Study on Corrosion Mechanism of Different Concentrations of Na2SO4 Solution on Early-Age Cast-In-Situ Concrete
Abstract
:1. Introduction
2. Experimental Program
2.1. Raw Materials and Sample Preparation
2.2. Compressive Strength
2.3. Dynamic Modulus of Elasticity
2.4. Heat of Hydration
2.5. X-Ray Computed Tomography
2.6. SEM, EDS, and XRD
2.7. Thermal Analysis
3. Results
3.1. Compressive Strength and Dynamic Modulus of Elasticity
3.1.1. Compressive Strength
3.1.2. Dynamic Modulus of Elasticity
3.2. Heat of Hydration
3.3. Microstructure Analyses
3.3.1. XRD, SEM, and EDS Results
3.3.2. Thermal Analysis
3.3.3. X-Ray Computed Tomography Results
4. Discussion
4.1. Sodium Sulfate
4.2. Mechanical Property
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bulatovic, V.; Melesev, M.; Radeka, M.; Radonjanin, V.; Lukic, I. Evaluation of sulfate resistance of concrete with recycled and natural aggregates. Constr. Build. Mater. 2017, 152, 614–631. [Google Scholar] [CrossRef]
- Xingang, Q.; Xiaoxuan, M.; Xiuwu, S. Experimental study on corrosion law of reinforced concrete in coastal salt soil area. Build. Sci. 2001, 17, 41–43. [Google Scholar]
- Liu, Z.Q.; Zhang, F.Y.; Deng, D.H.; Xie, Y.Y.; Long, G.C.; Tang, X.G. Physical sulfate attack on concrete lining—A field case analysis. Case Stud. Constr. Mater. 2017, 6, 206–212. [Google Scholar] [CrossRef]
- Aziz, M.A.E.; Aleem, S.A.E.; Heikal, M.; Didamony, H.E. Hydration and durability of sulphate-resisting and slag cement blends in Caron’s Lake water. Cem. Concr. Res. 2005, 35, 1592–1600. [Google Scholar] [CrossRef]
- Feng, P.; Garboczi, E.J.; Miao, C.; Bullard, J.W. Microstructural origins of cement paste degradation by external sulfate attack. Constr. Build. Mater. 2015, 96, 391–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuquan, J.; Wei, S.; Yunsheng, Z.; Jinyang, J. Damage of concrete in sulfate and chloride solution. J. Chin. Ceram. Soc. 2006, 34, 630–635. (In Chinese) [Google Scholar]
- Shannag, M.J.; Shaia, H.A. Sulfate resistance of high-performance concrete. Cem. Concr. Compos. 2003, 25, 363–369. [Google Scholar] [CrossRef]
- Zhao, G.; Li, J.; Han, F.; Shi, M.; Fan, H. Sulfate-induced degradation of cast-in-situ concrete influenced by magnesium. Constr. Build. Mater. 2019, 199, 194–206. [Google Scholar] [CrossRef]
- Santhanam, M.; Cohen, M.D.; Olek, J. Modeling the effects of solution temperature and concentration during sulfate attack on cement mortars. Cem. Concr. Res. 2002, 32, 585–592. [Google Scholar] [CrossRef]
- Sotiriadis, K.; Mroz, R. Simulation of thaumasite sulfate attack on portland cement mixtures using synthesized cement phases. J. Mater. Civ. Eng. 2019, 31, 176–193. [Google Scholar] [CrossRef]
- Wang, J.H.; Cai, G.; Wu, Q. Basic mechanical behaviour and deterioration mechanism of RC beams under chloride-sulphate environment. Constr. Build. Mater. 2018, 160, 450–461. [Google Scholar] [CrossRef]
- Neville, A. The confused world of sulfate attack on concrete. Cem. Concr. Res. 2004, 34, 1275–1296. [Google Scholar] [CrossRef]
- Güneyisi, E.; Gesoglu, M.; Mermerdas, K. Strength deterioration of plain and metakaolin concretes in aggressive sulfate environments. J. Mater. Civ. Eng. 2010, 22, 403–407. [Google Scholar] [CrossRef]
- Oliveira, I.; Cavalaro, S.H.; Aguado, A. New unreacted-core model to predict pyrrhotite oxidation in concrete dams. J. Mater. Civ. Eng. 2012, 25, 372–381. [Google Scholar] [CrossRef]
- Shi, X.; Xie, N.; Fortune, K.; Gong, J. Durability of steel reinforced concrete in chloride environments: An overview. Constr. Build. Mater. 2012, 30, 125–138. [Google Scholar] [CrossRef]
- Idiart, A.E.; López, C.M.; Carol, I. Chemo-mechanical analysis of concrete cracking and degradation due to external sulfate attack: A meso-scale model. Cem. Concr. Comp. 2011, 33, 411–423. [Google Scholar] [CrossRef]
- Yu, C.; Sun, W.; Scrivener, K.L. Mechanism of expansion of mortars immersed in sodium sulfate solutions. Cem. Concr. Res. 2013, 43, 105–111. [Google Scholar] [CrossRef]
- Bary, B.; Leterrier, N.; Deville, E.; Le Bescop, P. Coupled chemo-transport-mechanical modelling and numerical simulation of external sulfate attack in mortar. Cem. Concr. Comp. 2014, 49, 70–83. [Google Scholar] [CrossRef]
- Mielenz, R.C.; Marusin, S.L.; Hime, W.G.; Jugovic, Z.T. Investigation of prestressed concrete railway tie distress. Concr. Int. 1995, 17, 62–68. [Google Scholar]
- Irassar, E.F. A discussion of the paper “internal and external sources of sulfate ions in Portland cement mortar: Two types of chemical attack,” by C. Ouyang, A. Nanni and W.F. Chang. Cem. Concr. Res. 1989, 19, 662–664. [Google Scholar] [CrossRef]
- Fu, Y.; Ding, J.; Beaudoin, J.J. Expansion of Portland cement mortar due to internal sulfate attack. Cem. Concr. Res. 1997, 27, 1299–1306. [Google Scholar] [CrossRef]
- Oliveira, I.; Cavalaro, S.H.P.; Aguado, A. New kinetic model to quantify the internal sulfate attack in concrete. Cem. Concr. Res. 2013, 43, 95–104. [Google Scholar] [CrossRef]
- Tian, Y.; Yan, X.; Zhang, M.; Lu, D.; Yang, T.; Wang, Z.; Li, W. Internal transport and corrosion behaviors of sulfate corrosion media carried by recycled aggregate in concrete. Constr. Build. Mater. 2020, 260, 120480. [Google Scholar] [CrossRef]
- Chen, W.; Huang, B.; Yuan, Y.; Deng, M. Deterioration Process of Concrete Exposed to Internal Sulfate Attack. Materials 2020, 13, 1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GB175-2007. Common Portland Cements; China National Standardization Management Committee: Beijing, China, 2007. (In Chinese) [Google Scholar]
- ASTM. Standard Specification for Portland Cement; ASTM Standard C150-07; American Society for Testing and Materials: West Conshohocken, PA, USA, 2007. [Google Scholar]
- GB/T50082-2009. Standard for Long-Term Performance and Durability Test Methods of Ordinary Concrete; Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2009. (In Chinese)
- ASTM C1679-2007. Standard Practice for Measuring Hydration Kinetics of Hydraulic Cementitious Mixtures Using Isothermal Calorimetry; American Society for Testing and Materials Standards: Philadelphia, PA, USA, 2007. [Google Scholar]
- Baoying, Y.; Jiayu, X.; Hongao, L. Hydration behavior of super sulfate cement with different content of microbeads. Bull. Chin. Ceram. Soc. 2014, 22, 1394–1397. [Google Scholar]
- Ouellet, S.; Bussiere, B.; Mbonimpa, M.; Benzaazoua, M.; Aubertin, M. Reactivity and mineralogical evolution of an underground mine sulphidic cemented paste backfill. Miner. Eng. 2006, 19, 407–419. [Google Scholar] [CrossRef]
- Campos, A.; Lopez, C.M.; Aguado, A. Diffusion-reaction model for the internal sulfate attack in concrete. Constr. Build. Mater. 2016, 102, 531–540. [Google Scholar] [CrossRef] [Green Version]
- Geng, J.; Easterbrook, D.; Li, L.Y.; Mo, L.W. The stability of bound chlorides in cement paste with sulfate attack. Cem. Concr. Res. 2015, 68, 211–222. [Google Scholar] [CrossRef]
- Wang, J.; Niu, D.; Wang, Y.; Wang, B. Durability performance of brine-exposed shotcrete in salt lake environment. Constr. Build. Mater. 2018, 188, 520–536. [Google Scholar] [CrossRef]
- Glasser, F.P.; Marchand, J.; Samson, E. Durability of concrete-degradation phenomena involving detrimental chemical reactions. Cem. Concr. Res. 2008, 38, 226–246. [Google Scholar] [CrossRef]
- Petkova, V.; Stoyanov, V.; Pelovski, Y. TG–DTG–DTA in studying white self-compacting cement mortars. Therm. Anal. Calorim. 2012, 109, 797–806. [Google Scholar] [CrossRef]
- Shi, Z.; Geiker, M.R.; Lothenbach, B.; de Weerdt, K.; Garzón, S.F.; Enemark-Rasmussen, K.; Skibsted, J. Friedel’s salt profiles from thermogravimetric analysis and thermodynamic modelling of Portland cement-based mortars exposed to sodium chloride solution. Cem. Concr. Compos. 2017, 78, 73–83. [Google Scholar] [CrossRef]
- De-Weerdt, K.; Justnes, H. The effect of sea water on the phase assemblage of hydrated cement paste. Cem. Concr. Compos. 2015, 55, 215–222. [Google Scholar] [CrossRef]
- Zhu, Q.; Jiang, L.; Chen, Y.; Xu, J.; Mo, L. Effect of chloride salt type on chloride binding behavior of concrete. Constr. Build. Mater. 2012, 55, 512–517. [Google Scholar] [CrossRef]
- Najjar, M.F.; Nehdi, M.L.; Soliman, A.M.; Azabi, T.M. Damage mechanisms of two-stage concrete exposed to chemical and physical sulfate attack. Constr. Build. Mater. 2017, 137, 141–152. [Google Scholar] [CrossRef]
- Benosman, A.S.; Mouli, M.; Taibi, H.; Belbachir, M.; Senhadji, Y.; Behlouli, I.; Houivet, D. Mineralogical study of polymer-mortar composites with PET polymer by means of spectroscopic analyses. Mater. Sci. Appl. 2012, 3, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Ogirigbo, O.R.; Ukpata, J. Effect of chlorides and curing duration on the hydration and strength development of plain and slag blended cements. Civ. Eng. Res. 2017, 7, 9–16. [Google Scholar]
- Rendell, F.; Jauberthie, R. The deterioration of mortar in sulphate environments. Constr. Build. Mater. 1999, 13, 321–327. [Google Scholar] [CrossRef]
- Xiaolong, Z.; Jun, W.; Yuying, H. The relationship between concrete freeze-thaw durability deterioration and pore structure changes. J. Wuhan Univ. Technol. 2002, 24, 14–17. [Google Scholar]
- Basheer, L.; Kropp, J.; Cleland, D.J. Assessment of the durability of concrete from its permeation properties: A review. Constr. Build. Mater. 2001, 15, 93–103. [Google Scholar] [CrossRef]
- Li, J.P.; Yao, M.B.; Shao, W. Diffusion-reaction model of stochastically mixed sulfate in cast-in-situ piles. Constr. Build. Mater. 2016, 115, 662–668. [Google Scholar] [CrossRef]
- Cefis, N.; Comi, C. Chemo-mechanical modelling of the external sulfate attack in concrete. Cem. Concr. Res. 2017, 93, 57–70. [Google Scholar] [CrossRef]
- Collepardi, M. A state-of-the-art review on delayed ettringite attack on concrete. Cem. Concr. Compos. 2003, 25, 401–407. [Google Scholar] [CrossRef]
- Tsui, N.; Flatt, R.J.; Scherer, G.W. Crystallization damage by sodium sulfate. J. Cult. Herit. 2003, 42, 109–115. [Google Scholar] [CrossRef]
- Bellmann, F.; Möser, B.; Stark, J. Influence of sulfate solution concentration on the formation of gypsum in sulfate resistance test specimen. Cem. Concr. Res. 2006, 36, 358–363. [Google Scholar] [CrossRef]
- Han, T.; Wang, X.; Li, D.; Li, D.; Han, N.; Xing, F. Damage and degradation mechanism for single intermittent cracked mortar specimens under a combination of chemical solutions and dry-wet cycles. Constr. Build. Mater. 2019, 213, 567–581. [Google Scholar] [CrossRef]
Chemical Composition | Al2O3 | SiO2 | SO3 | CL | TiO2 | Fe2O3 | Na2O | K2O | MgO | CaO |
---|---|---|---|---|---|---|---|---|---|---|
Content (%) | 5.08 | 20.1 | 2.02 | 0.028 | 0.341 | 2.94 | 0.700 | 0.350 | 1.50 | 60.7 |
Tested Specimen | Mixed Sulphate | Sodium Sulfate (kg/m3) | Water (kg/m3) | Cement (kg/m3) | Sand (kg/m3) | Gravel (kg/m3) |
---|---|---|---|---|---|---|
Q | 0% Na2SO4 | 0 | 195 | 402.16 | 631 | 1199 |
3N | 3% Na2SO4 | 5.85 | 195 | 402.16 | 631 | 1199 |
5N | 5% Na2SO4 | 9.75 | 195 | 402.16 | 631 | 1199 |
10N | 10% Na2SO4 | 19.5 | 195 | 402.16 | 631 | 1199 |
Designation | Q | 3N | 5N | 10N |
---|---|---|---|---|
Volume Fraction | 0.267656 | 0.224316 | 0.179699 | 0.182005 |
mask volume | 9.738 × 1014 | 9.919 × 1014 | 9.28 × 1014 | 9.737 × 1014 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Hu, Z.; Dai, L.; Wen, X.; Wang, R.; Zhang, D.; Song, X. Study on Corrosion Mechanism of Different Concentrations of Na2SO4 Solution on Early-Age Cast-In-Situ Concrete. Materials 2021, 14, 2018. https://doi.org/10.3390/ma14082018
Zhang F, Hu Z, Dai L, Wen X, Wang R, Zhang D, Song X. Study on Corrosion Mechanism of Different Concentrations of Na2SO4 Solution on Early-Age Cast-In-Situ Concrete. Materials. 2021; 14(8):2018. https://doi.org/10.3390/ma14082018
Chicago/Turabian StyleZhang, Fei, Zhiping Hu, Li Dai, Xin Wen, Rui Wang, Dan Zhang, and Xin Song. 2021. "Study on Corrosion Mechanism of Different Concentrations of Na2SO4 Solution on Early-Age Cast-In-Situ Concrete" Materials 14, no. 8: 2018. https://doi.org/10.3390/ma14082018
APA StyleZhang, F., Hu, Z., Dai, L., Wen, X., Wang, R., Zhang, D., & Song, X. (2021). Study on Corrosion Mechanism of Different Concentrations of Na2SO4 Solution on Early-Age Cast-In-Situ Concrete. Materials, 14(8), 2018. https://doi.org/10.3390/ma14082018