Enhanced Structural Stability and Electrochemical Performance of LiNi0.6Co0.2Mn0.2O2 Cathode Materials by Ga Doping
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, W.; Oh, P.; Liu, X.; Lee, M.-J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. 2015, 54, 4440–4457. [Google Scholar] [CrossRef]
- Manthiram, A.; Knight, J.C.; Myung, S.-T.; Oh, S.-M.; Sun, Y.-K. Nickel-rich and lithium-rich layered oxide cathodes: Progress and perspectives. Adv. Energy Mater. 2016, 6, 1501010. [Google Scholar] [CrossRef]
- Noh, H.-J.; Youn, S.; Yoon, C.S.; Sun, Y.-K. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J. Power Source 2013, 233, 121–130. [Google Scholar] [CrossRef]
- Ma, L.; Nie, M.; Xia, J.; Dahn, J.R. A systematic study on the reactivity of different grades of charged Li[NixMnyCoz]O2 with electrolyte at elevated temperatures using accelerating rate calorimetry. J. Power Source 2016, 327, 145–150. [Google Scholar] [CrossRef]
- Biasi, L.; Kondrakov, A.O.; Geßwein, H.; Brezesinski, T.; Hartmann, P.; Janek, J. Between Scylla and Charybdis: Balancing among structural stability and energy density of layered NCM cathode materials for advanced lithium-ion batteries. J. Phys. Chem. C 2017, 121, 26163–26171. [Google Scholar] [CrossRef]
- Li, W.; Liu, X.; Xie, Q.; You, Y.; Chi, M.; Manthiram, A. Long-term cyclability of NCM-811 at high voltages in lithium-ion batteries: An in-depth diagnostic study. Chem. Mater. 2020, 32, 7796–7804. [Google Scholar] [CrossRef]
- Lee, W.; Muhammad, S.; Kim, T.; Kim, H.; Lee, E.; Jeong, M.; Son, S.; Ryou, J.-H.; Yoon, W.-S. New insight into Ni-rich layered structure for next-generation Li rechargeable batteries. Adv. Energy Mater. 2018, 8, 1701788. [Google Scholar] [CrossRef]
- Min, K.; Kim, K.; Jung, C.; Seo, S.-W.; Song, Y.Y.; Lee, H.S.; Shin, J.; Cho, E. A comparative study of structural changes in lithium nickel cobalt manganese oxide as a function of Ni content during delithiation process. J. Power Source 2016, 15, 111–119. [Google Scholar] [CrossRef]
- Kim, N.Y.; Yim, T.; Song, J.H.; Yu, J.-S.; Lee, Z. Microstructural study on degradation mechanism of layered LiNi0.6Co0.2Mn0.2O2 cathode materials by analytical transmission electron microscopy. J. Power Source 2016, 307, 641–648. [Google Scholar] [CrossRef]
- Saavedra-Arias, J.J.; Rao, C.V.; Shojan, J.; Manivannan, A.; Torres, L.; Ishikawa, Y.; Katiyar, R.S. A combined first-principles computational/experimental study on LiNi0.66Co0.17Mn0.17O2 as a potential layered cathode material. J. Power Source 2012, 211, 12–18. [Google Scholar]
- Kim, Y. First-principles investigation of the structural characteristics of LiMO2 cathode materials for lithium secondary batteries. J. Mol. Struct. 2015, 1099, 317–322. [Google Scholar] [CrossRef]
- Wei, Y.; Zheng, J.; Cui, S.; Song, X.; Su, Y.; Deng, W.; Wu, Z.; Wang, X.; Wang, W.; Rao, M.; et al. Kinetics tuning of Li-ion diffusion in layered Li(NixMnyCoz)O2. J. Am. Chem. Soc. 2015, 137, 8364–8367. [Google Scholar] [CrossRef]
- Chen, Y.P.; Zhang, Y.; Wang, F.; Wang, Z.; Zhang, Q. Improve the structure and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material by nano-Al2O3 ultrasonic coating. J. Alloys Compd. 2014, 611, 135–141. [Google Scholar] [CrossRef]
- Tao, F.; Yan, X.-X.; Liu, J.-J.; Zhang, H.-L.; Chen, L. Effects of PVP-assisted Co3O4 coating on the electrochemical and storage properties of LiNi0.6Co0.2Mn0.2O2 at high cut-off voltage. Electrochim. Acta 2016, 210, 548–556. [Google Scholar] [CrossRef]
- Cho, W.; Kim, S.-M.; Song, J.-H.; Yim, T.; Woo, S.-G.; Lee, K.-W.; Kim, J.-S.; Kim, Y.-J. Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating. J. Power Source 2015, 282, 45–50. [Google Scholar] [CrossRef]
- Jo, C.-H.; Cho, D.-H.; Noh, H.-J.; Yashiro, H.-J.; Sun, H.; Myung, Y.-K.; Taek, S. An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer. Nano Res. 2015, 8, 1464–1479. [Google Scholar] [CrossRef]
- Cho, W.; Kim, S.-M.; Lee, K.-W.; Song, J.H.; Jo, Y.N.; Yim, T.; Kim, H.; Kim, J.-S.; Kim, Y.-J. Investigation of new manganese orthophosphate Mn3(PO4)2 coating for nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode and improvement of its thermal properties. Electrochim. Acta 2016, 198, 77–83. [Google Scholar] [CrossRef]
- Choi, J.-W.; Lee, J.-W. Improved electrochemical properties of Li(Ni0.6Mn0.2Co0.2)O2 by surface coating with Li1.3Al0.3Ti1.7(PO4)3. J. Power Source 2016, 307, 63–68. [Google Scholar] [CrossRef]
- Liu, W.; Li, X.; Xiong, D.; Hao, Y.; Li, J.; Kou, H.; Yan, B.; Li, D.; Lu, S.; Koo, A.; et al. Significantly improving cycling performance of cathodes in lithium ion batteries: The effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2. Nano Energy 2018, 44, 111–120. [Google Scholar] [CrossRef]
- Liu, S.; Wu, H.; Huang, L.; Xiang, M.; Liu, H.; Zhang, Y. Synthesis of Li2Si2O5-coated LiNi0.6Co0.2Mn0.2O2 cathode materials with enhanced high—voltage electrochemical properties for lithiumion batteries. J. Alloys Compd. 2016, 674, 447–454. [Google Scholar] [CrossRef]
- Kim, H.; Kim, M.G.; Jeong, H.Y.; Nam, H.; Cho, J. A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2 cathode material: Nanoscale surface treatment of primary particles. Nano Lett. 2015, 15, 2111–2119. [Google Scholar] [CrossRef]
- Schipper, F.; Dixit, M.; Kovacheva, D.; Talianker, M.; Haik, O.; Grinblat, J.; Erickson, E.M.; Ghanty, C.; Major, D.T.; Markovsky, B.; et al. Stabilizing nickel-rich layered cathode materials by a high-charge cation oping strategy: Zirconium-doped LiNi0.6Co0.2Mn0.2O2. J. Mater. Chem. A 2016, 4, 16073–16084. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, Z.K.; Wu, F.; Mu, D.; Wang, L.; Wu, B. The effects of molybdenum doping on LiNi0.6Co0.2Mn0.2O2 cathode material. Solid State Ion. 2019, 337, 107–114. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, Z.; Jing, Q.; Guo, H.; Li, X.; Yang, Z. Investigation on the effect of Na doping on structure and Li-ion kinetics of layered LiNi0.6Co0.2Mn0.2O2 cathode material. Electrochim. Acta 2016, 192, 120–126. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, Z.; Zheng, X.; Guo, H. Effect of Mg doping on the structural and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials. Electrochim. Acta 2015, 182, 795–802. [Google Scholar] [CrossRef]
- Mofid, W.E.; Ivanov, S.; Konkin, A.; Bund, A. A high performance layered transition metal oxide cathode material obtained by simultaneous aluminum and iron cationic substitution. J. Power Source 2014, 268, 414–422. [Google Scholar] [CrossRef]
- Yue, P.; Wang, Z.; Li, X.; Xiong, X.; Wang, J.; Wu, X.; Guo, H. The enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials by low temperature fluorine substitution. Electrochim. Acta 2013, 95, 112–118. [Google Scholar] [CrossRef]
- Xiang, W.; Zhu, C.Q.; Zhang, J.; Shi, H.; Liang, Y.T.; Yu, M.H.; Zhu, X.M.; He, F.R.; Lv, G.P.; Guo, X.D. Synergistic coupling effect of sodium and fluorine co-substitution on enhancing rate capability and cycling performance of Ni-rich cathode for lithium ion battery. J. Alloys Compd. 2019, 786, 56–64. [Google Scholar] [CrossRef]
- Chen, Q.; Yan, G.; Luo, L.; Chen, F.; Xie, T.; Dai, S.; Yuan, M. Enhanced cycling stability of Mg-F co-modified LiNi0.6Co0.2Mn0.2–yMgyO2–zFz for lithium-ion batteries. Trans. Nonferrous Met. Soc. China 2018, 28, 1397–1403. [Google Scholar] [CrossRef]
- Ran, Q.; Zhao, H.; Wang, Q.; Shu, X.; Hu, Y.; Hao, S.; Wang, M.; Liu, J.; Zhang, M.; Li, H. Dual functions of gradient phosphate polyanion doping on improving the electrochemical performance of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode at high cut-off voltage and high temperature. Electrochim. Acta 2019, 299, 971–978. [Google Scholar] [CrossRef]
- Zhan, X.W.; Gao, S.; Cheng, Y.T. Influence of annealing atmosphere on Li2ZrO3-coated LiNi0.6Co0.2Mn0.2O2 and its high-voltage cycling performance. Electrochim. Acta 2019, 300, 36–44. [Google Scholar] [CrossRef]
- Wen, Y. Introduction to Ion Polarization; Anhui Education Press: Hefei, China, 1985. [Google Scholar]
- Nishida, Y.; Nakane, K.; Satoh, T. Synthesis and properties of gallium-doped as the cathode material for lithium secondary batteries. J. Power Source 1997, 68, 561–564. [Google Scholar] [CrossRef]
- Kitsche, D.; Schweidler, S.; Mazilkin, A.; Geßwein, H.; Fauth, F.; Suard, E.; Hartmann, P.; Brezesinski, T.; Janek, J.; Bianchini, M. The effect of gallium doping on the structure and electrochemical performance of LiNiO2 in lithium-ion batteries. Mater. Adv. 2020, 1, 639–647. [Google Scholar] [CrossRef]
- Kim, J.-J.; Ryu, K.H.; Sakaue, K.; Terauchi, H.; Yo, C.-H. Structural characterization for the chemically Li+ ion extracted LiyCoO2, LiyCo0.95Ga0.05O2, and LiyCo0.9Ga0.1O2 compounds. J. Phys. Chem. Solids 2002, 63, 2037–2045. [Google Scholar] [CrossRef]
- Han, C.J.; Eom, W.S.; Lee, S.M.; Cho, W.I.; Jang, H. Study of the electrochemical properties of Ga-doped LiNi0.8Co0.2O2 synthesized by a sol–gel method. J. Power Source 2005, 144, 214–219. [Google Scholar] [CrossRef]
- Yu, T.; Li, J.; Xu, G.; Li, J.; Ding, F.; Kang, F. Improved cycle performance of Li[Li0.2Mn0.54Co0.13Ni0.13]O2 by Ga doping for lithium ion battery cathode material. Solid State Ion. 2017, 301, 64–71. [Google Scholar] [CrossRef]
- Jaskula, B.W. Gallium. USGS: 2017 Minerals Yearbook. April 2020. Available online: https://pubs.er.usgs.gov/publication/pp1802H (accessed on 23 February 2021).
- Carli, R.; Bianchi, C.L. XPS analysis of gallium oxides. Appl. Surf. Sci. 1994, 74, 99–102. [Google Scholar] [CrossRef]
- Bredar, A.R.C.; Chown, A.L.; Burton, A.R.; Farnum, B.H. Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications. ACS Appl. Energy Mater. 2020, 3, 66–98. [Google Scholar] [CrossRef] [Green Version]
- Pang, P.; Wang, Z.; Tan, X.; Deng, Y.; Nan, J.; Xing, Z.; Li, H. LiCoO2@LiNi0.45Al0.05Mn0.5O2 as high-voltage lithium-ion battery cathode materials with improved cycling performance and thermal stability. Electrochim. Acta 2019, 327, 135018–135026. [Google Scholar] [CrossRef]
x | Rs/Ω | Rf/Ω | Rct/Ω | (Rf + Rct)/Ω |
---|---|---|---|---|
0 | 4.531 | 32.30 | 82.47 | 114.8 |
0.01 | 4.658 | 48.82 | 17.92 | 66.74 |
0.02 | 3.532 | 18.62 | 32.34 | 50.96 |
0.03 | 5.682 | 23.58 | 36.19 | 59.77 |
0.05 | 5.229 | 59.11 | 38.87 | 97.98 |
Doped Element | Preparation Method | Voltage Range (V) | Discharge Capacity (mAh g−1) | Capacity Retention | Thermal Stability | Ref. |
---|---|---|---|---|---|---|
Ga | Solid-state method | 2.8–4.3 | 183.4 (0.2 C) 177 (0.5 C) 166 (1 C) 152.7 (2 C) 121.1 (5 C) | 82.8% (undoped) and 89.8% (doped) (50 cycles, 0.5 C) | Remarkable improved | This work |
Zr | Self-combustion synthesis | 2.8–4.3 | ~160 (0.1 C) ~145 (C/3) | 88.3% (undoped) and 93.1% (doped) (45 cycles, C/3) | No test | Ref. [22] |
Na | Solid-state method | 2.8–4.3 | 176 (0.2 C) 170 (0.5 C) 162 (1 C) | 83.7% (undoped) and 93.5% (doped) (100 cycles, 1 C) | No test | Ref. [24] |
Mg | Solid-state method | 2.8–4.3 | 177.07 (0.1 C) 162.6 (1 C) | 79.33% (undoped) and 90.02% (doped) (100 cycles, 1 C) | No test | Ref. [25] |
F | Solid-state method | 2.5–4.3 | 163.5 (0.1 C) 146.1 (1 C) | 89.2% (undoped) and 94.2% (doped) (50 cycles, 1 C) | No test | Ref. [27] |
Na + F | Solid-state method | 2.7–4.3 | 171 (0.1 C) 141 (1 C) | 87% (doped) (100 cycles, 1 C) | No test | Ref. [28] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Li, J.; Zhu, M.; Wang, L.; Kang, Y.; Dang, Z.; Yan, J.; He, X. Enhanced Structural Stability and Electrochemical Performance of LiNi0.6Co0.2Mn0.2O2 Cathode Materials by Ga Doping. Materials 2021, 14, 1816. https://doi.org/10.3390/ma14081816
Liu Z, Li J, Zhu M, Wang L, Kang Y, Dang Z, Yan J, He X. Enhanced Structural Stability and Electrochemical Performance of LiNi0.6Co0.2Mn0.2O2 Cathode Materials by Ga Doping. Materials. 2021; 14(8):1816. https://doi.org/10.3390/ma14081816
Chicago/Turabian StyleLiu, Zhibei, Jiangang Li, Meijie Zhu, Li Wang, Yuqiong Kang, Zhaohan Dang, Jiasen Yan, and Xiangming He. 2021. "Enhanced Structural Stability and Electrochemical Performance of LiNi0.6Co0.2Mn0.2O2 Cathode Materials by Ga Doping" Materials 14, no. 8: 1816. https://doi.org/10.3390/ma14081816
APA StyleLiu, Z., Li, J., Zhu, M., Wang, L., Kang, Y., Dang, Z., Yan, J., & He, X. (2021). Enhanced Structural Stability and Electrochemical Performance of LiNi0.6Co0.2Mn0.2O2 Cathode Materials by Ga Doping. Materials, 14(8), 1816. https://doi.org/10.3390/ma14081816