Analysis of the Accelerator-Driven System Fuel Assembly during the Steam Generator Tube Rupture Accident
Abstract
:1. Introduction
2. Materials and Methods
2.1. Governing Equations
2.2. Meshing the ADS Assembly
2.3. Coolant Properties
2.4. Boundary Conditions Setting
2.5. Verification of Our Simulation Model
3. Simulations under Different Boundary Conditions
3.1. Temperature Distributions at the Middle Section and the Outlet Section
3.2. Bubble Gathering
3.3. Outlet Section Velocity
3.4. Maximum Steam Volumetric Fraction
4. Conclusions
- (1)
- When the steam content is lower than 15%, the coolant temperature rises slowly. The fuel rod would operate within its designed limit. A significant rise of coolant temperature may be noticed after the inlet steam content exceeds 15%.
- (2)
- The temperature fluctuation in liquid Pb (lead) due to the steam bubble intrusion was reported to be slightly higher than that in LBE coolant.
- (3)
- The temperature fluctuation is significant when the inlet steam content is higher than 15%, which may cause the failure of fuel assemblies. It was reported that this significant phenomenon needs to be carefully investigated.
- (4)
- Steam bubbles tend to accumulate at the periphery regions, especially in the corner channels. This phenomenon confirms the necessity of constructing corresponding experimental facilities in the future.
- (5)
- The outlet fluid velocity and the steam content were reported to be mainly affected by the inlet steam content.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbol | Explanation |
, and | Mixed Fluid Density, Liquid Density and Gas Density (kg·m−3) |
volume fraction of fluid | |
, and | mixed fluid dynamic viscosity, liquid dynamic viscosity and gas dynamic viscosity (Pa·s) |
t | time (s) |
U | Gas phase and liquid phase mixed velocity (m·s−1) |
viscous stress (Pa) | |
p | pressure (Pa) |
g | gravity (m·s−2) |
surface tension coefficient (N·m−1) | |
curvature (m−1) | |
T | temperature (K) |
kf | fluid heat transfer coefficient (W·m−2·K−1) |
specific heat capacity at constant pressure (J·kg−1·K−1) | |
thermal conductivity (W·m−1·K−1) |
References
- Gudowski, W. Accelerator-driven transmutation projects. The importance of nuclear physics research for waste transmutation. Nucl. Phys. A 1999, 654, 436c–457c. [Google Scholar] [CrossRef]
- Wallenius, J.; Qvist, S.; Mickus, I.; Bortot, S.; Szakalos, P.; Ejenstam, J. Design of SEALER, a very small lead-cooled reactor for commercial power production in off-grid applications. Nucl. Eng. Des. 2018, 338, 23–33. [Google Scholar] [CrossRef]
- Takahashi, M.; Uchida, S.; Kasahara, Y. Design study on reactor structure of Pb–Bi-cooled direct contact boiling water fast reactor (PBWFR). Prog. Nucl. Energy 2008, 50, 197–205. [Google Scholar] [CrossRef]
- Wu, Y.C.; Bai, Y.Q.; Song, Y.; Huang, Q.Y.; Zhao, Z.M.; Hu, L.Q. Development strategy and conceptual design of China Lead-based Research Reactor. Ann. Nucl. Energy 2016, 87, 511–516. [Google Scholar] [CrossRef]
- Peng, T.J.; Lang, M.G.; Zhou, Z.W.; Gu, L. Accident analysis of tungsten target coupled with ADS core. Int. J. Hydrog. Energy 2016, 41, 7059–7068. [Google Scholar] [CrossRef]
- Peng, T.; Zhou, Z.; Xiao, S.; Sheng, X.; Gu, L. Thermal–hydraulic modeling and transient analysis of helium-cooled tungsten target coupled with ADS core. Ann. Nucl. Energy 2016, 87, 612–620. [Google Scholar] [CrossRef]
- Romanets, Y.; Abderrahim, H.A.; De Bruyn, D.; Dagan, R.; Goncalves, I.; Maschek, W.; Rimpault, G.; Struwe, D.; Van den Eynde, G.; Vaz, P.; et al. Xt-Ads: Neutronics, Shielding, and Radiation Damage Calculations. Nucl. Technol. 2009, 168, 537–541. [Google Scholar] [CrossRef]
- Maes, D. Mechanical design of the small-scale experimental ADS: MYRRHA. Energy Convers Manag. 2006, 47, 2710–2723. [Google Scholar] [CrossRef]
- Wallenius, J.; Bortot, S. A small lead-cooled reactor with improved Am-burning and non-proliferation characteristics. Ann. Nucl. Energy 2018, 122, 193–200. [Google Scholar] [CrossRef]
- Subbotin, V.I.; Arnol’dov, M.N.; Kozlov, F.A.; Shimkevich, A.L. Liquid-metal coolants for nuclear power. At. Energy 2002, 92, 29–40. [Google Scholar] [CrossRef]
- Mangialardo, A.; Borreani, W.; Lomonaco, G.; Magugliani, F. Numerical investigation on a jet pump evolving liquid lead for GEN-IV reactors. Nucl. Eng. Des. 2014, 280, 608–618. [Google Scholar] [CrossRef]
- Wang, S.; Flad, M.; Maschek, W.; Agostini, P.; Pellini, D.; Bandini, G.; Suzuki, T.; Morita, K. Evaluation of a steam generator tube rupture accident in an accelerator driven system with lead cooling. Prog. Nucl. Energy 2008, 50, 363–369. [Google Scholar] [CrossRef]
- Zhang, C.D.; Sa, R.Y.; Zhou, D.N.; Zhang, G.Y.; Wang, L. Effects of failure location and pressure on the core voiding under SGTR accident in a LBE-cooled fast reactor. Int. J. Heat Mass Transf. 2019, 141, 940–948. [Google Scholar] [CrossRef]
- Jeltsov, M.; Villanueva, W.; Kudinov, P. Steam generator leakage in lead cooled fast reactors: Modeling of void transport to the core. Nucl. Eng. Des. 2018, 328, 255–265. [Google Scholar] [CrossRef]
- Cheng, X.; Tak, N.I. CFD analysis of thermal–hydraulic behavior of heavy liquid metals in sub-channels. Nucl. Eng. Des. 2006, 236, 1874–1885. [Google Scholar] [CrossRef]
- Chen, X.N.; Li, R.; Rineiski, A.; Jager, W. Macroscopic pin bundle model and its blockage simulations. Energy Convers. Manag. 2015, 91, 93–100. [Google Scholar] [CrossRef]
- Koloszar, L.; Buckingham, S.; Planquart, P.; Keijers, S. MyrrhaFoam: A CFD model for the study of the thermal hydraulic behavior of MYRRHA. Nucl. Eng. Des. 2017, 312, 256–265. [Google Scholar] [CrossRef]
- Sugrue, R.; Magolan, B.; Lubchenko, N.; Baglietto, E. Assessment of a simplified set of momentum closure relations for low volume fraction regimes in STAR-CCM plus and OpenFOAM. Ann. Nucl. Energy 2017, 110, 79–87. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Zhu, X.; Sui, P.C.; Djilali, N. Three-dimensional numerical simulations of water droplet dynamics in a PEMFC gas channel. J. Power Sources 2008, 181, 101–115. [Google Scholar] [CrossRef]
- Chen, L.; Li, Y.G. A numerical method for two-phase flows with an interface. Environ. Model. Softw. 1998, 13, 247–255. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.P.; Fan, L.S. Discrete-phase simulation of single bubble rise behavior at elevated pressures in a bubble column. Chem. Eng. Sci. 2000, 55, 4597–4609. [Google Scholar] [CrossRef]
- Li, Y.; Yang, G.Q.; Zhang, J.P.; Fan, L.S. Numerical studies of bubble formation dynamics in gas–liquid–solid fluidization at high pressures. Powder Technol. 2001, 116, 246–260. [Google Scholar] [CrossRef]
- Yang, G.Q.; Du, B.; Fan, L.S. Bubble formation and dynamics in gas–liquid–solid fluidization—A review. Chem. Eng. Sci. 2007, 62, 2–27. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Qin, B.; Li, S.H.; Liu, Y.G.; Li, X.; Cui, P.Z.; Wang, Y.L.; Gao, J. Multi-dimensional analysis of turbulence models for immiscible liquid-liquid mixing in stirred tank based on numerical simulation. Sep. Sci. Technol. 2021, 56, 411–424. [Google Scholar] [CrossRef]
- Jeong, Y.S.; Kim, J.Y.; Bang, I.C. Enhanced heat transfer and reduced pressure loss with U-pattern of helical wire spacer arrangement for liquid metal cooled-fast reactor fuel assembly. Ann. Nucl. Energy 2020, 135, 106971. [Google Scholar] [CrossRef]
- Chen, R.; Tian, M.; Chen, S.; Tian, W.; Su, G.H.; Qiu, S. Three dimensional thermal hydraulic characteristic analysis of reactor core based on porous media method. Ann. Nucl. Energy 2017, 104, 178–190. [Google Scholar] [CrossRef]
- Ali, M.Y.; Wu, G.W.; Liu, S.Y.; Jin, M.; Zhao, Z.M.; Wu, Y.C. CFD Analysis of Thermal Stratification under PLOFA transient in CLEAR-S. Prog. Nucl. Energy 2019, 115, 21–29. [Google Scholar] [CrossRef]
- Niu, F.L.; Zhuo, W.Q.; Cai, J.C.; Su, X.W.; Hu, Y.Q.; Zhao, Y.G.; Ma, T.F.; Wang, Y.Y.; Yu, Y. The studies of mixing and thermal stratification in SMR containments. Nucl. Eng. Des. 2016, 298, 14–24. [Google Scholar] [CrossRef]
- Xia, Z.H.; Lu, D.G.; Tang, J.X.; Liu, Y.Z.; Yang, J.; Feng, L.; Ye, S.S.; Guo, Z.X.; Zhang, Y.H. Three-dimensional thermal hydraulic transient calculation of coupled cold and hot sodium pools under a loss of feedwater accident in the China experimental fast reactor. Ann. Nucl. Energy 2020, 139. [Google Scholar] [CrossRef]
- Waite, B.M.; Prasser, H.M.; Podowski, M.Z. Computational and experimental analysis of gas/liquid two-phase flow in rod bundles with mixing-vane spacer grids. Nucl. Eng. Des. 2020, 360. [Google Scholar] [CrossRef]
- Zeng, Q.Y.; Cai, J.J. Three-dimension simulation of bubble behavior under nonlinear oscillation. Ann. Nucl. Energy 2014, 63, 680–690. [Google Scholar] [CrossRef]
- OCDE; AEN. Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermalhydraulics and Technologies; OECD Publishing: Paris, France, 2015. [Google Scholar]
- Wagner, W.; Cooper, J.R.; Dittmann, A.; Kijima, J.; Kretzschmar, H.J.; Kruse, A.; Mares, R.; Oguchi, K.; Sato, H.; Stocker, I.; et al. The IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam. J. Eng. Gas. Turb. Power 2000, 122, 150–182. [Google Scholar] [CrossRef]
- Zeng-fang, G.; Tao, Z.; Yun-qing, B.; Yong, S. Thermal-hydraulic Analysis in Wire-wrapped Fuel Assembly for China Lead-based Research Reactor. At. Energy Sci. Technol. 2015, 49. [Google Scholar] [CrossRef]
Reactor | Coolant | Country |
---|---|---|
SVBR-100 | LBE | Russia |
SSTAR | Pb | American |
LSFR | LBE | Japan |
CiADS | LBE | China |
CLEAR-SR | LBE | China |
MYRRHA | LBE | Belgium |
SEALER | Pb | Sweden |
Properties | Liquid LBE | Liquid Pb |
---|---|---|
Case Number | Coolant | Heating Boundary Condition |
---|---|---|
Case 1 | LBE | Fixed Heat Flux value |
Case 2 | LBE | Fixed Wall Temperature |
Case 3 | Pb | Fixed Heat Flux value |
Case 4 | Pb | Fixed Wall Temperature |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.-S.; Liu, B.; Yang, S.; Xi, B.; Gu, L.; Li, J.-Y.; Wallenius, J.; Zhang, Y.-P. Analysis of the Accelerator-Driven System Fuel Assembly during the Steam Generator Tube Rupture Accident. Materials 2021, 14, 1818. https://doi.org/10.3390/ma14081818
Wang D-S, Liu B, Yang S, Xi B, Gu L, Li J-Y, Wallenius J, Zhang Y-P. Analysis of the Accelerator-Driven System Fuel Assembly during the Steam Generator Tube Rupture Accident. Materials. 2021; 14(8):1818. https://doi.org/10.3390/ma14081818
Chicago/Turabian StyleWang, Di-Si, Bo Liu, Sheng Yang, Bin Xi, Long Gu, Jin-Yang Li, Janne Wallenius, and You-Peng Zhang. 2021. "Analysis of the Accelerator-Driven System Fuel Assembly during the Steam Generator Tube Rupture Accident" Materials 14, no. 8: 1818. https://doi.org/10.3390/ma14081818
APA StyleWang, D. -S., Liu, B., Yang, S., Xi, B., Gu, L., Li, J. -Y., Wallenius, J., & Zhang, Y. -P. (2021). Analysis of the Accelerator-Driven System Fuel Assembly during the Steam Generator Tube Rupture Accident. Materials, 14(8), 1818. https://doi.org/10.3390/ma14081818