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Abstract: This article provides a novel insight into specific properties of flat folded sheets transformed
elastically into building roof shells. Elastic twist transformations of the sheets resulting from the
arrangement of the sheets on two skew roof directrices cause changes in the geometric and mechanical
sheet properties of the roof shell sheeting composed of these sheets. Regular smooth-ruled surfaces
and their characteristic lines are used in the analysis of changes in the geometric properties. In the
analysis of the mechanical changes, the constitutive relations and complex state of stresses are
considered. The analysis is carried out on the basis of the results of the experimental tests and
FEM computer simulations. They have led to the development of such a method of shaping of
the effectively transformed folded covers that ensures the initial effort of each shell fold to be the
smallest possible.

Keywords: thin-walled folded sheets; elastic shape transformations; corrugated roof shells; smooth
ruled surface models; constitutive mechanical relations; computational simulations; free-form buildings

1. Introduction

The main purpose of folding smooth thin steel sheets is to give them the structural
properties needed to carry characteristic roof loads. The profiled sheets fulfil two essential
functions. They take part in the load bearing and have protective functions; for example,
against atmospheric influences [1]. Additionally, the sheets can form an outer roof layer,
performing aesthetic functions and emphasizing the architectural qualities of the roof and
the entire building (Figure 1). However, due to the durability of the external paint coatings
guaranteed by producers for 50 years only, the folded sheets most often constitute the
bottom load-bearing layer, supporting thermal insulation and the insulation foil of the roof
(Figure 2a,b).

Figure 1. Transformed roof shells characterized by the top layer composed of visible sheets.
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Figure 2. Transformed roof shell with bottom layer composed of folded sheets: (a) an outside view;
(b) an inside view.

The aim of the elastic shape transformations of the sheets folded in one direction
is to increase the visual attractiveness of roofs and entire buildings. On the other hand,
the transformations make it possible to reduce the roof erection costs, inter alia, by using
the sheets as lost shell formwork. Apart from the above essential advantages, there is
a serious disadvantage of the shape transformations. The transformations induce great
values of pre-stresses and large deformations of the thin walls of the sheets if they are not
reduced by means of an appropriate calculation method, a way of loading and a technique
of fixing the sheets to the roof construction based on the specific geometric and mechanical
orthotropic properties of the folded sheets.

2. Critical Analysis of the Present Knowledge

Nominally, plane thin-walled folded steel sheets of open profiles are transformed
into shell shapes to obtain doubly-curved covers. They are most often modeled with
two-dimensional regular ruled surfaces. The behavior of a central sector of a folded steel
hyperbolic paraboloid stiffened with a circumferential frame was studied by McDermott [2],
Experimental studies of umbrella roofs composed of transformed hyperbolic parabolic
quarters were first undertaken by Nilson [3] (Figure 3a). He proved that two-layer fold
sheeting transformed elastically into a central sector of a hyperbolic paraboloid is more
economical than the corresponding reinforced concrete hyperbolic paraboloid shell.

Figure 3. Two symmetric experimental hyperbolic paraboloid shells: (a) a complete shell; (b) an
umbrella structure of four quarters.

The most comprehensive research on two-layer transformed hyperbolic parabolic
shells was carried out by Winter [4] at Cornell University. He studied a greater variety of
the sheet profiles and dimensions of two-layer central sectors and compositions of quarters
of hyperbolic paraboloid roofs. The obtained results were consistent with those presented
by Nilsen. Various types and methods of determining ruled surfaces, including hyperbolic
paraboloids, are described by Carmo [5] and Grey [6].

These shells were subjected to forced shape transformations, causing relatively big
initial stresses. The negative impact of the forced transformations was enhanced by the bolt
joints between two orthogonal layers arranged over the whole area of each transformed
shell unit and the frame stiffened the entire complex shell. As a result, only shallow
hyperbolic paraboloid shells called hypars could be created in that way [7].
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Parker examined roof structures composed of four folded hyperbolic paraboloid quar-
ters (Figure 3b). These units are also made up of two layers of sheets located orthogonally
in two directions. He studied the changes in stiffness and stresses of the units [8]. Mus-
cat primarily focused on the critical loads and stability of the corrugated shell sheeting [9].
Banavalkar performed an analysis related to static-strength work of the hypars [10].

Gioncu and Petcu [11] studied the principle of the work of the hyperbolic paraboloid
shells using the traditional analytical analysis of strength and critical load. They invented a
novel HYPBUCK computer program. They analyzed umbrella shell sheeting composed of
four symmetrical hyperbolic paraboloid units in various configurations (Figure 4a,b).

Figure 4. Symmetrically arranged hyperbolic paraboloid units: (a) an erected corrugated umbrella
shed; (b) various configurations of umbrella shell structures.

Analogous studies related to the static strength work of single and complex hyperbolic
paraboloid shells made up of flat folded sheets of different profiles were carried out by
Egger et al. [12]. They performed tests, a conventional analysis, and analytical calculations
of strength and critical loads.

The above-mentioned researchers adopted the following traditional concept of geo-
metric shaping of the transformed shells. At the beginning, they assumed the shape of a
spatial quadrangle modeling the edge line of the designed transformed shell. Then they
adopted two opposite lines; for example, LM and KL (see Figure 5a,b), as the directrices
of the transformed sheeting. These directrices are linear elements of the roof construction
supporting the designed shell along its edge line passing transversely to the fold’s direc-
tion. The segments KL and MN model the longitudinal edges of the border folds of the
sheeting. After unfolding the subsequent sheets on the skew directrices, all folds try to
adjust their shape to the mutual position of the directrices. Thus, the folds change the
shape of their cross-sections, including the width, along their length depending on the
supporting conditions that change along the length of each directrix.

Figure 5. Adjustment of the longitudinal fold’s axes to a few selected rulings of one-fourth of a right
hyperbolic paraboloid, forcing significant change in the width of the transverse fold’s ends: (a) forced
change of transverse edge of individual transformed sheet, (b) forced change of transverse edge of
complete transformed shell.
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Since the directrix LM is longer than the directrix KN in each right hyperbolic
paraboloid quarter, the subsequent sheets are spread only over the section LM1 of the
directrix LM. To cover the empty triangle MM1N with the transformed sheeting, its trans-
verse ends passing along the directrices must be stretched, which causes additional stresses
in relation to the ones caused by the free unfolding of the sheets on the skew directrices.

If bk is the length of one transverse end of a sheet supported by the directrix KN
(Figure 5a), the opposite end must be extended to the length bk/cos (φ) so that the entire
directrix LM could be covered with the transverse ends of all subsequent sheets of the
designed roof shell. The angle f between the directrices KN and LM is the total twist angle
of the outside sheet containing the edge KL, if the directrices are rulings of a quadrant right
hyperbolic-paraboloid sector.

The φ total twist angles of all subsequent folds of the shell modeled with the sector
are different from themselves, which results from the changes in the inclination angles of
the longitudinal edges of these folds to the directrices. The angle between the edges KL
and KN is always right for the case of a quadrant sector of a right hyperbolic-paraboloid.
The same is true for the angle between KL and LM. On the other hand, the angle between
KN and NM or between NL and ML is different from right. Thus, the total twist angle of
each shell fold, denoted in Figure 5 as φ, is congruent with the angle of the inclination of
two planes defined by each of the directrices and a longitudinal edge of the fold.

The unit twist angle of this sheet is the quotient of the φ total twist angle and the a
length of the sheet expressed in meters. The length of each transverse end of a transformed
sheet depends on the profile type, length and degree of twisting of its subsequent folds.

The adjustment of all longitudinal shell fold’s longitudinal edges to the adopted finite
number of rulings of the designed hyperbolic paraboloid quarters imposes a significant
change in the width ∆M of the transverse fold’s ends passing along each roof directrix
LM and important initial stresses [13] (Figure 5b). Therefore, the conventional methods
drastically limit the variety of the designed transformed folded shell forms to central
sectors of right hyperbolic paraboloids [13] and their quarters [14,15]. Therefore, the shells
designed by means of these methods enforce unjustified additional stresses resulting from
the need for the adjustment of the shell fold’s longitudinal axes to the locations of a selected
few rulings and the length LM of the adopted directrix. The additional forces cause a
reduction of the searched shell forms to shallow hypars.

Davis and Bryan [16] described the most important geometrical and mechanical
characteristics of thin-walled flat and transformed shell folds. They showed a complete way
of analyzing and designing various shells and structures made up of two-layer corrugated
sheets located in two orthogonal directions. Two most important general conclusions given
by these authors, and regarding the transformed roof shells, are as follows. They found that,
theoretically, it is possible to shape many different configurations of the transformed folded
shell sheeting. Practically, it is possible to build only cylindrical and a few hyperbolic
paraboloid types of the transformed roof shells due to the available technology and the
technique of the assembly of the nominally plane folded sheets.

Therefore, the use of the conventional design methods [1,7,11,17] in shaping such
transformed two-layer shell roofs is ineffective. The methods usually result in high levels of
transverse tensile normal stresses, local buckling and distortion of thin-walled walls. On the
basis of the results achieved by the above-mentioned researchers, it can be stated that the
assembly of each designed shell sheeting onto skew roof directrices is often impossible
because of the plasticity of the fold’s edges between the flanges and webs or transverse
ends of the flanges of the most transformed shell folds.

In the 1990s, Reichhart elaborated a new method for shaping deformed corrugated
steel shells [13]. The algorithm of this method results from the specific orthotropic geo-
metric and mechanical properties of elastically transformed folded sheeting [18]. Its main
advantage is that the initial stresses are the smallest possible and the freedom of the
transversal width increments of all shell folds is assured. His method relies on modeling
the subsequent folds by means of sectors of right hyperbolic paraboloids, which enables
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one to reduce the initial effort of all shell folds belonging to deep, medium or even shal-
low right ruled surfaces. However, the Reichhart’s method is only accurate if the fold’s
directions are perpendicular to the contraction of the designed transformed shell or very
close to those. This is caused by the fact that he did not introduce a condition related to the
location of the contraction of the transformed shell folds.

Abramczyk [19] invented a condition requiring the contraction of the entire corrugated
shell sheeting to pass halfway along the length of each its fold (Figure 6a,b). He utilized
the lines of striction of various warped surfaces (Figure 7a,b) to obtain smooth mod-
els of shell folds characterized by the effectiveness of their shape transformations [20].
The Abramczyk’s method also relates to calculations of the respective surface areas model-
ing compressing and stretching zones on the transformed folds [21]. The condition was
defined on the basis of his analysis related to the results of the experimental tests [22] and
computer simulations [21,23].

Figure 6. Experimental transformed corrugated shells supported by: (a) straight directrices,
(b) curved directrices.

Figure 7. Smooth models of two transformed shells having straight and curvilinear lines of striction,
shaped in the Rhino/Grasshopper program and defined with: (a) straight directrices; and (b) curved
line of striction and directrices.

Samyn [24] elaborated a method of shaping two-layer transformed folded aluminum
shells and their structures. He has also explored the possibility of using PVC trapezoidal
plastic sheets for transformed coverings [25].

Transformed folded sheets can increase the visual attractiveness of the roof when
viewed from the outside (Figure 1) or the inside (Figure 2b). Most often, however, in order
to increase the durability of the roof, the sheeting is used as a bottom load-bearing layer
supporting thermal insulation and insulating foil (Figure 2a).

As a result of joining the sheets with their longitudinal edges and supporting them
on different skew directrices, unconventional coatings are formed [18,19]. They have a
rather small span equal to the length of the shell folds and a contraction passing transver-
sally in relation to the fold’s directions. Transformed shells of medium and large spans
may be considered at a relatively small level of accuracy, where many individual shells
with similar geometric properties are regularly distributed in the three-dimensional Eu-
clidean space [26].



Materials 2021, 14, 2051 6 of 25

Reichhart also elaborated a method for arranging many complete corrugated shells on
a horizontal or oblique plane [18] to achieve various continuous ribbed shell roof structures
(Figure 8). Each corrugated shell sheeting designed by Reichhart is stiffened with a spatial
framework, intermediate girders and oblique bracings [19].

Figure 8. A roof shell structure composed of many transformed fold shell strips: (a) view from the
outside; (b) view from the inside.

A method for shaping regular ribbed roof structures composed of many identical
ruled sectors made up of transformed folded steel sheets and arranged on one sphere was
defined by Biswas and Iffland [27]. In the first concept, shown in Figure 9a,b, they proposed
triangular revolved hyperboloid sectors. The important feature of this concept is the pro-
posed system of a few planes, dividing the roof structure into shell segments. This concept
requires significant oblique cuts and a big transformation degree of all folded sheets.

Figure 9. The Field House structure invented by Biswas and Iffland: (a) concept and elevation; (b)
plan.

In the second concept, quadrilateral hyperbolic paraboloid sectors divided by the
spherical system of planes are used (Figure 10a,b). The twist degree of all complete
hyperbolic paraboloid sectors is rather small compared to the previous structure.
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Figure 10. The second structure proposed by Biswas and Iffland [27]: (a) elevation; (b) framing plan of a quarter of
the structure.

Prokopska proposed various ways to increase the attractiveness of the ribbed shell
structures. These are as follows: (1) areas of discontinuity between the adjacent steel
segments, filled with, for example, glass panels (Figure 11); (2) green plant gardens placed
on the transformed segments; and (3) communication routes between the segments [28].
To create attractive regular complex structures composed of many complete roof shells, he
developed a geometric method [26] of creating a spatial polyhedral reference net arranged
on various regular smooth surfaces of positive, negative or zero Gaussian curvature.
The division of the network into spatial tetrahedral meshes allows one to easily locate
single transformed folded shells and bar constructions supporting these segments in the
three-dimensional space.

Figure 11. Complex building free-forms roofed with multi-segment shell structures and supported
by (a) curved; (b) straight directrices.

The above-mentioned problems show the wide possibilities of using the specific
orthotropic geometric and mechanical properties of folded sheets in rational shaping of the
transformed roof coatings [29,30]. A respective analysis should be carried out at different
levels: single points, walls or folds, smooth shell models, and ribbed structures composed
of many smooth transformed shell segments [31,32]. The presented issues indicate many
unexplored areas in the field of effective elastic transformations of thin-walled folded roof
shells and great possibilities of geometric and mechanical analysis at many different levels
of accuracy.

Parameterization of the transformed shapes enables one to computationally search
for attractive unconventional building free forms [22,26,33] and innovative structural
systems intended for the investigated building free forms. Obrębski [34] developed a few
methods for shaping very diversified shell rod structures. Rebielak [35] developed steel rod
structural systems supporting flat roof covers composed of corrugated sheets. Abel and
Mungan [36] present many examples of the construction systems associated with shaping
many diversified roof shells and building free forms. Nominally plane folded steel sheets
transformed plastically into shell shapes are used as curved supports for shell panels of
entire roof covers [37]. In this way, convex roof shells characterized by a positive Gaussian
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curvature are created. Nominally plane folded steel sheets transformed elastically into
shell shapes are used as suspended roof structures [38,39].

3. The Aim and the Scope of the Research

The main aim of the article is to present the geometric and mechanical properties of
the nominally flat thin-walled folded sheets, which have a decisive influence on the way
of shaping various unconventional corrugated transformed roof shells composed of these
sheets. The basic geometrical quantities studied are the changes in width and twisting
degree of a shell fold along its length. The essential mechanical quantities examined are
stresses, strains and constitutive relationships between these stresses and strains.

A special role in creating geometric models of the transformed roof shells is played by
the possibility of shaping such folded shells by means of regular smooth ruled surfaces to
which orthotropic material properties of the corrugated sheets are assigned. Knowledge of
the above-mentioned properties of the folded transformed sheeting allows one to derive
displacement equations of smooth hyperbolic paraboloid sectors modeling the sheeting
in various configurations. Then, it is going to be possible to develop a method of shaping
the transformed roof sheeting based on the displacement equations. In line with the above
purposes, a concept of presenting the vital geometric and mechanical properties as the
basis for the development of such a method was created.

Similarly, the possibilities and limitations of the nominally flat thin-walled corrugated
steel sheets adopted as a universal structural and filling material in the formation of roof
coverings are presented. This material allows for the rational shaping of complete and com-
plex sheeting characterized by unconventional effective ruled shell forms. The rationality
and attractiveness of the transformed shell sheeting result from the specific orthotropic
geometric and mechanical properties of the folded sheets used in designing and creating
the shells. In order to obtain a single transformed roof shell, the folded sheets are joined
into a nominally flat folded strip which is transformed into a ruled shell form so that its
initial effort resulting from this transformation is minimized. The emergent initial stresses
reach high values of about 100 MPa or even close to those referring to the yield point if
they are not reduced by means of the appropriate calculation method, way of loading and
technique of fixing the sheets to the roof construction resulting from the specific orthotropic
properties of the folded sheets.

As a result, a freedom of the width and height increments of each transformed fold
is assured to reduce these initial stresses and achieve the effective shape transformations.
The next goal of the presented detailed analysis on the geometric and mechanical properties
of the transformed sheets is to develop some rules for minimizing the initial stresses caused
by the shape transformations. There are only considered the coatings, the transformations
of which are the result of unfolding and supporting the transverse fold’s ends by two
mutually skew straight directrices. Therefore, there are analyzed twist transformations
whose twist degrees depend on the mutual inclination and distance of the roof directrices.

4. The Concept of the Research

The essential step of the research is the analysis of the orthotropic geometric and
mechanical properties of the thin-walled folded sheets in order to select those properties
that have a decisive influence on the form and work of the sheets in the transformed roof
shells. The next step concerns the parameters describing these properties, so that they
allow one to shape rational transformed sheet forms as (a) structural rod elements (for
example, thin-walled beams), and (b) filling shell elements as, for example, an outside roof
cover or a lost shell roof formwork. The presented analysis is based on the results of the
laboratory tests related to the different transformation degrees and types of the profiles
used for the transformed experimental shells.

The obtained results related to the geometric analysis of the shape properties of
the transformed folded sheets treated as a two-dimensional orthotropic material are the
basis for deriving the geometric stiffness matrix [40] and elasticity constants of various
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transformed shell sheeting. Thus, the shell shapes defined in a three-dimensional space by
means of this material are described by two curvilinear coordinates.

From the above assumption, it follows that the transformed shell coverings are to be
modeled by means of various smooth sectors and characteristic lines of regular warped
surfaces [33]. The analyzed basic geometric elements are contracting lines, edge lines,
supporting lines and central sectors of warped surfaces. The standardized variables are the
lengths of the above-mentioned lines and the areas of warped surfaces modeling the entire
transformed shells or their individual folds. In order to define the zones of compression
and tensile stresses appearing in each shell fold of a transformed roof, the width changes
along the length of the fold are determined by means of the above variables.

The level of the accuracy of the analysis related to the geometric properties of the
entire transformed folded shells or their complete folds does not have to be great. It may be
limited to central sectors and lines distinguished on two-dimensional warped surfaces [19].
On the other hand, the level of the analysis related to a stress state of each shell fold must
refer to the selected points characterizing all individual walls of the fold and their common
edges [41]. Therefore, the level of the detailed mechanical analysis associated with the
transformed shells is significantly greater than the previous one.

In order to elaborate a quantitative description of the effective shape transformations
of the corrugated shells, such parameters related to the mechanical properties of the folded
sheets as shear or normal stresses and strains are examined [42,43]. The effect of these
transformations is to be such a state of equilibrium in which the effort of each shell fold is
going to be the smallest possible and the work of the internal forces is balanced out [44].
Therefore, the following are considered: (a) the type of the stress state, e.g., whether it is
pure shear or complex stress state [45], (b) loading conditions, and (c) supporting conditions
adopted for the entire cover and its complete folds. As a result, the interdependences
between the parameters describing the form and the stress state of each folded shell,
the transformation degree and the adopted supporting conditions of the shell are sought.

The invented dependencies should describe the subsequent momentary states of equi-
librium of all shell folds, obtained as the result of the effective subsequent transformations
corresponding to the increase in the transformation degree. A quantitative description
of these configurations should allow one to derive displacement equations of each trans-
formed shell using smooth sectors of regular warped surfaces. On the basis of the above
equations, it becomes simple to calculate the strains, stresses and the form of the designed
transformed shell, including the length of its directrices, edge lines and line of striction.

The big variety of the employed sheet types, ways of joining these sheets in the roof
shells, methods of modeling, loading and supporting of the designed shells induces the
development of a universal accurate thin-walled FEM computer model [41]. Such a model
was developed and then initially configured based on the results of the experimental
research [23]. This model is used in the presented research. It is planned to be used in
further studies, too.

5. Geometric Characteristics of the Transformed Folded Roof Shells

The nominally flat folded sheets are subject to the initial transformations to achieve
their shell shapes. The unstiffened longitudinal edges of the transformed sheets become
convex arcs (Figure 12a). If the longitudinal edges are stiffened with special rigid profiles
or other profiled sheets, Figure 12b, then the edges and longitudinal axes of the subsequent
folds can be regarded as straight. It is necessary to provide all transformed shell folds
with appropriate boundary conditions. In particular, the technique of unfolding the sheets
onto the roof directrices, joining the sheets longitudinally and fixing the folds to the roof
directrices should assume the pre-stresses and pre-strains of each shell fold to be the
smallest possible regardless of the transformation degree. In addition, the longitudinal
edges of all shell folds ought to stay straight.
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Figure 12. Transformed folded sheets characterized by: (a) free arched longitudinal edges; (b) stiff-
ened straight edges.

Uncontrolled shape transformations of the sheets lead to large deformations of their
walls: flanges and webs resulting from the small transverse bending stiffness and the twist
stiffness around the longitudinal axis of each fold. On the other hand, the relatively high
deformations of the walls and high transformation degree of each shell fold are necessary
to obtain deep, medium and even some shallow shells. They cause non-linear relationships
between different dimensions characterizing the shell form of each transformed folded
sheeting. It is advisable to reduce the level of the initial effort of the fold by limiting the
value of its twist degree or using a method assuring the freedom of the transversal width
increments of each shell fold. In this case, the shape transformation is called effective.

The most important dependence used in the description of the geometrical properties
of each effectively transformed shell fold is defined between the width of the fold along
the roof directrix and its transformation degree (Figure 13) adopted as the unit twist angle
of the fold resulting from the inclination of two skew directrices supporting the fold at
its crosswise ends (Figure 12). The denotation TR 50 mm × 0.75 mm × 8.0 m means that
the folds of the examined sheets are trapezial—TR and the height, thickness and length of
these sheets are respectively equal to 50 mm, 0.75 mm and 8.0 m.

Figure 13. Nonlinear relations between bwr relative width increments of fold’s crosswise ends and
αj unit angle obtained for various profiles of a shell fold supported by straight directrices: Series1—
TR50 × 0.75 mm × 8.0 m; Series2—T55 × 0.88 mm × 6.2 m; Series3—TR85 × 0.75 mm × 5.0 m;
Series4—TR136 × 0.88 mm × 6.0 m; Series5—T160 × 0.75 mm × 6.6 m.

Total twist angle αc of a shell fold or sheet, shown in Figure 5 as φ, is defined as the
angle of twist of the opposite transverse fold or sheet’s ends passing compatibility with the
directrices of a shell. The unit twist angle αj is defined as the total twist angle αc divided
by the length of the fold or sheet measured in meters. On the basis of the observations
made, the unit twist angle defining the transformation degree is assumed to be constant
along the fold’s length. To precisely study the obtained relationships and make the analysis
independent of the number and width of the folds in the considered sheets, the relative
width increments are considered. The relative bwr width increments of any shell fold are
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defined as the quotient of its absolute bw width after transformation to the width b0 of the
fold before the transformation as follows:

bwr = 100 × bw/b0 (1)

Each of the lines, Series1 to Series5, introduces a relationship obtained for the reference
fold of the experimental folded shell of a strictly defined profile. For example, the Series1
line represents the relationship between bwr and αj of the reference fold defined for the
TR 50 m × 0.75 mm × 8.0 m profile. This line was determined on the basis of six points
whose coordinates are the values of the unit twist angles and the values of the relative
width increments of the above-mentioned fold. These values were obtained for the succes-
sive configurations of each experimental shell generated by means of an increase in the
transformation degree of this shell. Therefore, for five different shells being characterized
by a different profile, five reference folds were determined. The presented characteristics of
these folds were examined in six subsequent configurations of each respective transformed
experimental shell, where each configuration was generated by increasing the transforma-
tion degree of the shell. Each quantity describing the respective property of the reference
fold was calculated on the basis of the corresponding quantities measured during the tests
for several adjacent folds of the examined experimental shell.

The above diagram, shown in Figure 13, shows a relatively small variation in the
influence of the profile type on the fold’s shell form in the range of the unit twist angle of
up to 3.5◦. In this case, the variation causes an insignificant differentiation of the fold’s
width increments comparable with the measurement accuracy of about ± 0.5 mm, which
corresponds to the value of bwr = ± 0.2%.

The above dependencies were obtained by means of the experimental tests on the
experimental stand [14,20,42] (see Figure 6). They made it possible to configurate the
elaborated thin-walled FEM computer models [23] (Figures 14 and 15) used in computer
simulations whose results are presented in the next section.

Figure 14. A computational thin-walled mechanical model of a nominally plane folded sheet trans-
formed initially into a shell shape and the graphical expression of the “effective” stresses in MPa on
its top surface.
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Figure 15. A computational thin-walled mechanical model of nominally plane folded sheeting
transformed initially into a shell shape, and the graphical expression of the “effective” stresses in
MPa on its top surface.

On the basis of the analysis made to date, it should be stated that the folded sheets with
(a) free longitudinal edges (Figure 12a), and (b) stiffened longitudinal edges (Figure 12b) are
characterized by mutually different geometrical relationships [14]. Both types of the sheets can
be modeled with the same type of ruled surface, but the sectors of this surface corresponding to
the above sheets must be different [20]. In the first case, the free longitudinal arcuate edges are
modeled with curved lines. In the second case, the longitudinal edges are straight. The above
two types of folded sheets cause different lengths of their contracting lines, and different
lengths of their supporting lines passing along their crosswise roof edges. Therefore, the sheets
with free longitudinal edges should be converted to sheets with straight longitudinal edges by
means of the same type of smooth surface.

In a general case, the equation of ruled surface Ω modeling one fold, sheet or whole
transformed shell is as follows:

r(u,v) = e(u) + p(u) × v (2)

where r(u,v) = [x(u,v), y(u,v), z(u,v)] is the vector of the position of any point on a ruled
surface Ω, e(u) is the vector of the position of any point on directrix e (Figure 16), and p(u)
is the unit director vector of ruling ti. All vectors p(u) can have one common origin at point
OL and determine that spherical indicatrix p(u) contained in sphere ϕ of the unit radius
and center OL, and u, v are curvilinear coordinates of Ω.

Figure 16. Central sector Ω determined on the basis of line of striction s and spherical indicatrix
p determining warped surface.
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The location of any point on the line of striction s(u) of Ω in relation to directrix e(u) of
Ω, can be determined by the following formula:

v(u) =
e′(u) × p′(u)

(p′(u))2 (3)

where s(u) is the line of striction composed of the central points of all rulings ti of Ω, and v
is the parameter describing the position of any point of s(u) on the respective ruling ti
in relation to the adopted directrix e(u). If s(u) is adopted as directrix e(u), the following
condition must be satisfied:

v(u) =
s′(u)× p′(u)

(p′(u))2 = 0 (4)

which results from comparing Equation (3) to zero. From Equation (4), it follows that the
s′(u) straight line tangent to s(u) and the straight line p′(u) tangent to the spherical indicatrix
p(u) of Ω have to be perpendicular to each other, so

s′(u)× p′(u) = 0 (5)

If Equation (5) is preserved, the function e(u) in Equation (2) should be replaced by
s(u) representing a line of striction modeling the contraction of the designed folded shell.

A special type of ruled surfaces is used in the further considerations. This is right
hyperbolic paraboloid, Figure 17, whose mathematical equation is as follows:

f
a× b

x× y = z (6)

where f, a and b are the constants determining the right hyperbolic paraboloid ω, its sector
Ω and line of striction s1.

Figure 17. Z-axis-symmetrical sector Ω of right hyperbolic paraboloid ω adopted as a model for a
corrugated transformed shell.

A parametric equation of right hyperbolic paraboloid can be created by means of
Equation (2) as follows:

x(u, v) = uy(u, v) =v× b√
b2 + ( f

a )
2
·u2

z(u, v) =v×
f
a ·u√

b2 + ( f
a )

2
·u2

(7)

where a, b, and f are the constants characterizing the right hyperbolic paraboloid sector
Ω, Figure 18. The following parametric equations of its line of striction s1 are used in the
modeling shell folds

x(u) = uy =0z =0 (8)
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Figure 18. Geometrical characteristics of a z-axis-symmetrical sector Ω of a right hyperbolic
paraboloid ω adopted for the smooth model for a transformed folded shell.

The second line of striction of the paraboloid is a straight line s2 perpendicular to
s1 and contained in the plane (x,y). The line s2 is not employed in the further analysis.
The above parametric equations are convenient for defining some quantitative geometrical
relationships describing the basic properties of right hyperbolic paraboloids because, for
example, the parameter v expresses the position of a point along the length of each ruling,
so it changes from −l/2 to l/2 for all subsequent folds of each transformed shell.

On the basis of the relative width increments bwr presented in Figure 13 and referring
to the transverse edges of the transformed folds of different profiles, the minimum widths
bwr of these folds at a half along their length were calculated assuming that each fold is
modeled by a central sector of a right hyperbolic paraboloid given by Equation (7) and its
line of striction by Equation (8). The diagram (see Figure 19) presents relations between the
relative width increments bwr measured at a half along the fold’s length and the unit twist
angle of the reference shell folds assigned to various types of profiles. The relative width
increments bwr of these folds were calculated using Equation (1).

Figure 19. Nonlinear relations between the relative width increments bwr at a half along the fold’s
length and the unit angle αj obtained for various profiles of a shell fold supported with straight
directrices: Series1—TR50 × 0.75 mm × 8.0 m; Series2—T55 × 0.88 mm × 6.2 m; Series3—TR85 ×
0.75 mm × 5.0 m; Series4—TR136 × 0.88 mm × 6.0 m; Serise5—T160 × 0.75 mm × 6.6 m.

The relative pwr neutral surface increments of any shell fold are defined as the quotient
of its absolute pw neutral surface area after the transformation to the plane neutral surface
area b0 of the fold before the transformation as follows:

pwr = 100 × pw/p0 (9)
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The Series1 line corresponds to the same TR50 × 0.75 mm × 8.0 m reference fold for
which the same-named line was created in Figure 13. The difference between these lines is
that the values shown in Figure 13 are the width increments measured along the transverse
ends of the reference fold while the values presented in Figure 19 are the width increments
measured at a half along the length of this fold. The above increases are one of the basic
variables on which the designed displacement method of shaping the considered shells is
planned to be based.

Since all effectively transformed folds contract in a half along the fold’s length in a
way dependent on the type of the fold’s profile, the achieved relations assist in determining
the smooth shell models of each shell fold by means of the line of striction, especially its
shape and length. The absolute values of these increments are approximately halves of the
positive width increment values at the stretched crosswise ends of the shell folds. Although
the relations obtained between these increments and the degree of twist of the folds are non-
linear, some disturbances in the course of the complete curves corresponding to the folds of
the higher profiles and the smaller transformation degrees can be noticed. Such anomalies
appear due to the significant influence of the weight on the width increments of each fold
at a half along its length.

The areas of central sectors Ω of right hyperbolic paraboloids defined by means of the
above-mentioned relationships play a significant role in further geometric and strength
analyses. The area surface of the sectors can be calculated as follows:

P(u, v) = 2×
∫ ukp

0

∫ l/2

−l/2

√
AA2 + BB2 + CC2dvdu (10)

where the following Jacobi functions must be calculated:

AA =

[
∂y(u,v)

∂u
∂z(u,v)

∂u
∂y(u,v)

∂v
∂z(u,v)

∂v

]
, BB =

[
∂z(u,v)

∂u
∂x(u,v)

∂u
∂z(u,v)

∂v
∂x(u,v)

∂v

]
, CC =

[
∂x(u,v)

∂u
∂y(u,v)

∂u
∂x(u,v)

∂v
∂y(u,v)

∂v

]
(11)

where l is the length of each fold, and ukp is the function describing the position of the edge
ruling tk of Ω defined on the hyperbolic paraboloid. Thus, the function describes the width
of the entire transformed shell sheeting.

Centers of gravity of some selected cross-sections of each shell fold are calculated
to determine the longitudinal axis of the fold. The longitudinal axes of all folds define
a smooth neutral surface of the entire shell and each complete fold. The neutral surface
can be taken as a simplified smooth model of the entire transformed shell and treated as a
sum of the complete fold’s models. The surface area of this model can be calculated using
Equations (10) and (11). This model of the transformed shell can be used together with
another smooth model that is created on the basis of the longitudinal straight edges of
all subsequent shell folds, see Figure 5. A rectangle is a simplified smooth model of the
flat fold before its transformation. The area of the rectangle is denoted as p0. The neutral
surface area of the fold after its transformation is denoted as pw. The relative neutral surface
area increments pwr of the fold can be calculated using Equation (9).

The graph presented in Figure 20 shows that the pwr relative increments of the neutral
surface area of each transformed shell fold nonlinearly decrease with the increase in the
fold’s transformation degree. The obtained results depend on the size of the fold. The pwr
relative increment of the neutral surface of each shell fold is defined as the quotient of the
pw absolute neutral surface increment of the fold to its area p0 before the transformation.
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Figure 20. Nonlinear relations between the relative pwr increments of the surface area and the unit
twist angle αj of a shell fold supported by two straight directrices obtained for various profiles:
Series1—TR50 × 0.75 mm × 8.0 m; Series2—T55 × 0.88 mm × 6.2 m; Series3—TR85 × 0.75 mm ×
5.0 m; Series4—TR136 × 0.88 mm × 6.0 m; Series5—T160 × 0.75 mm × 6.6 m.

Each of the curves shown in Figure 20 corresponds to a reference fold designated for a
different type of profile. For example, the Series1 line corresponds to the same reference
fold to which the Series1 lines, shown in Figures 13 and 19, were previously assigned.
Each curve from Figure 20 was derived on the basis of five points whose coordinates are
different values of the unit twist angle and the relative increase in the neutral surface
area of the fold. These points correspond to the selected subsequent configurations of
the appropriate experimental transformed shell characterized by a strictly defined profile.
These configurations were generated by gradually increasing the twist degree of the
experimental shell.

Some disturbances in the course of the above curves corresponding to the folds of the
higher profiles can be noticed for smaller twist degrees. This fact results from the influence
of the weight of the transformed folds on the size of the surface areas and that the twist
of each hyperbolic paraboloid fold nonlinearly varies along its length. The variability
can accurately be expressed by the dependence of the αi rotation angle of the successive
cross-sections along the fold’s length according to the following formula:

αi = atan(
f

a·b × y) (12)

calculated on the basis of the geometrical properties of central sector Ω of right ruled
paraboloid, where f, a and b are the constants of Ω used in (6).

An additional increase in the width of the fold’s transverse end induced by, for exam-
ple, adjusting this end to the length of the directrix may cause an important change in the
position of the contraction line on Ω. The inclination of the contraction line to the ruling ti
may also change. As a result, the ruled surface is no longer a right hyperbolic paraboloid.
In this way, we obtain the possibility of increasing the variety of the unconventional trans-
formed folded shells forms. The models of such transformed shell sheeting can be adopted
in the form of warped surfaces of various types, including conoids or cylindroids. The
models can be defined using Equation (2) and their rulings can be determined by means of
Equation (12).

The neutral surface areas of the transformed folds and their compressed and stretched
sectors are important when calculating the work of the internal forces occurring in each
folded shell. The compressed area is related to the line of contraction. The tensile areas
refer to the supporting directrices.

The location of the contraction of a transformed shell at the length of all transformed
folds must be determined by means of a proper calculation method based on the specific or-
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thotropic properties of the corrugated shells. In addition, respective supporting conditions
and ways of loading must be adopted. Each shell fold is in an optimal state of equilibrium
if it can freely deform in its transverse directions and its contraction appears halfway
along the fold’s length. In the case of straight directrices, the initial stress level is reduced
to the smallest possible and the considered central sectors of hyperbolic paraboloids are
characterized by straight lines of striction perpendicular to all shell folds.

6. Mechanical Properties of the Transformed Folded Roof Shells

Since the transformed folds are characterized by small transverse bending stiffness
and small torsional stiffness around the longitudinal axis, nonlinear geometric relationships
are observed. A few basic geometric relationships were presented in the previous section.
In the present section, some nonlinear interdependences occurring between the mechanical
properties and the unit twist angle of the twisted folded sheets are presented.

Based on the experimental studies carried out in the Rzeszow University of Technology
hall [19,42], there was elaborated a diagram composed of curves corresponding to various
profiles, representing relations between the normal stresses acting orthogonally to the
directions of the longitudinal axes and αj unit twist angle of a shell fold (Figure 21).

Figure 21. Relations between σyy normal stresses acting orthogonally to longitudinal axes and αj

unit angle of the transformed sheets of the following profiles: Series1—TR50 × 0.75 mm × 6.2 m;
Series2—TR60 m × 0.75 mm × 6.2 m; Series3—TR130 × 0.75 mm × 6.2 m; Series4—TR85 × 0.75
mm × 5.0 m.

The curves presented in Figure 22 and corresponding to various profiles express the
relations between the σxx normal stresses acting along the longitudinal axes of the shell
folds and αj unit angle of these folds.

Figure 22. Relations between σxx normal stresses acting along longitudinal axes and αj unit angle
of numerically transformed sheets of the following profiles: Series1—TR50 × 0.75 mm × 6.2 m;
Series2—TR60 × 0.75 mm × 6.2 m; Series3—TR130 × 0.75 mm × 6.2 m.
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Similarly, the curves presented in Figure 23 represent the relations achieved between
the shear stresses τxy and the αj unit twist angle of the examined fold.

Figure 23. Relations between τxy shear stresses acting in fold’s walls and αj unit angle of numerically
transformed sheets of the following profiles: Series1—TR50 × 0.75 mm × 6.2 m; Series2—TR60 ×
0.75 mm × 6.2 m; Series3—TR130 × 0.75 mm × 6.2 m.

From the above diagrams, the following conclusion can be drawn. The unit twist
angle of 3◦ induces important initial normal stresses of about 10 to 40 MPa in the directions
passing transversally toward the fold’s longitudinal axes. Thus, the stresses have to be
taken into account during the design process, for the unit angle higher than or equal
to 3◦. The observed shear τxy and normal σxx stresses, the latter acting along the fold’s
longitudinal axes, are of little importance compared to σyy. The big differences in stresses
obtained for different profiles, referring to the same measure of the fold’s unit twist angle,
are noticed. The stresses non-linearly decrease with the increase in the profiles’ height.

On the basis of the determined dependencies, an elaborated exact thin-walled mechan-
ical model of a transformed fold of the examined TR 85 m × 0.75 mm × 5.0 m profile was
configured. The model is used to describe the changes in the geometric and mechanical
properties of various effectively transformed shell folds. A relationship obtained between
the normal stresses acting transversely to the direction of an effectively twisted fold of
the TR 85 m × 0.75 mm × 5.0 m type and the unit twist angle of the fold was achieved
by means of this model (Figure 24). The relationship is represented by the curve labeled
Series5. Other curves shown in this figure enable one to compare the achieved results of
the experimental tests and computer simulations. All examined shell folds are fastened to
the directrices with their lower flanges, only.

Figure 24. Comparison between the dependencies obtained for σyy normal stresses acting orthogo-
nally to fold’s longitudinal axes in relation to αj unit twist angle of the transformed sheets of profiles:
Series1—TR50 × 0.75 mm × 6.2 m (called Serie1); Series2—TR60 × 0.75 mm × 6.2 m; Series3—
TR130 × 0.75 mm × 6.2 m; Series4—TR85 × 0.75 mm × 5.0 m; Series5—TR85 × 0.75 mm × 5.0 m
(the computational thin-walled model).
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The highest normal stresses σyy are assigned to the crosswise fold’s ends and directions
passing transversally to the longitudinal axes of the shell folds. The nonlinear tendencies
related to the increase in the unit twist angle and height of the examined folds are obvious.
However, in the case of Series4 and Series5 referring to the same type of profiles employed,
the results are too divergent, most likely because of the actual supporting conditions
obtained at the shell fold’s ends fastened to the directrices. In the case represented by the
Series4 line, the way of fixing the fold’s end was too stiff, so the freedom of the fold’s width
increments was not ensured. In contrast, the relation represented by the Serie5 curve is
convergent with the other ones.

Since the results obtained by means of the thin-walled computer model were inte-
grated and standardized by the results of the experimental tests, the mechanical properties
of the variously transformed subsequent shell folds can be analyzed using this model to
define an orthotropic material employed for shaping unconventional folded roof shell
forms. It was assumed that the examined steel sheets modeled by means of the thin-
walled computer model are of the T85 × 0.75 profile, see Figure 25, and 5.00 m length.
The modulus of elasticity E = 2.05 GPa.

Figure 25. Geometrical features of the T85 × 0.75 profile used in the tests and computer simulations.

Despite the highly non-linear relationships presented in the above diagrams, the
constitutive relations

{σ} = [E] {ε} + {σ0} (13)

between stresses {σ} and corresponding strains {ε} appearing in the examined profile TR
85 are linear. Variable [E] is the stiffness matrix of the sheets and {σ0} is the vector of the
initial stresses resulting, for example, from the folding of a smooth thin-walled sheet into
corrugated plate. The main linear relation between normal stresses σyy and corresponding
strains εyy appearing in the areas of the biggest values of these stresses is shown in Figure 26.

Figure 26. A linear relation between the σyy normal stresses and the εyy corresponding strains
appearing at a point located at the crosswise end of a shell fold.

The methods based on small strains and big deformations, referring to cross-sections
of the 4th code class [46], can be used for strength shaping of the transformed shells in the
tested range of the shape twist transformation degree of up to 5◦. Other linear constitutive
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relations, including the ones for the σxx normal stresses and τxy shear stresses are presented
in the figures included in Appendix A.

A detail of the graphical representation of the normal stresses σyy acting in the upper
surface of the transformed accurate computational model of the TR 85 × 0.75 shell fold at
its crosswise end is shown in Figure 27 in the form of a map. We can see how quickly the
values of the σyy normal stresses increase when we approach the fold’s crosswise end.

Figure 27. The map of the σyy normal stresses acting orthogonally to the fold’s longitudinal axis, on
the selected crosswise end of a shell fold.

A non-linear dependence of the normal stresses σxx appearing at the transverse ends
of the examined effectively twisted fold and acting along the direction of the fold on its
unit twist angle αj is shown in Figure A1 included in Appendix A. From this diagram,
it follows that the stresses reach much smaller values than σyy.

An analogous non-linear dependence of the strains εxx corresponding to σxx on the
unit twist angle αj of the effectively transformed fold is shown in Figure A2. In turn,
a linear relation between the σxx normal stresses and corresponding εxx strains, for the
most deformed walls located at the crosswise ends of the shell fold, can be observed in
Figure A3.

The shear stresses τxy and corresponding strains γxy of the most deformed fold’s walls
also take small values, Figures A4 and A5. They reach the maximum values of 6.0 MPa
and 0.000072 for αj = 3.94◦, which allows one to assume that these values are negligible for
the calculation of the stress–strain state of the transformed folds. The relationship obtained
between τxy and γxy is linear, too (Figure A6). A nonlinear relation between the “effective”
Huber–Mises–Hencky stresses σe and the unit twist angle αj achieved for the walls located
at the crosswise fold’s ends is shown in Figure 28.

Figure 28. A nonlinear relation between the “effective” σe stresses and αj unit angle at the crosswise
ends of an effectively twisted fold.

On the basis of all aforementioned diagrams, it can be concluded that the twist of
each shell fold by the unit angle of 3◦ to 5◦ induces its significant effort, affecting the
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mechanical properties of the fold. Such values of the transformation degree allow quite
significant differences in the shapes, curvatures and contractions of the designed variously
transformed shell roofs. Similarly, the initial strains of such deformed folds are relatively
small compared with these referring to the yield point or even the elastic limit of steel.
The presented examples allow the designer to use linear constitutive relationships in the
analyzed ranges of the transformation degree.

The conducted analysis shows that it is advisable to search for such effective trans-
formations that the level of the normal stresses σyy would be reduced to the minimum.
For this purpose, it is necessary to assure the freedom of the fold’s width increments deter-
mining the linear constitutive relationships between the stresses and strains. The respective
calculation methods, loading conditions and supporting conditions are needed.

From the relationships presented in this section, some additional, important conclu-
sions can be drawn. The complex states of stresses archived for the examined twisted
folded shell sheeting supported by straight directrices cannot be reduced to pure shear.
The σyy normal stresses acting perpendicularly to the old’s directions play the most im-
portant role in this state. The state causes a precisely defined position and length of the
contraction line on the transformed shell. The aim is to calculate the length and such a
position of the contraction that the contraction passes through the middle of each shell fold.
In this case, it is only possible to use interdependences between the form of the effectively
transformed fold and its supporting conditions.

7. Conclusions

The presented dependencies describing the properties of the transformed folded
sheets are very useful in the process of the rational shaping of attractive roof shell sheeting.
They were derived on the basis of the analysis performed at various levels of accuracy.
At the most detailed level related to single walls, flanges and webs of the transformed folds,
the complex states of stresses appearing at particular points of these walls were analyzed.
The highest values are achieved by the normal stresses acting transversely to the fold’s
directions. These are tensile stresses acting in the flanges along the transverse ends of the
shell folds. The values of these stresses are distributed in the range from 20 to 80 MPa for
the unit twist angle αj = 4◦ and in the range of 40 to 120 MPa for αj = 5◦ depending on the
type of the examined fold’s profiles.

The results of the performed analysis are consistent with the visible shape changes
observed for adjacent folds in each transformed sheeting at the experimental stand. The lon-
gitudinal axes of two adjacent folds are mutual skew straight lines, so they approach each
other halfway along their length, and move away from each other if they approach the
transverse ends. Thus, the crosswise fold’s ends tend to expand. The compress stresses
appear at a half along the length of each transformed fold, and the tensile stresses occur at
the crosswise ends of the fold.

The presented analysis shows the usefulness of each transformed fold as a structural
element, the mechanical properties of which are only slightly deteriorated by the initial
transformations if the control and reduction of the level of the fold’s effort is applied in the
manner proposed in this article. In this case, despite the large transformations of all folds
and deformations of their walls, it is possible to obtain small values of the strains and the
linear constitutive relationships resulting from the open profiles, small transverse bending
stiffness and small torsional stiffness of the shell folds.

The conditions leading to the reduction of the initial stresses of each fold in a trans-
formed shell are imposed in the analysis carried out at the second level of detail, lower
than the previously mentioned one. At this level, smooth models of all single folds are
shaped in the form of regular ruled surfaces whose properties preserve the relationships
obtained on the basis of the experimental tests and computer simulations. The variable
width increments appearing along the length of each transformed fold are modeled by
means of a central sector of a smooth hyperbolic paraboloid characterized by (a) straight
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longitudinal edges, (b) variable width along its length, and (c) a straight line of striction
perpendicular to these longitudinal edges and passing through the halves of all shell folds.

The limitations reducing the effort of the transformed fold are imposed by means
of the appropriate position of its contracting line and the appropriate value of its surface
area calculated in the process of shaping a transformed folded shell. The conducted
analysis shows strongly non-linear relationships appearing between the essential geometric
properties of the transformed shell sheeting and the degree of twist of each of its fold.
These relationships significantly depend on the profile type of the examined folds.

A central sector of a right hyperbolic paraboloid is used as a simplified model of each
fold after its transformation. In order to describe the relationships appearing between
many specific properties of the shell fold in its various configurations, surface areas of the
hyperbolic paraboloid models are used.

If we know the variation of the surface areas of the successive fold’s configurations, we
are able to calculate the widths of the transformed fold in its subsequent configurations and
the length of the contraction line of the entire transformed shell. Then, we can calculate the
positions of the lines modeling the longitudinal and transverse edges of each shell fold and
its state of stresses using the geometric properties of the central sector of a right hyperbolic
paraboloid. These interdependences are going to be analyzed in the further publications.
Based on the obtained relationships and smooth hyperbolic paraboloid models, it is possible
to obtain displacement equations of all points of the entire transformed folded shell. The
derivation of these equations is beyond the scope of the present article.

Funding: The resources of the Rzeszow University of Technology.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data Sharing is not applicable.

Conflicts of Interest: The author declares no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Appendix A

Figure A1. A non-linear relation between the σxx normal stresses acting at the crosswise ends of an
effectively twisted fold along the fold’s longitudinal axes and its αj unit angle.
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Figure A2. A non-linear relation between the strains εxx corresponding to the normal stresses σxx

acting the along longitudinal axes and αj unit angle at the crosswise ends of an effectively twisted fold.

Figure A3. A linear relation between the σxx normal stresses and corresponding εxx strains obtained
for elements located at the crosswise ends of a shell fold.

Figure A4. A nonlinear relation between the strains γxy and αj unit angle at the crosswise ends of an
effectively twisted fold.
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Figure A5. A non-linear relation between the shear stresses τxy and αj unit angle at the crosswise
ends of an effectively twisted fold.

Figure A6. A linear relation between the τxy shear stresses and γxy corresponding strains for elements
located at the crosswise ends of a shell fold.

References
1. Wei-Wen, Y. Cold Formed Steel Design; John Wiley and Sons Inc.: New York, NY, USA, 2000.
2. McDermott, J.F. Single layer corrugated steel sheet hypars. Proc. ASCE J. Struct. Div. 1968, 94, 1279–1294. [CrossRef]
3. Nilson, V.E. Testing a light gauge steel hyperbolic paraboloid shell. Proc. ASCE J. Struct. Div. 1962, 88, 51–66. [CrossRef]
4. Winter, G. Strength of thin steel compression flanges. Trans. ASCE 1974, 112, 895–912.
5. Carmo, M.P. Differential Geometry of Curves and Surfaces; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1976.
6. Grey, A. Modern Differential Geometry of Curves and Surfaces with Mathematica; CRC Press LCC: Boca Raton, FL, USA, 1999.
7. Gergely, P.; Banavalkar, P.V.; Parker, J.E. The analysis and behavior of thin-steel hyperbolic paraboloid shells. In A Research Project

Sponsored by the America Iron and Steel Institute; Report 338; Cornell University: Ithaca, NY, USA, 1971.
8. Parker, J.E. Behavior of Light Gauge Steel Hyperbolic Paraboloid Shells. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, 1969.
9. Muskat, R. Buckling of Light Gage Steel Hyperbolic Paraboloid Roofs. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, 1968.
10. Banavalkar, P.V. Analysis and Behavior of Light Gauge Hyperbolic Paraboloid Shells. Ph.D. Thesis, Cornell University, Ithaca,

NY, USA, 1971.
11. Petcu, V.; Gioncu, D. Corrugated hypar structures. In Proceedings of the I International Conference on Lightweight Structures in

Civil Engineering, Warsaw, Poland, 25–29 December 1995; pp. 637–644.
12. Egger, H.; Fischer, M.; Resinger, F. Hyperschale aus Profilblechen. Stahlbau 1971, 12, 353–361.
13. Reichhart, A. Corrugated Deformed Steel Sheets as Material for Shells. In Proceedings of the International Conference on

Lightweight Structures in Civil Engineering, Warsaw, Poland, 26–29 December 1995.
14. Reichhart, A. Geometrical and Structural Shaping Building Shells Made up of Transformed Flat Folded Sheets; Publishing House of

Rzeszow University of Technology: Rzeszów, Poland, 2002. (In Polish)
15. Moldovan, A.; Gioncu, D.; Petcu, V. Post-critical behavior of thin-walled beams: Ductrot-TWM computer program. In Proceedings

of the III International Conference on Coupled Instabilities in Metal Structures, Lisbon, Portugal, 21–23 September 2000; pp.
595–604.

16. Bryan, E.R.; Davis, J.M. Manual of Stressed Skin Diaphragm Design; Granada Publishing Ltd.: London, UK, 1982.

http://doi.org/10.1061/JSDEAG.0001964
http://doi.org/10.1061/JSDEAG.0000843


Materials 2021, 14, 2051 25 of 25

17. Davies, J.M. Resent research advances in cold-formed steel structures. J. Constr. Steel Res. 2000, 55, 267–288. [CrossRef]
18. Reichhart, A. Principles of designing shells of profiled steel sheets. In Proceedings of the X International Conference on

Lightweight Structures in Civil Engineering, Rzeszow, Poland, 5–6 December 2004; pp. 138–145.
19. Abramczyk, J. Shell Free Forms of Buildings Roofed with Transformed Corrugated Sheeting, Monograph; Publishing House of Rzeszow

University of Technology: Rzeszów, Poland, 2017.
20. Abramczyk, J.; Prokopska, A. Symmetric Shape Transformations of Folded Shell Roofs Determining Creative and Rational

Shaping of Building Free Forms. Symmetry 2019, 11, 1438. [CrossRef]
21. Abramczyk, J. Shape transformations of folded sheets providing shell free forms for roofing. In Proceedings of the 11th Conference
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