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1. Simulation Conditions for Optimization

We use Jmat-Pro (version 7) and Thermo-Calc software (2019a) for simulations, so 

we some assumptions for these calculations. Thermocalc is working on Gibbs’s free en-

ergy models [1] for equilibrium conditions. For mechanical calculations related to SA508 

analysis, it was assumed at γ-FCC, grain size is 10–15 µm, and calculations were per-

formed at 650 K temperature. For stress-strain calculations, the strain rate was assumed 

to be 0.1 at 650 K temperature. 

Figure S1. Jmat Pro calculation for SA508 grade steel for RPV (a) Continuous Cooling Transfor-

mation (CCT) for SA508 (b) Isothermal transformation (TTT) for SA508 steel. 

Creep is reflected to be a temperature-dependent process and satisfies the power-law 

equation [2]. 

T is the temperature, σ is significant stress, E is the Modulus, and A is a material-depend-

ent constant; however, R, Q, and n are gas constant, activation energy, and stress expo-

nent. R, T, and A are constants or known, so only Q, n, E, and σ are responsible parameters 

that change the material's steady-state creep rate. 
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Figure S2. Ac3(ferrite to Austenite transition temperature) and Ac4(Austinite to Ferrite transition temperature) tempera-

ture calculations (a) FCC and BCC for MS1 samples; (b) FCC and BCC for MS2 samples; (c) FCC and BCC for MS3 samples. 

Figure S3. Martensite temperature start (Ms), Ac3 and Ac4 temperatures w.r.t (a) MS1 (changing Carbon contents); (b) MS2 

(changing Mangenese contents); (c) MS3 (changing Silicon contents). 
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Figure S4. Composition of phases w.r.t elements (a) MC_ETA; (b) M3C2;(c) M7C3; (d)Cementite; (e) M23C6; (f) G-phase. 

Figure S5. Site fractions of phases w.r.t elements (a) MC_ETA, (b) M3C2, (c) M7C3, (d)Cementite, (e) M23C6, (f) G-

phase. 
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Figure S6. (a) Volume fraction Austenite and pearlite regarding Carbon; (b) Volume fraction Austenite and pearlite re-

garding Mn; (c) Volume fraction Austenite and pearlite regarding Silicon. 

Figure S7. Stress-strain calculation for SA508 (a); Silicon, (b); Manganese; (c) Carbon. 

2. Fatigue Equations

Fatigue is an effect of permanent microplastic deformation when a material is ex-

posed to cyclic loading. This often occurs together with thermal and/or corrosive attack 

owing to the presence of oxygen and hydrogen, causing a phenomenon known as stress 

corrosion cracking [3]. 
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In this equation⁡∆𝜖,⁡𝜎𝑓
′⁡,𝜖𝑓

′ , E, and 2N are strain amplitude, fracture stress, fracture

strain, Young`s Modulus and number of cycles respectively, where b(−0.1) and c(−0.9) are 

user defined constants [4]. 
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Figure S8. Scheil solidification diagram for the SUS304 composition and their effect on solidifications. 
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