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Abstract: Ti-6Al-2Sn-4Zr-6Mo is one of the most important titanium alloys characterised by its
high strength, fatigue, and toughness properties, making it a popular material for aerospace and
biomedical applications. However, no studies have been reported on processing this alloy using
laser powder bed fusion. In this paper, a deep learning neural network (DLNN) was introduced to
rationalise and predict the densification and hardness due to Laser Powder Bed Fusion of Ti-6Al-2Sn-
4Zr-6Mo alloy. The process optimisation results showed that near-full densification is achieved in
Ti-6Al-2Sn-4Zr-6Mo alloy samples fabricated using an energy density of 77–113 J/mm3. Furthermore,
the hardness of the builds was found to increase with increasing the laser energy density. Porosity
and the hardness measurements were found to be sensitive to the island size, especially at high
energy density. Hot isostatic pressing (HIP) was able to eliminate the porosity, increase the hardness,
and achieve the desirable α and β phases. The developed model was validated and used to produce
process maps. The trained deep learning neural network model showed the highest accuracy with
a mean percentage error of 3% and 0.2% for the porosity and hardness. The results showed that
deep learning neural networks could be an efficient tool for predicting materials properties using
small data.

Keywords: deep learning; additive manufacturing; porosity; powder bed fusion

1. Introduction

Additive manufacturing (AM) and deep learning (DL) are two critical pillars of Indus-
try 4.0, which transforms the manufacturing industry’s paradigm. Additive manufacturing
allows mechanical parts production with a high degree of complexity based on the incre-
mental layer-by-layer concept [1–4]. Laser powder bed fusion (LPBF) has been widely
considered in a wide range of industries such as biomedical [5–8], aerospace [9–12], and
automotive [13], as it is able to build components with high quality from different materials
such as metals, ceramics, and polymers [14–18]. In this technique, a fast-moving laser
beam is employed as an energy source to scan and selectively melt the metal powder,
resulting in the production of dense metal parts. LPBF technology can significantly change
the manufacturing of metal alloys making it more efficient, cost-effective, and material
saving. Typically, the influence and optimisation of AM processes’ process parameters
are carried out using statistical approaches such as the design of experiments (DOE). Al-
though these techniques proved to be efficient, a typical drawback is that the AM process
parameters were assumed as static, without considering that AM is regarded as a dynamic
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process [19,20]. Particularly, AM has a temporal nature characterised by scattered results
due to repeated heating and cooling cycles, inter-layer interactions, variation in the heat
distribution within the building platform, and the oxygen level fluctuation even if it is
within a specific range [21]. Finite element modelling and computational fluid dynamics
are two numerical techniques that have been successfully implemented to predict manu-
factured parts’ behaviour. Belhocine et al. successfully developed a numerical simulation
of structural analysis and a transient thermal coupled thermo-structural method of brake
disc rotors manufactured using different materials [22]. The unavailability of research
studies considering the above-mentioned issues motivates the research direction to other
techniques. Deep learning (DL) has been advanced in the past few years and has enabled
new opportunities for the analytical studies of AM [23]. However, DL is efficient with big
data, and the small data nature of AM experiments is a barrier towards the use of this
technology in the analytical modelling of AM processes [24].

Artificial neural networks are mathematical algorithms inspired by the neural net-
works of animal brains. A shallow neural network (SNN) consists of one input layer,
one hidden layer, and one output layer. A neural network with more than two layers is
referred to as deep learning neural networks (DLNNs) [25]. DLNNs are more efficient
than SNNs when modelling complex problems as it uses nonlinear activation functions
at several layers [26]. The greedy layer-wise pre-training technique proves to be effective
in overcoming local minima [27,28]. Greedy layer-wise pre-training sets the weights of a
neural network to values in the neighbourhood of a local minimum. Hence, it aids the
optimisation process and induces better model generalisation. A stacked auto-encoder
(SAE) architecture was used as an alternative to the Boltzmann machine in a pre-training
approach [29].

Titanium alloys are essential materials for the aerospace and biomedical sectors be-
cause of their lightweight and superior mechanical properties. The two α+β titanium-based
alloys are characterised by their ability to change the amount and distribution of untrans-
formed phases by thermal treatments or ageing, which makes them account for approxi-
mately 25–30% of the weight of modern aeroplanes engines. Simultaneously, the figure
goes up to about 50% for military jet engines [30]. Ti-6Al-2Sn-4Zr-6Mo is an α+β alloy with
α-phase of a hexagonal closed packed crystal structure, in addition to its body-centred cubic
β-phase. Ti-6Al-2Sn-4Zr-6Mo is characterised by its high fatigue strength and toughness
properties at intermediate temperature level in the range of 315–400 ◦C, which makes it
ideal for compressor disks, turbine blisks, spacers, and seals [31,32]. Ti-6Al-4V is one of the
most researched titanium alloys using AM, which can be considered a benchmark because
it is used in many applications, including aerospace and biomedical industries. Many of the
efforts on using AM to process Ti-6Al-4V have been dedicated to processing microstructure
relationships to control the mechanical properties and to minimise the inherited defects of
LPBF [33–35]. Owing to the layer-by-layer concept of LPBF, the poor surface roughness
of Ti-6Al-4V alloy is among the issues that have been investigated [36]. Other studies
include the use of post-heat treatments such as annealing [37], stress-relieving [38], solution
treatment [39], and hot isostatic pressing (HIP) [40] to improve the microstructure of the
as LPBF samples and to reduce the developed defects. Studies on using LPBF to process
other titanium alloys such as Ti-24Nb-4Zr-8Sn [41], Ti-13Nb-13Zr [42], and Ti-6Al-7Nb [39]
have also been carried out by several research groups. Literature review showed that other
alloys such as Ti-6Al-2Sn-4Zr-6Mo had not benefited from the comprehensive investigation
using LPBF compared to other alloys such as Ti-6Al-4V alloy. Therefore, this paper’s
novelty is to introduce the processing and the characterisation of Ti-6Al-2Sn-4Zr-6Mo
alloy using LPBF. The study addresses the influence of the LPBF process parameters on
the properties of the Ti-6Al-2Sn-4Zr-6Mo alloy. In addition, the study also developed
several deep learning models for process optimisation of the measured data of that alloy,
aiming to predict the properties of the developed alloy when processed using LPBF. The
process parameters under this study include laser power, scanning speed, island size, and
hatching spacing. The porosity, hardness, and microstructure developments at various
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LPBF processing parameters were studied and modelled using deep learning. Shallow
neural network supervised training, deep neural network supervised training, and deep
learning neural network unsupervised greedy layer-wise pre-training approaches were
implemented to understand the influence of the LPBF process parameters on the properties
of the Ti-6Al-2Sn-4Zr-6Mo alloy and to enable the accurate prediction of the properties of
that alloy when processed by LPBF.

2. Materials and Methods

The flow diagram of the method of processing Ti-6Al-2Sn-4Zr-6Mo and the develop-
ment of different ML models is shown in Figure 1.
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Figure 1. The flow diagram of the processing and modelling procedure.

2.1. Samples Fabrication

Ti-6Al-2Sn-4Zr-6Mo powder, supplied by (TLS, Bitterfeld, Germany) was sieved in
the range of 20–50 µm. A laser powder bed fusion system (M2 Concept Laser, Lichtenfels
Germany) equipped with Nd:YAG laser of a power up to 200 W and a laser speed up to
4000 mm/s was used to prepare 10 mm × 10 mm × 10 mm cuboid samples. A schematic
diagram of the LPBF system is shown in Figure 2a. All the cuboid samples were made
on a titanium building substrate in an Argon chamber with O2 < 100 ppm. The island
scanning method was used in which the laser-scanned section is divided into squares,
known as islands, Figure 2b. In all experiments, 3 samples were built for each run to
ensure repeatability.
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Laser power in the range of (100–200 W), laser speed of (800–1800 mm/s), hatch
spacing constant h1 of (0.2–0.8), and island size of (2–8 mm) were the input parameters
used in the preparation of the matrix. The volumetric energy density (E) is one of the
critical terms used in LPBF processes. It is an empirical parameter used to represent the
effect of LPBF laser parameters on the samples’ properties. The equation of the volumetric
energy density is shown in Equation (1) [43].

E =
P

ν·h·b (1)

where P is the power of the laser in watts, ν is the laser speed in mm/s, h hatching spacing
in mm, and b is the powder layer thickness in mm. The generated matrix parameters and
levels are listed in Table 1.

Table 1. The designed process parameters.

Process
Parameter Units

Levels

−2 −1 0 1 2

Laser power W 100 125 150 175 200

Scan speed mm/s 800 1050 1300 1550 1800

Hatch spacing (h1) 0.2 0.35 0.5 0.65 0.8

Island size mm 2.0 3.5 5.0 6.5 8.0

Hot isostatic pressing was carried in an EPSI HIP vessel at the University of Birming-
ham, which has a maximum temperature of 1450 ◦C and a maximum pressure of 200 × 106 Pa.
The HIP unit is a water-cooled vessel with molybdenum heating elements with a compressed
Argon gas system. The HIP cycle used in this experiment is 800 ◦C/103 MPa/4 h followed
by furnace cooling.

2.2. Microstructural and Mechanical Characterisation

The samples were cut vertically across the X-Z plane into two sections in order to
obtain cross-sections of building layers. Metallographic samples were polished using the
typical grinding and polishing methods. To characterise the samples’ porosity, the polished
cross-sections were characterised using an optical microscope (OM) Zeiss Axioskop and
(Peine, Germany) Hitachi TM300 (Hitachi, Japan) desktop electron scanning microscopy
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(SEM). More than 80 images were captured and stitched to construct most of the cross-
section by using ImageJ (an image editor). The software was used to determine the
fractional area of the porosity. Vickers micro-hardness characterisation was conducted
using an INDENTEC hardness testing system (Brierley, UK) with an indenter load of 30 kg.
X-ray diffraction (XRD) using Inel EQUINOX 3000 (Waltham, MA, USA), which has a
Cu-fiber laser of 1.54 Å was also used to examine the phase evolution between the as
SLMed and HIPed samples.

2.3. Deep Learning

The deep learning neural network structure includes the depth, activation functions,
and layer size. The shallow neural network (SNN) is presented in Figure 3 in order to
compare with the developed deep learning models. Matlab R2019a (By PTC) software was
implemented to program all the models. The structure of the deep neural network (DNN)
is shown in Figure 4. The DNN structure has one input layer, four hidden layers, and an
output layer. The laser power, scanning speed, hatching spacing, and island size are fed
to the input layer. The output layer includes two nodes initiated by a sigmoid function,
and the hardness and the porosity are the outputs. Each of the four hidden layers has 50
neurons. The Sigmoid function was employed to initiate the first and the second hidden
layers, whereas the rectified linear unit function was employed to activate the third and
the fourth layers, see Equations (2) and (3).

Sigmoid =
1

1 + e−x (2)

Rectified Linear Unit (ReLU) = max(0, x) (3)

where x is the function input.
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Before training, the inputs and targets are normalized so that they always fall within a
specified range. In this paper, the Matlab ‘’mapminmax” function was used to scale the
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inputs and the targets so that they fall in the range [0, 1]. Each node in the input layer
is designated to a certain input. After training, the neural network model inputs and
outputs are converted back into the same units that were utilised originally using Matlab
“reversemapminmax” function.
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An unsupervised greedy layer-wise pre-training is used to initialise the weights of the
network, Figure 5. The deep learning model is pre-trained in five stages, where the non-
input layers are trained sequentially using a shallow neural network. Although pre-training
initialises the DLNN weights, it develops a sub-optimality [44]. Therefore, A fine-tuning is
carried out to avoid any sub-optimality using a backpropagation technique [27]. In this
algorithm, if the training pairs (A1, t1), . . . , (An, tn), where As, 1 ≤ s ≤ n, are the sth input,
and ts, 1 ≤ s ≤ n, is the target, the least-square cost function is:
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Network
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Figure 5. Deep learning neural network unsupervised greedy layer-wise pre-training approach.
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3. Results and Discussion

L =
1

nZx

n

∑
s=1

[
ts−OX

s

]τ[
ts−OX

s

]
(4)

where OX
s is the output vector of the X-layered with As as input, and ZX is the number of

the output neurons.
Backpropagation [45] is a supervised learning technique (training algorithm) for

neural networks, where the differences between the target outputs and neural predictions
are employed to adjust the internal weights. Deep learning neural networks (DLNNs)
is the structure of the networks. Networks with several hidden layers are referred to as
DLNNs. Let W is a vector created by the network weights and∇E(W(k)) is the E derivative
at W = W(k), and k is the number of iterations of the weights vector. The backpropagation
approach with a momentum term can be given as:

∆W(k) = α(−∇E(W(k))) + β∆W(k− 1) (5)

where α is the learning rate, β is the momentum factor, and ∆W(k) =W(k + 1) −W(k).

3.1. Optimisation of Deep Learning (DL) Models

The experimental matrix and the measured properties of the LPBF Ti-6Al-2Sn-4Zr-
6Mo samples are shown in Table 2. The four process parameters are laser power, laser
speed, hatching spacing, and island size, whereas the corresponding measured outputs are
the porosity level and Vickers microhardness. As shown in the table, the porosity level and
Vickers microhardness of the manufactured Ti-6Al-2Sn-4Zr-6Mo samples were found in a
range of 0.07–1.04% and 330–441, respectively.

An automatic search for the optimal deep learning model was carried out by varying
the initial number of layers, random seeds, number of neurons, and the activation functions.
Several DNN structures with three, four, and five layers were trained and assessed. The
structure presented in Figure 4 shows the lowest mean absolute error. Comparisons be-
tween unsupervised greedy layer-wise pre-training and backpropagation of the developed
structure were carried out. The best model was then compared against DNN and SNN.
The DNN model was chosen to be the same as the optimum DLNN. Table 3 shows the
mean percentage error (MPE) for the tested approaches. The structure of the deep learning
neural network (DLNN), in Figure 3, gave the lowest error compared to other models.

3.2. Validation

The mean percentage error results shown in Table 3 represents the model predictions
using only 90% of the experimental data. For validation, a comparison between the
model developed using deep learning neural network unsupervised greedy layer-wise pre-
training approach and the 100% of the measured data of both the porosity and the hardness
are shown in Figures 6 and 7 respectively. The two figures show a strong agreement between
the measured data and the DLNN model, represented by the red and the blue lines.

3.3. Microstructural Analysis

The optimised DLNN model was employed to develop a contour map of the porosity
alloy with respect to the process parameters, see Figure 8. The contour distribution shows
areas with the lowest and highest porosity, and they are indicated by AL and AH. Defects
such as lack of fusion porosity and keyholes were detected in the microstructure of the
samples. At low energy density, melt pools do not overlap, leaving unmelted powder and
forms lack of fusion defects, while at high-energy input, melt pools become unstable and
deepen, creating keyholes pores. It was also noted that the island size has an effect on the
porosity of the sample when the energy density is high, though its original purpose was
to distribute the heat energy across the part cross-section evenly and hence minimise the
developed thermal stresses.
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Table 2. The input parameters and response results.

Samples Laser Power
(W)

Scan Speed
(mm/s)

Hatch Spacing
(a1)

Island Size
(mm) Porosity % Vickers Micro

Hardness

1 100 1300 0.5 5 0.65 ± 0.03 330.0 ± 5.5

2 125 1550 0.65 3.5 0.3 ± 0.02 343.7 ± 5.1

3 125 1050 0.65 3.5 0.25 ± 0.02 341.3 ± 5.4

4 175 1550 0.65 3.5 0.13 ± 0.02 359.6 ± 8.6

5 175 1550 0.35 3.5 0.25 ± 0.02 372.4 ± 6.5

6 125 1050 0.35 6.5 0.19 ± 0.02 390.7 ± 9.8

7 125 1550 0.35 6.5 0.13 ± 0.01 368.2 ± 5.7

8 150 1300 0.5 5 0.18 ± 0.02 369.4 ± 5.6

9 175 1550 0.65 6.5 0.37 ± 0.02 356.8 ± 4.6

10 150 1300 0.8 5 0.11 ± 0.01 336.8 ± 5.3

11 150 1300 0.5 2 0.17 ± 0.01 349.7 ± 8.2

12 150 1300 0.5 5 0.16 ± 0.01 365.9 ± 4.0

13 175 1050 0.35 6.5 0.74 ± 0.03 441.7 ± 6.8

14 175 1050 0.35 3.5 1.04 ± 0.04 382.4 ± 10.2

15 125 1050 0.65 6.5 0.19 ± 0.01 345.6 ± 6.5

16 125 1550 0.65 6.5 0.54 ± 0.03 330.4 ± 6.3

17 175 1550 0.35 6.5 0.09 ± 0.01 381.8 ± 3.1

18 175 1050 0.65 6.5 0.08 ± 0.01 372.0 ± 9.5

19 125 1550 0.35 3.5 0.16 ± 0.01 352.6 ± 6.9

20 175 1050 0.65 3.5 0.28 ± 0.02 367.6 ± 9.8

21 200 1300 0.5 5 0.19 ± 0.01 374.9 ± 6.0

22 150 1300 0.5 8 0.07 ± 0.01 357.6 ± 5.9

23 125 1050 0.35 3.5 0.18 ± 0.01 367.0 ± 6.7

24 150 1800 0.5 5 0.16 ± 0.01 340.2 ± 6.5

25 150 1300 0.5 5 0.15 ± 0.01 360.4 ± 8.6

26 150 800 0.5 5 0.4 ± 0.02 359.3 ± 8.2

Table 3. Mean percentage error comparison for tested approaches.

Approach Porosity Hardness

DLNN 3% 0.3%

DNN 18% 12%

SNN 46% 36%
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samples processed using the same energy density, Figure 10. As shown, only one sample 
has a porosity percentage higher than 1%, which means that this alloy reacts very well to 
the laser. It can also be clearly seen that the laser energy density shows a strong influence 
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island size).

For the relation between the measured porosity of the Ti-6Al-2Sn-4Zr-6Mo bars and
the volumetric energy density, see Figure 9. One of the shortcomings of the laser energy
density model is its inability to explain the variation in densification behaviour for the
samples processed using the same energy density, Figure 10. As shown, only one sample
has a porosity percentage higher than 1%, which means that this alloy reacts very well to
the laser. It can also be clearly seen that the laser energy density shows a strong influence on
the porosity of the sample. This result is in agreement with reported research papers on the
processing of titanium alloys using LPBF. Read et al. studied the effect of LPBF parameters
on the porosity of AlSi10Mg alloy. The authors found that low energy density produces
high porosity because of the reduced consolidation of the metal powder [46]. The porosity is
then reduced by increasing the volumetric energy density. As the energy density increases
further, the porosity increases again, similar to the contour map found in Figure 8b. In this
region, defects such as keyhole pores were created within the microstructure of AlSi10Mg
alloy, also similar to the SEM image shown in Figure 8b. El-Sayed et al. studied the
volumetric energy density model’s effect on different properties of the porosity of Ti64
alloy, such as porosity content and modulus of elasticity [47].
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Again, both low and high volumetric energy densities increase the porosity, whereas
an optimum intermediate energy density significantly reduces the porosity content. Al-
though a scatter was observed in Figure 9, the trained DLNN model showed a good
agreement with the measured results with only 3% MPE, Figure 6 and Table 3. Overall,
Ti-6Al-2Sn-4Zr-6Mo samples fabricated using Ev of 77–113 J/mm3 had relatively small
porosity content, Figure 9c. Samples manufactured using Ev of 77 J/mm3 achieved the
lowest porosity content of 0.07% and the lowest number of pores of 117. The porosity
content increased as the Ev decreased from 77 J/mm3 or further increased from 113 J/mm3,
Figure 9a. On the other hand, samples fabricated using Ev 51 J/mm3 shows a porosity level
of 0.71% and a number of pores of 2043. Irregularly shaped porosity was found across the
sample, which resulted from incomplete melting of the powders because of insufficient
energy during the laser scanning of that area, Figure 9b.
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Furthermore, samples fabricated using Ev 158 J/mm3 shows the highest porosity
level of 1.036% and the largest average pore diameter of 615 µm. Generally, spherical
pores can be attributed to entrapped gas within the gas atomised powder particles and
keyhole defects, while irregularly shaped porosity resulted from incomplete melting of the
powders because of insufficient energy during the laser scanning of that area, Figure 9d.
In agreement with the DLNN prediction shown in Figure 8, samples produced using an
island size of 6.5 mm achieved a lower porosity than those with 3.5 mm, at the same energy
density, see Figure 10. This may be because many pores are formed at the interface between
islands, which means that smaller islands would increase porosity due to the increase of
island interfaces. In contrast to island size, we could not find a correlation between the
samples’ porosity levels fabricated using the same energy density while varying the laser
power, speed, or hatching space.
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The XRD results of the LPBF and the HIPed samples are shown in Figure 11.
α”martenstic phase strong peaks while much less pronounced peaks of α can be found in
the LPBF samples. The typical microstructure for a Ti-6Al-2Sn-4Zr-6Mo alloy produced us-
ing conventional techniques consists of α and β phases. The formation of the α”martenstic
phase is due to the laser energy input, which creates temperature above the β transus
followed by rapid cooling. α”martenstic phase is not an acceptable phase for industrial
applications as it is brittle. Therefore, it is important to achieve a homogenous and sta-
ble microstructure as it affects the mechanical properties of a material. Controlling the
microstructure can be achieved through post-processing treatments such as annealing
or hot isostatic pressing (HIP). Figure 12a,b show the low and high magnification SEM
micrographs of sample after the HIP post-processing. The microstructure and the XRD
revealed the presence of α and β phases. The light regions are α phases, while the dark
regions are the β phase. Using image analysis similar to the porosity calculation, the α

phase fraction after HIP was 26.5% while the β phase was 73.5%.
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3.4. Hardness

Figure 13 shows the predicted contour map of the hardness against the process
parameters using the optimum DLNN model. Similar to porosity, the effect of the island
size parameter was found significant to the hardness.
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Figure 12. (a) Low and (b) high magnification SEM micrographs of the HIPed samples.
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Figure 13. The predicted contours distribution of Vickers microhardness of Ti-6Al-2Sn-4Zr-6Mo alloy, (a) effect of power
and laser scanning speed, (b) effect of energy density and island size.

Figure 14 shows the measured hardness with respect to energy density. A notable
scatter is observed in most of the measurements. Although a hardness dataset was scattered
along with the energy data, the model predicted it accurately, see Figures 7 and 14. The
highest Vickers microhardness was found in sample 13, which was fabricated using Ev
158 J/mm3 and an island size of 6.5 mm, while the lowest Vickers microhardness was
obtained in sample 1, which was built using Ev 51 J/mm3 and island size of 5 mm. It was
also found that island size has a contribution to the hardness measurement fluctuation of
the samples fabricated using similar energy input, which may be attributed to the variation
of the porosity content. This agrees with the predicted DLNN model, as shown in Figure 14.
Samples fabricated using an island size of 6.5 mm achieved a higher hardness than those
with 3.5 mm, at Ev > 61 J/mm3.
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4. Conclusions

Laser powder fusion processing of Ti-6Al-2Sn-4Zr-6Mo as a popular material for
aerospace and biomedical applications was presented in this paper to cover the literature
gap in processing this alloy compared to other titanium alloys. The effect of LPBF parame-
ters such as laser power, scanning speed, island size, and hatching spacing on the alloy
porosity, hardness, and microstructure developments were investigated. Within the used
processing parameters window, the Ti-6Al-2Sn-4Zr-6Mo alloy shows good processabil-
ity using the LPBF system. The porosity level of the as-fabricated Ti-6Al-2Sn-4Zr-6Mo
is generally low within the chosen process parameters ≈ 1%. Minimum porosity (<0.1)
and a minimum number of pores can be achieved using a volumetric energy density of
77–113 J/mm3. The porosity content increased as the volumetric energy density decreased
from 77 J/mm3 or further increased from 113 J/mm3. The Hardness values of the LPBF
samples increased as volumetric energy density increased. The highest hardness was
achieved using a volumetric energy density of 158 J/mm3 and an island size of 6.5 mm,
while the lowest hardness was obtained when using volumetric energy density 51 J/mm3

and an island size of 5 mm. In addition, the results show that there was a notable fluctu-
ation in the porosity and hardness measurements as the island size changes for samples
built with the same volumetric energy density levels. The microstructural analysis reveals
the presence of the undesirable α”martensitic phase, which may be due to the laser energy
input and the rapid cooling. The hot isostatic pressing was able to eliminate the porosity,
α”martensitic phase, and recover the desirable α and β phases. The relation between
processing parameters and porosity and hardness measured data were determined using
deep learning models. The DLNN model was the most accurate model and exhibited the
lowest mean error percentage when compared to SNN and DNN. The developed DLNN
model has the ability to predict the developed porosity content with an accuracy of 97%
and a hardness of 99.8%.
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Nomenclature

AM Additive manufacturing
α learning rate
As Input neurons
β momentum factor
b powder layer thickness
DL deep learning
DOE design of experiments
DLNNs deep learning neural networks
E volumetric energy density
h hatching spacing
k number of iteration of the weights vector
LPBF Laser powder bed fusion
OM optical microscope
OX

s output vector of the X-layered
P laser power
L The least-square cost function
ReLU Rectified Linear Unit
SNN Shallow neural network
s laser speed
SEM electron scanning microscopy
W vector
x the function input
ZX output neurons number
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