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Thanks to their superior physiochemical properties such as high melting point, excel-
lent mechanical properties, good thermal properties, and great corrosion/erosion resistance,
high temperature ceramic materials (HTCM) find applications in a broad range of demand-
ing areas or industrial sectors, e.g., in metallurgy, glass, cement, aerospace, nuclear, and
power generation, contributing substantially to our sustainable society.

HTCM refers mainly to high melting point oxides, carbides, nitrides, and borides. In
the past two decades, and in particular, in recent years, significant amounts of research
work have been carried out aiming to improve their properties/performance; enhance their
service lives; and to deal with several critical issues related to production cost, sustainabil-
ity, and eco-friendliness. Some of these topical areas include: (1) exploration of new system
of ceramics, (2) low temperature synthesis of high quality ceramic particles, (3) graphene
and/or carbon nanotube reinforced ceramic composites, (4) “green” low-carbon refractory
composites, (5) energy-saving lightweight ceramics, (6) novel catalytic synthesis of ceramic
materials, (7) high/low thermal conductivity ceramics, (8) self-healing ceramic composites,
(9) ultra-high temperature ceramics, (10) additive manufacturing of ceramics, (11) direction-
ally solidified eutectic ceramics, (12) functional ceramic coatings, (13) plasma/cold/flash
sintering, (14) recycling of waste materials, (15) new testing techniques, and (16) ceramic
materials modelling/simulation.

This Special Issue, “High Temperature Ceramic Materials”, released by Materials,
is dedicated to original research articles from the ceramics/refractories communities,
presenting some of the latest work in a few topical areas listed above. In total, 15 good
quality articles have been included [1–15], the interesting points from each of which are
briefly highlighted as follows.

In ceramic engineering, the preparation and use of high-quality raw materials is
critical to fabricating bulk components with guaranteed properties/performance/service
life. Given the drawbacks of conventional synthesis techniques (e.g., the requirement of
high synthesis temperature), it is necessary to develop other novel techniques to synthesise
high-quality ceramic powder at much milder conditions. In response to this, a group from
the UK [2,5] have developed a low temperature molten salt synthesis (MSS) technique
and successfully synthesised fine particles of aluminium boron carbide and MoAlB, two
promising high temperature ceramic materials, at much lower temperatures. Interestingly,
the MSS technique also can be extended or modified to synthesise other types of high
melting point ceramic materials with novel morphologies for both structural and functional
applications. As demonstrated by Liu et al. [7], by combining it with microwave heating,
TiB2 microplatelets can be synthesised at a lowered temperature and/or in a shorter time.
On the other hand, by combining it with chemical vapour deposition, 1-D necklace-like
SiC/SiO2 heterojunctions can be prepared without using any catalyst [14].

Given the importance of shape-forming and subsequent sintering/densification in
the preparation of bulk ceramics, Jin et al. [10] have investigated and compared sinter-
ing/densification behaviours of MgO green samples resulting, respectively, from a con-
ventional air compaction and a novel vacuum compaction. They have found that air
pockets entrapped in the green samples play an important role in their densification and
defect formation.
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Compared with their dense counterparts, porous ceramics exhibit several advantages,
in particular, lower thermal conductivity and lighter weight. In the work from Li et al. [11],
porous SiC ceramics with high flexural strengths at both room and high temperatures
have been successfully prepared via hot pressing assisted with liquid sintering agents.
Additionally, another group [9] have prepared porous α-Sialon ceramics using an improved
unidirectional freeze casting method, in which a gradient porous structure has been formed
by taking advantage of the decreased solidification velocity in the freezing direction.

Apart from monolithic ceramics, several types of ceramic matrix composites for high
temperature applications have been investigated. As illustrated in Ref. [13], carbon con-
tent in an MgO–carbon refractory composite used for steel making shows great effects
on its mechanical strength, oxidation resistance, and slag corrosion resistance. The data
presented could be beneficial to the further development of the so-called “low carbon
carbon-containing refractories” for clean steel making. In another work [1], the promising
effect of ZrC nanoparticle incorporation on the microstructure and mechanical properties
of carbon fibre-reinforced SiC composites at both room and elevated temperatures has
been revealed. On the other hand, by using the newly designed atmosphere-controllable
“coupling thermal–mechanical material test device”, Yue et al. [4] have examined the resid-
ual mechanical strength of an ultra-high temperature ZrB2–SiC–graphite composite under
complex thermal and mechanical conditions, and evaluated its thermal shock resistance.
In addition, by using a high-speed infrared camera to monitor the surface temperature of
a model ceramic matrix composite subjected to different levels of uniaxial tensile stress,
Kim [6] has managed to establish the relationship between the surface temperature change
and the mechanical testing data. This, along with microstructural characterisation, can be
used to identify the failure mode and failure mechanism of a ceramic matrix composite.

During service at elevated temperatures, ceramic materials interact with their service
environments, which dominates their overall performance and service lives. Consider-
ing this, a group from China have investigated interactions between high melting point
oxide-based crucible materials and molten superalloys under vacuum induction melting
conditions [12,15]. The data would be useful for future crucible material selection and
design in this and relevant areas. In addition to these, in another work [8], an innovative
approach based on big data mining methods has been proposed to simulate and predict
the electrical conductivity of a molten slag, an important parameter affecting metallurgical
processes, as well as the degradation of refractory lining materials.

Last, but not least, an additional challenging issue concerning the high temperature
ceramic industry is regarding the recycling of industrial wastes (including its own wastes).
Recovered materials are now commonly regarded as invaluable commodities. In this
regard, Liu et al. [3] have proposed to use the slag from copper and stainless steel making to
fabricate black ceramic tiles, opening up new avenues for the low-cost and environmentally
friendly production of high-quality black ceramic tiles, as well as value-added utilization
of the two types of wastes.
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