Stoichiometry Dependence of Physical and Electrochemical Properties of the SnOx Film Anodes Deposited by Pulse DC Magnetron Sputtering
Abstract
:1. Introduction
2. Experimental Analysis
3. Results and Discussion
3.1. Basic Physical Properties of the SnOx Films
3.2. Composition of the SnOx Films
3.3. Electrochemical Performance of the SnOx Films
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, D.; Zhou, J.S.; Li, Z.P.; Li, J.K.; Hou, L.; Gao, F.M. Uniformly expanded interlayer distance to enhance the rate performance of soft carbon for lithium-ion batteries. Ionics 2019, 25, 1531–1539. [Google Scholar] [CrossRef]
- Lee, B.S. A review of recent advancements in electrospun anode materials to improve rechargeable lithium battery performance. Polymers 2020, 12, 2035. [Google Scholar] [CrossRef] [PubMed]
- Florian, Z.; Daniel, B.; Thomas, B.; Dina, F.I. Tin oxide–based nanomaterials and their application as anodes in lithium–ion batteries and beyond. ChemSusChem 2019, 12, 4240–4259. [Google Scholar]
- Vaughey, J.T.; Ohara, J.; Thackeray, M.M. Intermetallic insertion electrodes with a zinc blend e–type structure for Li batteries: A study of LixInSb (0 ≤ x ≤ 3). Electrochem. Solid-State Lett. 2000, 3, 13–17. [Google Scholar] [CrossRef]
- Wachtler, M.; Besenhard, J.O.; Winter, M. Tin and tin–based intermetallics as new anode materials for lithium–ion cells. J. Power Sources 2001, 94, 189–193. [Google Scholar] [CrossRef]
- Ferraresi, G.; Villevieille, C.; Czekaj, I.; Horisberger, H.; Novak, P.; Kazzi, M.E. SnO2 model electrode cycled in Li–ion battery reveals the formation of Li2SnO3 and Li8SnO6 phases through conversion reactions. ACS Appl. Mater. Interfaces 2018, 10, 8712–8720. [Google Scholar] [CrossRef] [PubMed]
- Hung, J.Y.; Zhong, L.; Wang, C.M.; Sullivan, J.P.; Xu, W.; Zhang, L.Q.; Mao, S.X.; Hudak, N.S.; Liu, X.H.; Subramanian, A.; et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 2010, 330, 1515–1520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.M.; Wang, T.; Cao, G. Promises and challenges of tin–based compounds as anode materials for lithium–ion batteries. Int. Mater. Rev. 2015, 60, 330–352. [Google Scholar] [CrossRef]
- Etacheri, V.; Gulain, A.S.; Caruthers, S.J.; Daniel, G.; Nedelec, J.M.; Kesseler, V.G.; Pol, V.G. Ordered network of interconnected SnO2 nanoparticles for excellent lithium–ion storage. Adv. Energy Mater. 2014, 5, 1401289. [Google Scholar] [CrossRef]
- Kong, X.H.; Yu, D.P.; Li, Y.D. Synthesis of SnO2 nanoribbons by direct oxidation of tin powders. Chem. Lett. 2003, 32, 100–101. [Google Scholar] [CrossRef]
- Lu, Y.; Yanilmaz, M.; Chen, C.; Dirican, M.; Ge, Y.Q.; Zhu, J.D.; Zhang, X.W. Centrifugally spun SnO2 microfibers composed of interconnected nanoparticles as the anode in sodium–ion batteries. ChemElectroChem 2015, 2, 1947–1956. [Google Scholar] [CrossRef]
- Lakhdari, D.; Boulegane, A.; Belfenache, D.; Dehdouh, H. Electrochemical, structural and optical properties of SnO2 thin films. CIER-PET 2017, 28, 65–69. [Google Scholar]
- Xie, M.; Sun, X.; George, S.M.; Zhou, C.G.; Lian, J.; Zhou, Y. Amorphous ultrathin SnO2 films by atomic layer deposition on graphene network as highly stable anodes for lithium ion batteries. ACS Appl. Mater. Inter. 2015, 7, 27735–27742. [Google Scholar] [CrossRef]
- Lee, W.H.; Son, H.C.; Moon, H.S.; Kim, Y.I.; Sung, S.H.; Kim, J.Y.; Lee, J.G.; Park, J.W. Stoichiometry dependence of electrochemical performance of thin film SnOx microbattery anodes deposited by radio frequency magnetron sputtering. J. Power Sources 2000, 89, 102–105. [Google Scholar] [CrossRef]
- Park, M.G.; Lee, D.H.; Jung, H.; Choi, J.H.; Park, C.M. Sn–based nanocomposite for Li–ion battery anode with high energy density, rate capability, and reversibility. ACS Nano 2018, 12, 2955–2967. [Google Scholar] [CrossRef] [PubMed]
- Djerdj, I.; Gracin, N.D.; Juraic, K.; Meljanac, D.; Radovic, I.B.; Pletikapic, G. Structural analysis of monolayered and bilayered SnO2 thin films. Surf. Coat. Technol. 2012, 211, 24–28. [Google Scholar] [CrossRef]
- Park, G.S.; Yang, G.M. Characterization of SnO2 films on glass by transmission electron microscopy. Thin Solid Films 2000, 365, 7–11. [Google Scholar] [CrossRef]
- Khan, A.F.; Mehmood, M.; Rana, A.M.; Bhatti, M.T. Effect of annealing on electrical resistivity of rf–magnetron sputtered nanostructured SnO2 thin films. Appl. Surf. Sci. 2009, 255, 8562–8565. [Google Scholar] [CrossRef]
- Batzill, M.; Burst, J.M.; Diebold, U. Pure and cobalt–doped SnO2 (101) films grown by molecular beam epitaxy on Al2O3. Thin Solid Films 2005, 484, 132–139. [Google Scholar] [CrossRef]
- Akgul, F.A.; Gumus, C.; Er, A.O.; Farha, A.H.; Akgul, G.; Ufuktepe, Y.; Liu, Z. Structural and electronic properties of SnO2. J. Alloys Compd. 2013, 579, 50–56. [Google Scholar] [CrossRef]
- Zhao, L.Z.; Qiao, L.N.; Miao, H.; Su, S.H.; Ru, Q.; Hou, X.H. Influence of magnetron sputtering method on cyclic performance of tin film anodes. Advan. Mater. Res. 2012, 51, 1706–1709. [Google Scholar] [CrossRef]
- Hou, X.H.; Hu, S.J.; Peng, W.; Zhang, Z.W.; Ru, Q. Study of lithium storage properties of the Sn–Ni alloys prepared by magnetic sputtering technology. Acta Metall. Sin. (Engl. Lett.) 2010, 23, 363–369. [Google Scholar]
- Safi, I. Recent aspects concerning DC reactive magnetron sputtering of thin films: A review. Surf. Coat. Technol. 2000, 127, 203–218. [Google Scholar] [CrossRef]
- Shanke, G.; Prathap, P.; Srivastsa, K.M.K.; Singh, P. Effect of balanced and unbalanced magnetron sputtering processes on the properties of SnO2 thin films. Curr. Appl. Phys. 2019, 19, 697–703. [Google Scholar] [CrossRef]
- Mukhamedshina, D.M.; Bersenkhanov, N.B.; Mit, K.A.; Valitova, I.; Botvin, V.A. Investigation of properties of thin oxide films SnOx annealed in various atmospheres. Thin Solid Films 2006, 495, 316–320. [Google Scholar] [CrossRef]
- Boltz, J.; Koehl, D.; Wutting, M. Low temperature sputter deposition of SnOx:Sb films for transparent conducting oxide applications. Surf. Coat. Technol. 2010, 205, 2455–2460. [Google Scholar] [CrossRef]
- Denarun, D.P.; Rajeeb, B.; Ghanashyam, K. Effects of metal doping on photoinduced hydrophilicity of SnO2 thin films. Bull. Mater. Sci. 2015, 38, 1–6. [Google Scholar]
- Ao, D.; Lchimura, M. Deposition and characterization of Sb and Cu doped nanocrystalline SnO2 thin films fabricated by the photochemical method. J. Non-Cryst. Solids 2012, 358, 2470–2473. [Google Scholar] [CrossRef]
- Wu, M.; Li, X.W.; Zhou, Q.; Ming, H.; Adkins, J.; Zheng, J.W. Fabrication of Sn film via magnetron sputtering towards understanding electrochemical behavior in lithium–ion battery application. Electrochim. Acta 2014, 123, 144–150. [Google Scholar] [CrossRef]
- Read, J.; Foster, D.; Wolfensitince, J.; Behl, W. SnO2–carbon composites for lithium–ion battery anodes. J. Power Sources 2001, 96, 277–281. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Y.M.; Bai, Y.S.; Zhou, W.; An, Y.R.; Li, J.H.; Guo, L. The self–assembly of porous microspheres of tin dioxide octahedral nanoparticles for high performance lithium ion battery anode materials. J. Mater. Chem. 2011, 21, 10189–10194. [Google Scholar] [CrossRef]
- Tao, Y.; Zhu, B.L.; Yang, Y.T.; Wu, J.; Shi, X.W. The structural, electrical, and optical properties of SnO2 films prepared by reactive magnetron sputtering: Influence of substrate temperature and O2 flow rate. Mater. Chem. Phys. 2020, 250, 123129. [Google Scholar] [CrossRef]
- Chen, Z.W.; Lai, J.K.L.; Shek, C.H. Insights into micro structural evolution from nanocrystalline SnO2 thin films prepared by pulsed laser deposition. Phys. Rev. B 2004, 70, 165314. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Brinzari, V.; Boris, I. (Cu, Fe, Co, or Ni)–doped tin dioxide films deposited by spray pyrolysis: Doping influence on film morphology. J. Mater. Sci. 2008, 43, 2761–2770. [Google Scholar] [CrossRef]
- Qiu, S.L.; Pmarcus, M. Equilibrium lines and barriers to phase transitions: The cubic diamond to beta–tin transition in Si from first principles. J. Phys.-Condens. Mat. 2012, 24, 225501. [Google Scholar] [CrossRef]
- Huggins, R.A. Lithium alloy negative electrodes. J. Power Sources 1999, 81–82, 13–19. [Google Scholar] [CrossRef]
- Joo, Y.H.; Wi, J.H.; Lee, W.J.; Chung, Y.D.; Cho, D.Y.; Kang, S.; Um, D.S.; Kim, C.I. Work function tuning of zinc–tin oxide thin films using high–density O2 plasma treatment. Coatings 2020, 10, 1026. [Google Scholar] [CrossRef]
- Alessandro, D.; Cinzia, C.; Monica, S.; Macis, S.; Bekec, B.; Fanetti, M.; Piseri, P.; Marcelli, A.; Coreno, M. Interplay among work function, electronic structure and stoichiometry in nanostructured VOx films. Phys. Chem. Chem. Phys. 2020, 20, 6282–6290. [Google Scholar]
- Gao, Y.; Wang, Z.; Chen, L. Work function, a new viewpoint to understand the electrolyte/electrode interface reaction. J. Mater. Chem. A 2015, 46, 1–20. [Google Scholar]
- Cherkashinin, G.; Hausbrand, R.; Jaegermann, W. Performance of Li–ion batteries: Contribution of electronic factors to the battery voltage. J. Electrochem. Soc. 2019, 166, A5308–A5312. [Google Scholar] [CrossRef]
- Ane, E.; Stephan, L.K.; Oleksandr, B. Work function evolution in Li anode processing. Adv. Energy Mater. 2020, 10, 2000520. [Google Scholar]
- Aravindana, V.; Jinesha, K.B.; Prabhakar, R.R.; Kale, V.S.; Madhavi, S. Atomic layer deposited (ALD) SnO2 anodes with exceptional cyclability for Li–ion batteries. Nano Energy 2013, 2, 720–725. [Google Scholar] [CrossRef]
- Weast, R.C. Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 1988. [Google Scholar]
- Themlin, J.M.; Chataib, M.; Henrard, L.; Lambin, P.; Darville, J.; Gilles, J.M. Characterization of tin oxides by X-ray-photoemission spectroscopy. Phys. Rev. B 1992, 46, 2460–2467. [Google Scholar] [CrossRef]
- Marichy, C.; Donato, N.; Willinger, M.G.; Latino, M.; Karpinsky, D.; Yu, S.H.; Neri, G.; Pima, N. Tin dioxide sensing layer grown on tubular nanostructures by a non–aqueous atomic layer deposition process. Adv. Funct. Mater. 2011, 21, 658–666. [Google Scholar] [CrossRef]
- Kwoka, M.; Ottaviano, L.; Passacantando, M.; Santucci, S.; Czempic, G.; Szuber, J. XPS study of the surface chemistry of CVD SnO2 thin films after oxidation. Thin Solid Films 2000, 490, 36–42. [Google Scholar] [CrossRef]
- Asbury, D.A.; Hoflund, G.B. A surface study of the oxidation of polycrystalline tin. J. Vac. Sci. Technol. A 1987, 5, 1132–1135. [Google Scholar] [CrossRef]
- Larciprete, R.; Borsella, E.; Padova, P.D.; Perfetti, P.; Faglia, G.; Sberveglieri, G. Organotin films deposited by laser-induced CVD as active layers in chemical gas sensors. Thin Solid Films 1998, 323, 291–295. [Google Scholar] [CrossRef]
- Wang, S.R.; Huang, J.; Geng, L.; Zhu, B.L.; Wang, X.Y.; Wu, S.H.; Zhang, S.M.; Huang, W.P. Tin dioxide supported nanometric gold: Synthesis, characterization, and low temperature catalytic oxidation of CO. Catal. Lett. 2006, 108, 97–102. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Dong, G.F.; Duan, L.; Qiao, J.; Zhang, D.Q.; Wang, L.D.; Qiu, Y. Impacts of Sn precursors on solution–processed amorphous zinc–tin oxide films and their transistors. RSC Adv. 2012, 2, 5307–5313. [Google Scholar] [CrossRef]
- Zhu, Z.; Ma, J.; Luan, C.; Mi, W.; Lv, Y. Epitaxial growth of SnO2 films on 6H–SiC (0 0 0 1) by MOCVD. Mater. Res. Bull. 2012, 47, 253–256. [Google Scholar] [CrossRef]
- Oswald, S.; Hoffmann, M.; Zier, M. Peak position differences observed during XPS sputter depth profiling of the SEI on lithiated and delithiated carbon-based anode material for Li–ion batteries. Appl. Surf. Sci. 2017, 401, 408–413. [Google Scholar] [CrossRef]
- Maibach, J.; Lindgren, F.; Erilsson, H.; Edstrom, K.; Hahllin, M. Electric potential gradient at the buried interface between lithium–ion battery electrodes and the SEI observed using photoelectron spectroscopy. J. Phys. Chem. Lett. 2016, 7, 1775–1780. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Xu, K.W. Impact of partial oxygen pressure on transmittance of RF reactively sputtered ZrO2 films. Funct. Mater. Lett. 2004, 35, 3162–3164. [Google Scholar]
- Chattaraj, P.K.; Maiti, B. Regioselectivity in the chemical reactions between molecules and protons: A quantum fluid density functional study. J. Phys. Chem. B 2004, 108, 658–664. [Google Scholar] [CrossRef]
- Padova, P.D.; Larciprete, R.; Ottaviani, C.; Quaresima, C.; Perfetti, P.; Borsella, E.; Astaldi, C.; Comicioli, C.; Crotti, C.; Matteucci, M.; et al. Synchrotron radiation photoelectron spectroscopy of the O(2s) core level as a tool for monitoring the reducing effects of ion bombardment on SnO2 thin films. Appl. Surf. Sci. 1996, 104–105, 349–353. [Google Scholar] [CrossRef]
- Themlin, J.M.; Sporken, R.; Darcille, J.; Gaudano, R.; Gilles, J.M.; Johnson, R.L. Resonant–photoemission study of SnO2: Cationic origin of the defect band–gap states. Phys. Rev. B 1990, 42, 11914–11926. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.S.; Pan, F.M.; Tse, W.S.; Honrng, S.R. Photoemission studies of ion bombardment effect on SnO2 surfaces. Surf. Sci. 1989, 211–212, 279–288. [Google Scholar] [CrossRef]
- Larciprete, R.; Borsella, E. Synchrotron radiation photoemission analysis of ArF laser deposited tin oxide. J. Vac. Sci. Technol. A 1993, 11, 336–341. [Google Scholar] [CrossRef]
- Adrian, A.C.B.; Victor, M.P.; Wilfredo, O. Reactive sputtered ZnO thin films: Influence of the O2/Ar flow ratio on the oxygen vacancies and paramagnetric active sites. Thin Solid Films 2019, 692, 137641. [Google Scholar]
- He, Z.B.; Wu, W.D.; Xu, H.; Zhang, J.C.; Tang, Y.J. The effects of O2/Ar flow ratio on the structure and properties of hafnium dioxide (HfO2) films. Vacuum 2006, 81, 211–214. [Google Scholar] [CrossRef]
- Kwoka, M.; Krzywiecki, M. Rheotaxial growth and vacuum oxidation–Novel technique of tin oxide deposition–In situ monitoring of oxidation process. Mater. Lett. 2015, 154, 1–4. [Google Scholar] [CrossRef]
- Tavassol, H.; Cason, M.W.; Nuzzo, R.G.; Gewirth, A.A. Influence of oxides on the stress evolution and reversibility during SnOx conversion and Li–Sn alloying reactions. Adv. Energy Mater. 2014, 1400317, 1–10. [Google Scholar]
- Zuo, T.T.; Wu, X.W.; Yang, C.P.; Yin, Y.X.; Ye, H.; Li, N.W.; Guo, Y.G. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Adv. Mater. 2017, 29, 1700389. [Google Scholar] [CrossRef] [PubMed]
- Mohamedi, M.; Lee, S.J.; Takahashi, D.; Itoh, T.; Uchida, I. Amorphous tin oxide films: Preparation and characterization as an anode active material for lithium ion batteries. Electrochim. Acta 2001, 46, 1161–1168. [Google Scholar] [CrossRef]
- Belliard, F.; Connor, P.A.; Ircine, J.T.S. Novel tin oxide–based anodes for Li–ion batteries. Solid State Ion. 2000, 135, 163–167. [Google Scholar] [CrossRef]
- Aracindan, V.; Gnanaraj, J.; Madhaci, S.; Liu, H.K. Lithium–ion conducting electrolyte salts for lithium batteries. Chem. A Eur. J. 2011, 17, 14326–14346. [Google Scholar] [CrossRef] [PubMed]
- Inaba, M.; Uno, T.; Tasaka, A. Irreversible capacity of electrodeposited Sn thin film anode. J. Power Sources 2015, 146, 473–477. [Google Scholar] [CrossRef]
- Courtney, I.A.; Mckinnon, W.R.; Dahn, J.R. On the aggregation of tin in SnO composite glasses caused by the reversible reaction with lithium. J. Electrochem. Soc. 1999, 146, 59–68. [Google Scholar] [CrossRef]
- Menkin, S.; Golodnitsky, D.; Peled, E. Artificial solid–electrolyte interphase (SEI) for improved cyclability and safety of lithium–ion cells for EV applications. Electrochem. Commun. 2009, 11, 1789–1791. [Google Scholar] [CrossRef]
- Chiu, K.F.; Lin, H.C.; Lin, K.M.; Lin, T.Y.; Shieh, D.T. Anode–shielded, sputter-deposited nanocrystalline Sn thin-film anodes for lithium–ion batteries. J. Electrochem. Soc. 2006, 153, A920–A924. [Google Scholar] [CrossRef]
- Wu, H.; Chan, G.; Choi, J.W.; Ryu, I.; Yao, Y.; Mcdowell, M.T.; Lee, S.W.; Jackson, A.; Yang, Y.; Hu, L.B.; et al. Stable cycling of double–walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 2012, 7, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Todd, A.D.W.; Ferguson, P.P.; Fleischauer, M.D.; Dahn, J.R. Tin–based materials as negative electrodes for Li–ion batteries: Combinatorial approaches and mechanical methods. Int. J. Energy Res. 2010, 4, 535–555. [Google Scholar] [CrossRef]
- Knoops, H.C.M.; Donders, M.E.; Kesseks, W.M.M.; Sanden, M.C.M.; Notten, P.H. Atomic layer deposition for nanostructured Li–ion batteries. J. Vac. Sci. Technol. A 2012, 30, 010801. [Google Scholar] [CrossRef] [Green Version]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications; Wiley: New York, NY, USA, 1980; Volume 2. [Google Scholar]
- Santos, P.J.; Brousse, T.; Sanchez, L.; Morales, J.; Schleich, D.M. Antimony doping effect on the electrochemical behavior of SnO2 thin film electrode. J. Power Sources 2001, 97–98, 232–234. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Zhang, X.; Liu, W.; Wei, Y.; Fu, Z.; Li, J.; Zhang, X.; Peng, J.; Yan, Y. Stoichiometry Dependence of Physical and Electrochemical Properties of the SnOx Film Anodes Deposited by Pulse DC Magnetron Sputtering. Materials 2021, 14, 1803. https://doi.org/10.3390/ma14071803
Ma Y, Zhang X, Liu W, Wei Y, Fu Z, Li J, Zhang X, Peng J, Yan Y. Stoichiometry Dependence of Physical and Electrochemical Properties of the SnOx Film Anodes Deposited by Pulse DC Magnetron Sputtering. Materials. 2021; 14(7):1803. https://doi.org/10.3390/ma14071803
Chicago/Turabian StyleMa, Yibo, Xiaofeng Zhang, Weiming Liu, Youxiu Wei, Ziyi Fu, Jiuyong Li, Xuan Zhang, Jingjing Peng, and Yue Yan. 2021. "Stoichiometry Dependence of Physical and Electrochemical Properties of the SnOx Film Anodes Deposited by Pulse DC Magnetron Sputtering" Materials 14, no. 7: 1803. https://doi.org/10.3390/ma14071803
APA StyleMa, Y., Zhang, X., Liu, W., Wei, Y., Fu, Z., Li, J., Zhang, X., Peng, J., & Yan, Y. (2021). Stoichiometry Dependence of Physical and Electrochemical Properties of the SnOx Film Anodes Deposited by Pulse DC Magnetron Sputtering. Materials, 14(7), 1803. https://doi.org/10.3390/ma14071803