Metastable Materials Accessed under Moderate Pressure Conditions (P ≤ 3.5 GPa) in a Piston-Cylinder Press
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. RNiO3 Perovskites (R = Rare Earths)
3.2. CaCu3Mn4O12
3.3. SeMO3 (M = Mn, Co, Ni)
3.4. Metal Hydrides
3.5. Tl2Mn2O7
3.6. Skutterudites MxCo4Sb12 (M = Alkali, Alkali-Earth, Rare-Earth Elements)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goodenough, J.B.; Kafalas, J.A.; Longo, J.M. Preparative Methods in Solid State Chemistry; Hagenmüller, P., Ed.; Academic Press: New York, NY, USA, 1972. [Google Scholar]
- Demazeau, G. New problems in solid-state chemistry solved by high pressure conditions: An exciting perspective for preparing new materials. Chim. Scr. 1988, 28, 21–24. [Google Scholar] [CrossRef]
- Demazeau, G. High pressure in solid-state chemistry. J. Phys. Condens. Matter 2002, 14, 11031–11035. [Google Scholar] [CrossRef] [Green Version]
- Rodgers, J.A.; Williams, A.J.; Attfield, J.P. High-pressure/High-temperature Synthesis of Transition Metal Oxide Perovskites. Zeitschrift für Naturforschung B 2006, 61, 1515–1526. [Google Scholar] [CrossRef] [Green Version]
- Fauth, F.; Boer, R.; Gil-Ortiz, F.; Popescu, C.; Vallcorba, O.; Peral, I.; Fullà, D.; Benach, J.; Juanhuix, J. The crystallography stations at the Alba synchrotron. Eur. Phys. J. Plus 2015, 130, 160. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Phys. Condens. Matter 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Torrance, J.; Lacorre, P.; Nazzal, A.; Ansaldo, E.; Niedermayer, C. Systematic study of insulator-metal transitions in perovskites RNiO3 (R = Pr, Nd, Sm, Eu) due to closing of charge-transfer gap. Phys. Rev. B 1992, 45, 8209–8212. [Google Scholar] [CrossRef] [Green Version]
- Inaguma, Y.; Yoshida, M.; Tsuchiya, T.; Aimi, A.; Tanaka, K.; Katsumata, T.; Mori, D. High-pressure synthesis of novel lithium niobate-type oxides. J. Phys. Conf. Ser. 2010, 215, 012131. [Google Scholar] [CrossRef]
- Ishiwata, S.; Azuma, M.; Takano, M.; Nishibori, E.; Takata, M.; Sakata, M.; Kato, K. High pressure synthesis, crystal structure and physical properties of a new Ni(ii) perovskite BiNiO3. J. Mater. Chem. 2002, 12, 3733–3737. [Google Scholar] [CrossRef]
- Inaguma, Y.; Katsumata, T. High Pressure Synthesis, Lattice Distortion, and Dielectric Properties of a Perovskite Bi(Ni1/2Ti1/2)O3. Ferroelectrics 2003, 286, 111–117. [Google Scholar] [CrossRef]
- Demazeau, G.; Marbeuf, A.; Pouchard, M.; Hagenmuller, P. Sur une série de composés oxygènes du nickel trivalent derivés de la perovskite. J. Solid State Chem. 1971, 3, 582–589. [Google Scholar] [CrossRef]
- Alonso, J.A.; Martínez-Lope, M.J.; Casais, M.T.; Aranda, M.A.G.; Fernández-Díaz, M.T. Metal−Insulator Transitions, Structural and Microstructural Evolution of RNiO3 (R = Sm, Eu, Gd, Dy, Ho, Y) Perovskites: Evidence for Room-Temperature Charge Disproportionation in Monoclinic HoNiO3 and YNiO3. J. Am. Chem. Soc. 1999, 121, 4754–4762. [Google Scholar] [CrossRef]
- Alonso, J.A.; García-Muñoz, J.L.; Fernández-Díaz, M.T.; Aranda, M.A.G.; Martínez-Lope, M.J.; Casais, M.T. Charge Disproportionation in RNiO3 Perovskites: Simultaneous Metal-Insulator and Structural Transition in YNiO3. Phys. Rev. Lett. 1999, 82, 3871–3874. [Google Scholar] [CrossRef]
- Alonso, J.A.; Martínez-Lope, M.J.; Casais, M.T.; García-Muñoz, J.L.; Fernández-Díaz, M.T. Room-temperature monoclinic distortion due to charge disproportionation in RNiO3 perovskites with small rare-earth cations (R = Ho, Y, Er, Tm, Yb, and Lu): A neutron diffraction study. Phys. Rev. B 2000, 61, 1756–1763. [Google Scholar] [CrossRef] [Green Version]
- Alonso, J.A.; Martínez-Lope, M.J.; Casais, M.T.; García-Muñoz, J.L.; Fernández-Díaz, M.T.; Aranda, M.A.G. High-temperature structural evolution of RNiO3 (R = Ho, Y, Er, Lu) perovskites: Charge disproportionation and electronic localization. Phys. Rev. B 2001, 64, 094102. [Google Scholar] [CrossRef]
- Mazin, I.I.; Khomskii, D.I.; Lengsdorf, R.; Alonso, J.A.; Marshall, W.G.; Ibberson, R.M.; Podlesnyak, A.; Martínez-Lope, M.J.; Abd-Elmeguid, M.M. Charge Ordering as Alternative to Jahn-Teller Distortion. Phys. Rev. Lett. 2007, 98, 176406. [Google Scholar] [CrossRef]
- Presniakov, I.; Baranov, A.; Demazeau, G.; Rusakov, V.; Sobolev, A.; Alonso, J.A.; Martínez-Lope, M.J.; Pokholok, K. Evidence through Mössbauer spectroscopy of two different states for 57Fe probe atoms in RNiO3 perovskites with intermediate-size rare earths, R = Sm, Eu, Gd, Dy. J. Phys. Condens. Matter 2007, 19, 036201. [Google Scholar] [CrossRef]
- Caytuero, A.; Micklitz, H.; Abd-Elmeguid, M.M.; Litterst, F.J.; Alonso, J.A.; Baggio-Saitovitch, E.M. Evidence for charge disproportionation in monoclinic EuNiO3 from 57Fe Mössbauer spectroscopy. Phys. Rev. B 2007, 76, 193105. [Google Scholar] [CrossRef]
- Alonso, J.A.; Martínez-Lope, M.J.; Demazeau, G.; Fernández-Díaz, M.T.; Presniakov, I.A.; Rusakov, V.S.; Gubaidulina, T.V.; Sobolev, A.V. On the evolution of the DyNiO3 perovskite across the metal–insulator transition though neutron diffraction and Mössbauer spectroscopy studies. Dalton Trans. 2008, 46, 6584–6592. [Google Scholar] [CrossRef] [PubMed]
- García-Muñoz, J.L.; Aranda, M.A.G.; Alonso, J.A.; Martínez-Lope, M.J. Structure and charge order in the antiferromagnetic band-insulating phase of NdNiO3. Phys. Rev. B 2009, 79, 134432. [Google Scholar] [CrossRef]
- Kumar, D.; Rajeev, K.P.; Alonso, J.A.; Martínez-Lope, M.J. Slow dynamics in hard condensed matter: A case study of the phase separating system NdNiO3. J. Phys. Condens. Matter 2009, 21, 185402. [Google Scholar] [CrossRef]
- Kumar, D.; Rajeev, K.P.; Alonso, J.A.; Martínez-Lope, M.J. Evidence of kinetically arrested supercooled phases in the perovskite oxide NdNiO3. J. Phys. Condens. Matter 2009, 21, 485402. [Google Scholar] [CrossRef]
- Muñoz, A.; Alonso, J.A.; Martínez-Lope, M.J.; Fernández-Díaz, M.T. On the magnetic structure of DyNiO3. J. Solid State Chem. 2009, 182, 1982–1989. [Google Scholar] [CrossRef]
- Staub, U.; García-Fernández, M.; Mulders, A.M.; Bodenthin, Y.; Martínez-Lope, M.J.; Alonso, J.A. Soft x-ray resonant magnetic powder diffraction on PrNiO3. J. Phys. Condens. Matter 2007, 19, 092201. [Google Scholar] [CrossRef]
- Medarde, M.; Dallera, C.; Grioni, M.; Delley, B.; Vernay, F.; Mesot, J.; Sikora, M.; Alonso, J.A.; Martínez-Lope, M.J. Charge disproportionation in RNiO3 perovskites (R = rare earth) from high-resolution x-ray absorption spectroscopy. Phys. Rev. B 2009, 80, 245105. [Google Scholar] [CrossRef] [Green Version]
- Bodenthin, Y.; Staub, U.; Piamonteze, C.; García-Fernández, M.; Martínez-Lope, M.J.; Alonso, J.A. Magnetic and electronic properties of RNiO3 (R = Pr, Nd, Eu, Ho and Y) perovskites studied by resonant soft x-ray magnetic powder diffraction. J. Phys. Condens. Matter 2011, 23, 036002. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Benítez, J.; Martínez-Lope, M.J.; Alonso, J.A.; García-Muñoz, J.L. Magnetic and structural features of the NdNi1−xMnxO3 perovskite series investigated by neutron diffraction. J. Phys. Condens. Matter 2011, 23, 226001. [Google Scholar] [CrossRef]
- Alonso, J.A.; Martínez-Lope, M.J.; Presniakov, I.A.; Sobolev, A.V.; Rusakov, V.S.; Gapochka, A.M.; Demazeau, G.; Fernández-Díaz, M.T. Charge disproportionation in RNiO3 (R = Tm, Yb) perovskites observed in situ by neutron diffraction and 57Fe probe Mössbauer spectroscopy. Phys. Rev. B 2013, 87, 184111. [Google Scholar] [CrossRef]
- Ramos, A.Y.; Piamonteze, C.; Tolentino, H.C.N.; Souza-Neto, N.M.; Bunau, O.; Joly, Y.; Grenier, S.; Itié, J.-P.; Massa, N.E.; Alonso, J.A.; et al. Stability of Ni sites across the pressure-induced insulator-to-metal transition in YNiO3. Phys. Rev. B 2012, 85, 045102. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Rajeev, K.P.; Alonso, J.A.; Martínez-Lope, M.J. Spin-canted magnetism and decoupling of charge and spin ordering in NdNiO3. Phys. Rev. B 2013, 88, 014410. [Google Scholar] [CrossRef] [Green Version]
- Serrano-Sánchez, F.; Fauth, F.; Martínez, J.L.; Alonso, J.A. Experimental Observation of Monoclinic Distortion in the Insulating Regime of SmNiO3 by Synchrotron X-ray Diffraction. Inorg. Chem. 2019, 58, 11828–11835. [Google Scholar] [CrossRef]
- Rao, C.N.R.; Raveau, B. Colossal Magnetoresistance and Other Related Properties in 3d Oxides; World Scientific: Singapore, 1998; ISBN 9789810232764. [Google Scholar]
- Zeng, Z.; Greenblatt, M.; Subramanian, M.A.; Croft, M. Large Low-Field Magnetoresistance in Perovskite-type CaCu3Mn4O12 without Double Exchange. Phys. Rev. Lett. 1999, 82, 3164–3167. [Google Scholar] [CrossRef]
- Sánchez-Benítez, J.; Prieto, C.; de Andrés, A.; Alonso, J.A.; Martínez-Lope, M.J.; Casais, M.T. Evidence of two different Mn states in CaCu3Mn4O12 derivatives with colossal magnetoresistance. Phys. Rev. B 2004, 70, 024419. [Google Scholar] [CrossRef]
- Chenavas, J.; Joubert, J.C.; Marezio, M.; Bochu, B. The synthesis and crystal structure of CaCu3Mn4O12: A new ferromagnetic-perovskite-like compound. J. Solid State Chem. 1975, 14, 25–32. [Google Scholar] [CrossRef]
- Sánchez-Benítez, J.; Alonso, J.A.; Martínez-Lope, M.J.; Casais, M.T.; Martínez, J.L.; de Andrés, A.; Fernández-Díaz, M.T. Preparation, Crystal and Magnetic Structure, and Magnetotransport Properties of the Double Perovskite Ca Cu2.5Mn4.5O12. Chem. Mater. 2003, 15, 2193–2200. [Google Scholar] [CrossRef]
- Sánchez-Benítez, J.; Alonso, J.A.; Falcón, H.; Martínez-Lope, M.J.; De Andrés, A.; Fernández-Díaz, M.T. Preparation under high pressures and neutron diffraction study of new ferromagnetic RCu3Mn4O12 (R = Pr, Sm, Eu, Gd, Dy, Ho, Tm, Yb) perovskites. J. Phys. Condens. Matter 2005, 17, S3063–S3068. [Google Scholar] [CrossRef]
- Sánchez-Benítez, J.; Martínez-Lope, M.J.; Alonso, J.A. Preparation at moderate pressures, crystal and magnetic structure and magnetotransport of the ferrimagnetic CeCu3Mn4O12 perovskite. J. Appl. Phys. 2010, 107, 103904. [Google Scholar] [CrossRef]
- Sánchez-Benítez, J.; Martínez-Lope, M.J.; Alonso, J.A. Magnetism, Magnetotransport and Magnetic Structure of ThCu3Mn4O12, Prepared at Moderate Pressures. Zeitschrift für Naturforschung B 2008, 63, 655–660. [Google Scholar] [CrossRef]
- Alonso, J.A.; Sánchez-Benítez, J.; De Andrés, A.; Martínez-Lope, M.J.; Casais, M.T.; Martínez, J.L. Enhanced magnetoresistance in the complex perovskite LaCu3Mn4O12. Appl. Phys. Lett. 2003, 83, 2623–2625. [Google Scholar] [CrossRef]
- Jahn-Teller Distortions. (2020, August 15). Available online: https://chem.libretexts.org/@go/page/519 (accessed on 8 April 2021).
- Sánchez-Benítez, J.; Alonso, J.A.; de Andrés, A.; Martínez-Lope, M.J.; Martínez, J.L.; Muñoz, A. Peculiar Magnetic Behavior of the ThCu3Mn4O12 Complex Perovskite. Chem. Mater. 2005, 17, 5070–5076. [Google Scholar] [CrossRef]
- Sánchez-Benítez, J.; Alonso, J.A.; Martínez-Lope, M.J.; de Andrés, A.; Fernández-Díaz, M.T. Enhancement of the Curie Temperature along the Perovskite Series RCu3Mn4O12 Driven by Chemical Pressure of R3+ Cations (R = Rare Earths). Inorg. Chem. 2010, 49, 5679–5685. [Google Scholar] [CrossRef]
- de la Calle, C.; Sánchez-Benítez, J.; Barbanson, F.; Nemes, N.; Fernández-Díaz, M.T.; Alonso, J.A. Transition from Pauli-paramagnetism to ferromagnetism in CaCu3(Ru4−xMnx)O12 (0 ≤ x ≤ 3) perovskites. J. Appl. Phys. 2011, 109, 123914. [Google Scholar] [CrossRef]
- Subramanian, M.A.; Ramirez, A.P.; Marshall, W.J. Structural Tuning of Ferromagnetism in a 3D Cuprate Perovskite. Phys. Rev. Lett. 1999, 82, 1558–1561. [Google Scholar] [CrossRef]
- Kimura, T.; Kawamoto, S.; Yamada, I.; Azuma, M.; Takano, M.; Tokura, Y. Magnetocapacitance effect in multiferroic BiMnO3. Phys. Rev. B 2003, 67, 180401. [Google Scholar] [CrossRef]
- Belik, A.A.; Yokosawa, T.; Kimoto, K.; Matsui, Y.; Takayama-Muromachi, E. High-Pressure Synthesis and Properties of Solid Solutions between BiMnO3 and BiScO3. Chem. Mater. 2007, 19, 1679–1689. [Google Scholar] [CrossRef]
- Toulemonde, P.; Darie, C.; Goujon, C.; Legendre, M.; Mendonca, T.; Álvarez-Murga, M.; Simonet, V.; Bordet, P.; Bouvier, P.; Kreisel, J.; et al. Single crystal growth of BiMnO3 under high pressure–high temperature. High Press. Res. 2009, 29, 600–604. [Google Scholar] [CrossRef]
- Montanari, E.; Righi, L.; Calestani, G.; Migliori, A.; Gilioli, E.; Bolzoni, F. Room Temperature Polymorphism in Metastable BiMnO3 Prepared by High-Pressure Synthesis. Chem. Mater. 2005, 17, 1765–1773. [Google Scholar] [CrossRef]
- Goodenough, J.B. Magnetism and the Chemical Bond; Interscience-Wiley: New York, NY, USA, 1963. [Google Scholar]
- Muñoz, A.; Alonso, J.A.; Martínez-Lope, M.J.; Morán, E.; Escamilla, R. Synthesis and study of the crystallographic and magnetic structure of SeCoO3. Phys. Rev. B 2006, 73, 104442. [Google Scholar] [CrossRef]
- Muñoz, A.; Alonso, J.A.; Martínez-Lope, M.J.; Falcón, H.; García-Hernández, M.; Morán, E. High-pressure synthesis and study of the crystal and magnetic structure of the distorted SeNiO3 and SeMnO3 perovskites. Dalton Trans. 2006, 41, 4936–4943. [Google Scholar] [CrossRef]
- Martínez-Lope, M.J.; Retuerto, M.; Alonso, J.A.; Sánchez-Benítez, J.; Fernández-Díaz, M.T. High-pressure synthesis and neutron diffraction investigation of the crystallographic and magnetic structure of TeNiO3 perovskite. Dalton Trans. 2011, 40, 4599. [Google Scholar] [CrossRef]
- Ridley, C.J.; Knight, K.S.; Wilson, C.W.; Smith, R.I.; Bull, C.L. Structure and physical properties of SeCo1−xMnxO3. J. Phys. Condens. Matter 2019, 31, 395402. [Google Scholar] [CrossRef] [PubMed]
- Cabuk, S. Magnetic, electronic and mechanical properties of SeXO3 (X = Mn, Ni) with the LSDA + U framework. J. Alloys Compd. 2021, 850, 156674. [Google Scholar] [CrossRef]
- Liang, G.; Huot, J.; Schulz, R. Hydrogen storage properties of the mechanically alloyed LaNi5-based materials. J. Alloys Compd. 2001, 320, 133–139. [Google Scholar] [CrossRef]
- Retuerto, M.; Sánchez-Benítez, J.; Alonso, J.A.; Leardini, F.; Ares, J.R.; Fernández, J.F.; Sánchez, C. Deuteration properties of CaNi5−xCux system. J. Power Sources 2011, 196, 4342–4346. [Google Scholar] [CrossRef]
- Martínez-Coronado, R.; Retuerto, M.; Torres, B.; Martínez-Lope, M.J.; Fernández-Díaz, M.T.; Alonso, J.A. High-pressure synthesis, crystal structure and cyclability of the Mg2NiH4 hydride. Int. J. Hydrogen Energy 2013, 38, 5738–5745. [Google Scholar] [CrossRef]
- Martínez-Coronado, R.; Sánchez-Benítez, J.; Retuerto, M.; Fernández-Díaz, M.T.; Alonso, J.A. High-pressure synthesis of Na1−xLixMgH3 perovskite hydrides. J. Alloys Compd. 2012, 522, 101–105. [Google Scholar] [CrossRef]
- Andrada-Chacón, A.; Alonso, J.A.; Pomjakushin, V.; Sánchez-Benítez, J. High-pressure synthesis and structural characterization of Na1-K MgH3 perovskite hydrides. J. Alloys Compd. 2017, 729, 914–920. [Google Scholar] [CrossRef]
- Shimakawa, Y.; Kubo, Y.; Manako, T. Giant magnetoresistance in Ti2Mn2O7 with the pyrochlore structure. Nature 1996, 379, 53–55. [Google Scholar] [CrossRef]
- Subramanian, M.A.; Toby, B.H.; Ramirez, A.P.; Marshall, W.J.; Sleight, A.W.; Kwei, G.H. Colossal Magnetoresistance Without Mn3+/Mn4+ Double Exchange in the Stoichiometric Pyrochlore Tl2Mn2O7. Science 1996, 273, 81–84. [Google Scholar] [CrossRef] [Green Version]
- Shimakawa, Y.; Kubo, Y.; Hamada, N.; Jorgensen, J.D.; Hu, Z.; Short, S.; Nohara, M.; Takagi, H. Crystal structure, magnetic and transport properties, and electronic band structure of A2Mn2O7 pyrochlores (A = Y, In, Lu and Tl). Phys. Rev. B 1999, 59, 1249–1254. [Google Scholar] [CrossRef]
- Núñez-Regueiro, M.D.; Lacroix, C. Origin and pressure dependence of ferromagnetism in A2Mn2O7 pyrochlores (A = Y, In, Lu and Tl). Phys. Rev. B 2000, 63, 014417. [Google Scholar] [CrossRef] [Green Version]
- Alonso, J.A.; Martínez, J.L.; Martínez-Lope, M.J.; Casais, M.T.; Fernández-Díaz, M.T. Room Temperature Magnetoresistance and Cluster-Glass Behavior in the Tl2−xBixMn2O7 (0 ≤ x ≤ 0.5) pyrochlore series. Phys. Rev. Lett. 1999, 82, 189–192. [Google Scholar] [CrossRef]
- Alonso, J.A.; Velasco, P.; Martínez-Lope, M.J.; Casais, M.T.; Martínez, J.L.; Fernández-Díaz, M.T.; de Paoli, J.M. Unprecedented magnetoresistance in Cd-substituted Tl2Mn2O7 pyrochlores. Appl. Phys. Lett. 2000, 76, 3274–3276. [Google Scholar] [CrossRef] [Green Version]
- Alonso, J.A.; Martínez-Lope, M.J.; Casais, M.T.; Velasco, P.; Martínez, J.L.; Fernández-Díaz, M.T.; de Paoli, J.M. Enhancement of ferromagnetic coupling in Sb-substituted Tl2Mn2O7 pyrochlores. Phys. Rev. B 1999, 60, R15024–R15027. [Google Scholar] [CrossRef]
- Alonso, J.A.; Martínez-Lope, M.J.; Casais, M.T.; Martínez, J.L.; Fernández-Díaz, M.T. Large Increase in Magnetoresistance and Cluster-Glass Behavior in Defect Tl2−xMn2O7−y Pyrochlores. Chem. Mater. 2000, 12, 1127–1133. [Google Scholar] [CrossRef]
- Velasco, P.; Alonso, J.A.; Tissen, V.G.; Marshall, W.G.; Casais, M.T.; Martínez-Lope, M.J.; de Andrés, A.; Prieto, C.; Martínez, J.L. Pressure effect in the structure, transport properties, and magnetic interactions of Tl2Mn2O7 pyrochlores derivatives. Phys. Rev. B 2003, 67, 104403. [Google Scholar] [CrossRef]
- Li, J.-F.; Liu, W.-S.; Zhao, L.-D.; Zhou, M. High-performance nanostructured thermoelectric materials. NPG Asia Mater. 2010, 2, 152–158. [Google Scholar] [CrossRef]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef]
- Nolas, G.S.; Morelli, D.T.; Tritt, T.M. SKUTTERUDITES: A Phonon-Glass-Electron Crystal Approach to Advanced Thermoelectric Energy Conversion Applications. Annu. Rev. Mater. Sci. 1999, 29, 89–116. [Google Scholar] [CrossRef]
- Serrano, F.; Gharsallah, M.; Cherif, W.; Martínez, J.L.; Cascos, V.; Troncoso, L.; Alonso, J.A. Facile Preparation of State-of-the Art Thermoelectric Materials by High-pressure Synthesis. Mater. Today Proc. 2015, 2, 661–668. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Kang, Y.; Chen, C.; Zhang, L.; Yu, D.; Tian, Y.; Xu, B. High pressure synthesized Ca-filled CoSb3 skutterudites with enhanced thermoelectric properties. J. Alloys Compd. 2016, 677, 61–65. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Yu, F.; Chen, C.; Zhang, Q.; Sun, H.; Zhang, L.; Yu, D.; Tian, Y.; Xu, B. High pressure synthesis and thermoelectric properties of Ba-filled CoSb3 skutterudites. J. Mater. Sci. Mater. Electron. 2017, 28, 8771–8776. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, L.; Liu, Y.; Chen, C.; Li, J.; Yu, D.; He, J.; Liu, Z.; Tian, Y.; Xu, B. Investigation of skutterudite MgyCo4Sb12: High pressure synthesis and thermoelectric properties. J. Appl. Phys. 2013, 113, 113703. [Google Scholar] [CrossRef]
- Slack, G.A. CRC Handbook of Thermoelectrics; Rowe, D.M., Ed.; CRC Press: Boca Raton, FL, USA, 1995; ISBN 0849301467. [Google Scholar]
- Rull-Bravo, M.; Moure, A.; Fernández, J.F.; Martín-González, M. Skutterudites as thermoelectric materials: Revisited. RSC Adv. 2015, 5, 41653–41667. [Google Scholar] [CrossRef]
- Liu, Z.-Y.; Zhu, J.-L.; Tong, X.; Niu, S.; Zhao, W.-Y. A review of CoSb3-based skutterudite thermoelectric materials. J. Adv. Ceram. 2020, 9. [Google Scholar] [CrossRef]
- Prado-Gonjal, J.; Serrano-Sánchez, F.; Nemes, N.M.; Dura, O.J.; Martínez, J.L.; Fernández-Díaz, M.T.; Fauth, F.; Alonso, J.A. Extra-low thermal conductivity in unfilled CoSb3-δskutterudite synthesized under high-pressure conditions. Appl. Phys. Lett. 2017, 111, 1–6. [Google Scholar] [CrossRef]
- Serrano-Sánchez, F.; Prado-Gonjal, J.; Nemes, N.M.; Biskup, N.; Varela, M.; Dura, O.J.; Martínez, J.L.; Fernández-Díaz, M.T.; Fauth, F.; Alonso, J.A. Low thermal conductivity in La-filled cobalt antimonide skutterudites with an inhomogeneous filling factor prepared under high-pressure conditions. J. Mater. Chem. A 2017, 6, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Serrano-Sánchez, F.; Prado-Gonjal, J.; Nemes, N.M.; Biskup, N.; Dura, O.J.; Martínez, J.L.; Fernández-Díaz, M.T.; Fauth, F.; Alonso, J.A. Thermal Conductivity Reduction by Fluctuation of the Filling Fraction in Filled Cobalt Antimonide Skutterudite Thermoelectrics. ACS Appl. Energy Mater. 2018, 1, 6181–6189. [Google Scholar] [CrossRef]
- Gainza, J.; Serrano-Sánchez, F.; Prado-Gonjal, J.; Nemes, N.M.; Biskup, N.; Dura, O.J.; Martínez, J.L.; Fauth, F.; Alonso, J.A. Substantial thermal conductivity reduction in mischmetal skutterudites MmxCo4Sb12 prepared under high-pressure conditions, due to uneven distribution of the rare-earth elements. J. Mater. Chem. C 2019, 7, 4124–4131. [Google Scholar] [CrossRef] [Green Version]
- Takizawa, H.; Okazaki, K.; Uheda, K.; Endo, T.; Nolas, G.S. High Pressure Synthesis of New Filled Skutterudites. MRS Proc. 2001, 691, G2.3. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Zhang, Q.; Zhang, L.; Yu, D.; Xu, B.; Tian, Y. High Pressure Synthesis of p-Type CeyFe4−xCoxSb12 Skutterudites. Materials 2016, 9, 257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, P.; Sun, H.; Yu, F.; Wang, B.; Zhao, H.; Wang, D.; Yu, D.; Tian, Y.; Xu, B. Thermoelectric performance of p-type CaFe1.3Co2.7Sb12 skutterudites from high pressure synthesis. J. Alloys Compd. 2021, 851, 156928. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, B.; Wang, L.-M.; Yu, D.; Yang, J.; Yu, F.; Liu, Z.; He, J.; Wen, B.; Tian, Y. High-pressure synthesis of phonon-glass electron-crystal featured thermoelectric LixCo4Sb12. Acta Mater. 2012, 60, 1246–1251. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, L.; Li, J.; Yu, F.; Yu, D.; Tian, Y.; Xu, B. Enhanced thermoelectric performance of lanthanum filled CoSb3 synthesized under high pressure. J. Alloys Compd. 2017, 699, 751–755. [Google Scholar] [CrossRef]
- Ren, W.; Geng, H.; Zhang, Z.; Zhang, L. Filling-Fraction Fluctuation Leading to Glasslike Ultralow Thermal Conductivity in Caged Skutterudites. Phys. Rev. Lett. 2017, 118, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Gainza, J.; Serrano-Sánchez, F.; Rodrigues, J.E.; Prado-Gonjal, J.; Nemes, N.M.; Biskup, N.; Dura, O.J.; Martínez, J.L.; Fauth, F.; Alonso, J.A. Unveiling the Correlation between the Crystalline Structure of M-Filled CoSb3 (M = Y, K, Sr) Skutterudites and Their Thermoelectric Transport Properties. Adv. Funct. Mater. 2020, 30, 2001651. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gainza, J.; Serrano-Sánchez, F.; Rodrigues, J.E.F.S.; Nemes, N.M.; Martínez, J.L.; Alonso, J.A. Metastable Materials Accessed under Moderate Pressure Conditions (P ≤ 3.5 GPa) in a Piston-Cylinder Press. Materials 2021, 14, 1946. https://doi.org/10.3390/ma14081946
Gainza J, Serrano-Sánchez F, Rodrigues JEFS, Nemes NM, Martínez JL, Alonso JA. Metastable Materials Accessed under Moderate Pressure Conditions (P ≤ 3.5 GPa) in a Piston-Cylinder Press. Materials. 2021; 14(8):1946. https://doi.org/10.3390/ma14081946
Chicago/Turabian StyleGainza, Javier, Federico Serrano-Sánchez, João Elias F. S. Rodrigues, Norbert Marcel Nemes, José Luis Martínez, and José Antonio Alonso. 2021. "Metastable Materials Accessed under Moderate Pressure Conditions (P ≤ 3.5 GPa) in a Piston-Cylinder Press" Materials 14, no. 8: 1946. https://doi.org/10.3390/ma14081946
APA StyleGainza, J., Serrano-Sánchez, F., Rodrigues, J. E. F. S., Nemes, N. M., Martínez, J. L., & Alonso, J. A. (2021). Metastable Materials Accessed under Moderate Pressure Conditions (P ≤ 3.5 GPa) in a Piston-Cylinder Press. Materials, 14(8), 1946. https://doi.org/10.3390/ma14081946