for
the third austenitisation temperature close to Ac1 are necessary as well as the value of
Ac1. Generally, the more experimental results (for various holding periods and various
austenitisation temperatures) are available, the more exact values of regression parameters
can be determined and the more exact family of predictive curves can be drawn.

The difference between Equations (12) and (14) is presented in Figure 9 where both
values of regression parameter Tmin (835.3 and 836.8 ◦C) for peq = 1 and Ac1 = 721 ◦C for
peq = 0 are drawn as additional points. Full line representing Equation (14) finishes in zero
martensite equilibrium fraction for temperature 721 ◦C, while dashed line representing
Equation (12) reaches zero fraction in the temperature of absolute zero. In addition,
the original paper showed the dependence of equilibrium fraction on austenitisation
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temperature (see Figure 7 in paper [17]). For temperatures 730, 760, 790, 820 and 850 ◦C the
authors used linear fit, which seems to be very successful, but (i) its extrapolation reaches
zero martensite equilibrium fraction at 686.5 ◦C (far below Ac1 = 721 ◦C) and (ii) not only at
austenitisation temperature of 850 ◦C, but already at about 837 ◦C fully martensite structure
is obtained if the dwell is sufficiently long. It means that mentioned linear fit is acceptable
only in austenitisation temperature region between 730 and 820 ◦C.
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8. Conclusions

The results of the regression and modelling of the kinetics of austenite formation in
studied dual phase steel enable the authors to formulate the following conclusions:

1. The JMAK equation, which is most frequently used to describe the kinetics of phase
transformations, can be used to describe austenitisation, but separately for each
temperature. In the case of partial transformation, additional parameters have to be
introduced describing the equilibrium volume fraction at each temperature.

2. The equation of autoinhibition was successfully used to describe austenitisation
kinetics because the newly formed phase acts against the continuing conversion. This
inhibition results from factors including the change in the specific volumes of the
initial and final phases, and the chemical liquation of alloying additions.

3. The kinetic equation of autoinhibition together with the Arrhenius equation describes
the dependence of conversion of austenitisation on time and temperature with high
precision, including for cases of partial conversion, despite the fact that it contains
only four parameters (or five parameters if the region close to Ac1 temperature, i.e.,
with little martensite fraction, is considered).

4. Successful application of the equation of autoinhibition to the simple description
and modelling of the kinetics of austenite formation in dual steels and nodular cast
irons leads to the presumption that this approach can be useful for the description
of austenitisation in all iron-based alloys, and maybe also for other types of phase
transformations. Generally, this approach should be able to achieve at least a rough
description of many processes based on two counteracting driving forces with differ-
ent temperature dependences. This approach describes not only the kinetics of those
processes, but also the final equilibrium state (here, the equilibrium volume fraction
of austenite), which is outside of the ability of the JMAK equation.

5. A sufficiently extensive set of experimental austenitisation (several values of marten-
site volume fraction in dual steel for several dwells at a minimum of two or three
temperatures), together with the application of the equation of autoinhibition and the
Arrhenius equation allows for the construction of predictive curves determining the
martensite volume fraction in this steel for arbitrary dwell and temperature combi-



Materials 2021, 14, 1781 11 of 12

nations. Such construction of predictive curves is not directly possible if the JMAK
equation is used for the description of kinetic curves.
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