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Abstract: This study focuses on the dynamic compression performance of corroded steel fiber-
reinforced concrete (SFRC) exposed to drying–wetting chloride cycles by a 37 mm diameter split
Hopkinson pressure bar (SHPB) system. Three steel fiber contents (0.5%, 1.0%, 2.0%, by volume)
were incorporated into concrete, and samples were subjected to drying–wetting cycles for different
corrosion durations (30 days, 60 days, 90 days) after 28 days age. The sample damage mode, stress–
strain curve and the dynamic compression performance of corroded SFRC were compared with
plain concrete. Through the experimental data, strain-rate effect, fiber reinforcement effect and the
corrosion duration influence on the impact compression property of SFRC were identified. The
dynamic increase factor results of these samples were compared with the existing models in previous
published literature. An empirical dynamic increase factor profile characterization model considering
fiber content, corrosion duration and strain-rate is proposed.

Keywords: dynamic compressive strength; corroded steel fiber-reinforced concrete (SFRC); drying–
wetting cycles; split Hopkinson pressure bar (SHPB)

1. Introduction

Concrete is the most widely used building material around the world due to its low
cost, abundant availability of raw materials and strong compressive strength. However,
the poor mechanical performance under high strain rate limits the application of ordinary
concrete. Thus, a lot of studies have used fiber-reinforced concrete (i.e., polypropylene
fiber [1], Barchip fiber [2], basalt fiber [3], etc.) to improve the mechanical properties
of ordinary concrete. Steel fiber-reinforced concrete (SFRC) [4] has many engineering
applications because of its better strength, ductility and impact loading resistance compared
to ordinary concrete.

Over the past several decades, various studies have investigated the dynamic perfor-
mance of SFRC under high strain rate. Lok and Xiao [5] studied SFRC panels exposed into
air blast loading, and found that the failure pattern of the panels was deeply influenced by
the fiber content. Marar et al. [6] used a drop weight method to study toughness energy and
impact energy of SFRC, and a logarithmic relationship was found between the toughness
energy and impact energy. Rong et al. [7] studied the dynamic performance of ultra-high-
performance concrete (UHPC) incorporated with steel fiber. The results showed that with
increasing steel fiber content, the impact resistance of UHPC increased. Hao and Hao [8]
studied the effects of steel fiber content (0–1.5% by volume) and strain rate (50–200 s−1)
on the dynamic compressive behavior of SFRC. The results showed that the compressive
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strength and elastic modulus exhibited increasing sensitivity to strain rate with increasing
steel fiber content, and the energy absorption capacity had a strong dependency on the
steel fiber volume fraction under high strain rate.

Due to the interconnected micropore structures [9], chloride ions can penetrate into
concrete [10–12] and induce the corrosion of steel fiber. In particular, a drying and wetting
cycle condition is always identified as the most unfavorable environmental condition
for SFRC structures subjected to chloride-induced deterioration processes [13]. A few
studies have been conducted to study the influence of steel fiber corrosion under the drying
and wetting cycle condition and its influence on the mechanical performance of SFRC.
Granju and Balouch [14] studied the corrosion of steel fiber in a cracked section of SFRC
and surprisingly found that the static flexural strength of cracked SFRC samples exposed
for 1 year to marine saline fog was increased, which is consistent with other researchers’
findings [15]. Marcos-Meson et al. [16] studied the deterioration phenomena of cracked
SFRC exposed to wet–dry cycles of chlorides, and a conceptual deterioration model was
developed, describing the deterioration and recovery mechanisms that alter the long-term
mechanical performance of the cracked composite under wetting–drying conditions.

Several experimental methods can be used to study the dynamic performance of
concrete (i.e., drop weight [6], air blast [5] and split Hopkinson pressure bar (SHPB) [17]).
The SHPB is frequently applied to understand the variation in the strain rate and the
compressive strength under different impact velocities. The SHPB was first developed by
Hopkinson in 1914 [18] and revolutionary improvements were made by Kolsky in 1949 [19].
There are limited studies focused on the dynamic compression performance of SFRC by the
SHPB. Li et al. [20] studied the impact-related properties of self-compacting concrete (SCC)
with 0.5%, 0.75% and 1.0% steel fibers with an SHPB, and found that a steel fiber content of
no more than 1.0% can be successfully used to prepare SCC with good workability and
greatly improved impact resistance. Lok and Zhao [21] studied the impact response of
SFRC through an SHPB and found that the unconfined uniaxial compressive strength of
SFRC increases with strain rate in the same way as for plain concrete. Further, strain rate
has a significant influence on the ductility of SFRC. At a high strain rate, the post-peak
ductility is absent. Li et al. [22] studied the dynamic compressive behavior of SFRC at
elevated temperatures by the SHPB and found that SFRC under dynamic compression at
high temperatures displays strain rate sensitivity.

To fill the aforementioned knowledge gaps, this study focuses on the dynamic com-
pression performance of SFRC by a 37 mm diameter SHPB system. Four steel fiber contents
were incorporated into concrete, and samples were subjected into drying–wetting cycles
for different corrosion durations. Through the experimental data, strain-rate effect, fiber
reinforcement effect and the corrosion duration influence on the impact compression prop-
erty of SFRC were identified. The dynamic increase factor results of these samples were
compared with the existing models in previous published literature. An empirical dynamic
increase factor profile characterization model considering fiber content, corrosion duration
and strain rate is proposed.

2. Experimental Program
2.1. Raw Materials and Mixture Design

All tests were carried out using P.C. 32.5 Portland cement (Changzhou Longhua Co.
Ltd. Changzhou, China) which meets the Chinese standard GB 175-2007 [23]. The chemical
composition and physical properties of the cement are presented in Table 1. Natural
river sand with a fineness modulus of 2.49 was used in this work as a fine aggregate, the
absorption of the fine aggregate was 2.28%. The coarse aggregate used in this work was
natural stone with a size of 5–10 mm, the absorption of the coarse aggregate was 1.3%.
In this work, 4 different steel fiber volumetric content concrete samples were designed
with a water-to-cement ratio of 0.56, and the details of mixture proportions are given in
Table 2. The steel fiber used in this work was copper-plated steel fiber produced by China
Changzhou Zhenping Engineering Fiber Co., Ltd. (Changzhou, China). The tensile strength
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and the Young’s modulus of the steel fibers were 600 MPa and 210 GPa, respectively, and
the length of the fiber was 15 mm.

Table 1. Chemical composition (% by mass) and fineness of the cement.

CaO SiO2 Al2O3 Fe2O3 MgO SO3 K2O Na2O LoI Fineness (m2/kg)

64.47 20.87 4.87 3.69 2.13 2.52 0.65 0.11 0.77 368.9

Table 2. Mixture proportion for concrete.

Steel Fiber
Content (%)

Steel Fiber
(kg/m3)

Cement
(kg/m3)

Fine Aggregate
(kg/m3)

Coarse Aggregate
(kg/m3)

Water
(kg/m3)

Slump
(mm)

0% 0 366 695 1134 205 210
0.5% 39 366 695 1134 205 180
1.0% 78 366 695 1134 205 170
2.0% 156 366 695 1134 205 150

Note: all aggregates were in saturated surface dry (SSD) condition.

2.2. Sample Preparation

After mixing, all mixtures were cast into a cylinder mold with dimensions of 70 mm
(diameter) and 140 mm (height), and placed in a room temperature condition at 23 ± 1 ◦C.
After 24 h, the samples were de-molded and immersed in water at 23 ± 2 ◦C.

The dimensions of static compressive strength test cylinder samples were 70 mm ×
140 mm. At present, there is no standard dimension requirement for compressive impact
test samples. To minimize the frictional and inertial effects caused by the insufficient
sample size, the following equation was suggested in reference [24]:

l
s
=

√
3v
4

(1)

where l is the thickness of the sample, s denotes the diameter of the sample, v represents
the Poisson’s ratio of the sample, which can be taken as 0.3 for SFRC [25].

Some other researchers [17,26] also proposed that the ratio between the thickness and
the diameter of the cylinder compressive impact test sample should be between 0.5 and
5/3. Given the constant diameter of the cylinder sample in this work (i.e., 70 mm), the ratio
between the thickness and diameter of the compressive impact cylinder sample was taken
as 0.5, so the thickness of the impact test sample was 35 mm. The test samples for the split
Hopkinson pressure bar (SHPB) were cut from the middle portion of the 70 mm × 140 mm
cylinder sample and ground into the required thickness, as shown in Figure 1, and each
mixture was prepared with 3 replicates.

Figure 1. SHPB sample grinding.



Materials 2021, 14, 2267 4 of 14

2.3. Cyclic Drying–Wetting Accelerated Corrosion

All samples for the static compressive strength test and SHPB impact test were cured
in water for 28 days and then moved into cyclic drying–wetting accelerated corrosion
conditions. Samples were immersed in 6% (by wt.) NaCl solution at a temperature of 23 ±
2 ◦C for 2 h (Figure 2a) and then dried in an oven at a temperature of 60 ± 1 ◦C for 10 h
(Figure 2b), and every 12 h was a cycle. In this work, 4 different corrosion durations were
selected (i.e., 0 days, 30 days, 60 days and 90 days).

Figure 2. Drying–wetting accelerated corrosion samples. (a) Samples were immersed in
NaCl solution, (b) samples were dried in an oven.

2.4. 37 mm Diameter Split Hopkinson Pressure Bar (SHPB)

A 37 mm diameter SHPB testing system is adopted in this work, as shown in Figure 3a.
The system consists of a loading device, compression bar components and a data acquisition
system. The loading device consists of a striker (bullet) and air cannon. The diameter
and the length of the striker are 37 mm and 800 mm, respectively. The compression
bar components include incident and transmission bars with a length of 2700 mm and
1800 mm, respectively. The diameter of the incident and transmission bars is 70 mm, as
shown in Figure 3b. To ensure one-dimensional wave propagation and to facilitate large
deformations in the sample when needed, the length-to-diameter ratio of incident and
transmission bars should be at least 20 [27]. In this study, the ratios are 2700/70 = 38.6
and 1800/70 = 25.7 for incident and transmission bars, respectively. The data acquisition
system consisted of strain and laser velocity observation subsystems. Two high-precision
strain gauges are fixed on the incident and transmission bars. A signal amplifier is used in
the subsystem to obtain reliable strain responses. The velocity observation system includes
two sets of laser lights and a light-sensitive diode which can measure the speed of the
striker during the test.

During the test, the striker was launched by a sudden release of the compressed air by
the air cannon and accelerated in a long gun barrel until it impacted the end of the incident
bar. In this study, 3 different striker velocities were selected, which would result in 3
different strain rates (ε) inside the sample (i.e., 20 s−1, 50 s−1 and 100 s−1). The stress wave
was then generated by the impact of the striker on the incident bar. When the compression
wave propagated into the interface between the incident bar and sample, part of the wave
was reflected back to the incident bar and the rest of the wave was transmitted into the
sample and reflected back and forth inside the sample. The stress level of the sample was
gradually built up by these reflections and then compressed the sample.
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Figure 3. 37 mm SHPB testing system. (a) SHPB testing apparatus, (b) sample was fixed in the bar.

3. Results and Discussion
3.1. Sample Damage

In each test, once the striker impacted the incident bar, the sample was crushed into
several small fragments in a short time. Parts of the crushed samples are included in
Figure 4. The general failure mode of the samples was fragmentation. It can be seen from
Figure 4a that with the increasing of corrosion duration, the fragment sizes decreased,
which indicates that under the same strain rate and fiber content, the longer corrosion
duration decreased the dynamic impact resistance of the steel fiber samples. In Figure
4b, with the increasing of fiber content, the samples showed increased fragment sizes,
and the plain sample (fiber content = 0%) showed completely broken fragments while
the steel fiber-incorporated samples showed large fragments, which indicates that the
SFRC has a higher dynamic compression performance. For the sample with the same
corrosion duration and fiber content, a higher strain rate resulted in more fine fragments,
as presented in Figure 4c, which is reasonable since the higher strain rate denotes a higher
dynamic compression energy. The sample damage modes were very similar to the results
reported by Hao and Hao [8].

3.2. Stress–Strain Curve of Tested Samples

The stress–strain curves of all samples in Figure 4 are presented in Figure 5. The peak
stress was defined as the dynamic strength of the sample. For the samples with the same
strain rate and fiber content, the longer corrosion duration sample showed a decreased
dynamic strength, and the corresponding strain was lower, as shown in Figure 5a, which
shows that the increased corrosion duration would result in a poor dynamic compression
performance of the steel fiber-incorporated concrete. Under the same strain rate and
corrosion duration, the higher fiber content resulted in a higher dynamic strength and
corresponding strain, as presented in Figure 5b, which implies that the incorporation of
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steel fiber increased the dynamic compression resistance of concrete. The influence of strain
rate on concrete under the same corrosion duration and fiber content is included in Figure
5c. When strain rate increased from 20 s−1 to 100 s−1, the resulting strength increased,
but the corresponding strain obviously decreased. The impact on samples happened in
a short time (less than 1 s), and the higher strain rate denotes that more dynamic energy
is transmitted into the sample in a shorter time, which would result in a higher dynamic
strength, but the sample would break faster, so the corresponding strain would be lower.

Figure 4. Fragmentation of the concrete samples, (a) strain rate = 20 s−1, steel fiber content = 1.0% under different corrosion
durations. (b) strain rate = 20 s−1, corrosion duration = 0 days with different with different fiber content. (c) corrosion
duration = 0 d, fiber content = 0.5% under different strain rate.
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Figure 5. Stress–strain curves of concrete samples. (Note: sample was labeled as SC-XX-YY-Z, where
XX denotes the fiber content, with 0, 05, 10 and 20 representing fiber contents of 0%, 0.5%, 1.0% and
2.0%, respectively. YY denotes the corrosion duration, with 00, 30, 60 and 90 denoting corrosion
duration of 0 days, 30 days, 60 days and 90 days, respectively. Z denotes the strain rate level, with
b, c and d representing strain level of 20 s−1, 50 s−1 and 100 s−1, respectively.) (a) Strain rate = 20
s−1, steel fiber content = 1.0% under different corrosion durations, (b) strain rate = 20 s−1, corrosion
duration = 0 days with different fiber contents, (c) corrosion duration = 0 d, fiber content = 0.5%
under different strain rates.
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3.3. Dynamic Increase Factor

The dynamic increase factor (DIF) was first proposed by Abrams [28] in 1917 and now
is widely applied to analyze concrete performance under high-strain rate loads [17,29,30].
The DIF is normally defined as the ratio of the dynamic strength (fcd) to the static strength
(fcs), as follows:

DIF =
fcd
fcs

(2)

Many equations for DIF determination as a function of the strain rate were proposed
based on the previously published experimental and analytical studies, as concluded in
Table 3. Using the equations in Table 3, the distributions of DIF profiles suggested in
previous literature and together with the experimental data in this study are included in
Figure 6. Most of the equations can characterize the DIF profile in the 20 s−1 strain rate
(i.e., Equations (3), (5)–(9) and (11)) and some equations agree with the DIF profile in the
50 s−1 strain rate (i.e., Equations (7), (8) and (12)) or 100 s−1 strain rate (i.e., (12)), while
none of the equations can characterize these three strain rates.

Table 3. Equations in the literature.

References Equations

ACI 370R-14 [31] DIF =

{
0.00965 log ε + 1.058 ε ≤ 63.1s−1

0.758 log ε − 0.289 ε > 63.1s−1
(3)

CEB 1998 [32]
DIF =


(

ε
3×10−5

)1.026α
ε ≤ 30s−1

γs

(
ε

3×10−5

)1/3
ε > 30s−1

where α =
(

5 + 9
10 fcs

)−1
and γs = 106.156α−2

(4)

Grote et al. [33]
DIF ={

0.0235 log ε + 1.07 ε ≤ 266s−1

0.882(log ε)3 − 4.48(log ε)2 + 7.22 log ε − 2.64 ε > 266s−1

(5)

Li and Meng [34] DIF =

{
0.03438(3 + log ε) + 1 ε ≤ 100s−1

1.729(log ε)2 − 7.137 log ε + 8.530 ε > 100s−1
(6)

Ngo et al. [35]
DIF =


(

ε
εs

)1.026α
ε ≤ ε1

A1 ln(ε)− A2 ε > ε1
where A1 = 0.9866 − 0.0044fcs, A2 = 2.1396 − 0.0128fcs, α =

1/(20 + fcs/2) and ε1 = 0.0022fcs
2 − 0.1989fcs + 46.137

(7)

Zhou and Hao [36] DIF =

{
0.0225 log ε + 1.12 ε ≤ 10s−1

0.2713(log ε)2 − 0.3563 log ε + 1.2275 ε > 10s−1
(8)

Al-Salloum et al. [30] DIF = (3.54ε + 430.6)/(ε + 447.3) (9)
Hartmann et al. [37] DIF = 0.5ε0.13 + 0.90 (10)

Lee et al. [38] DIF =
(

ε
1×10−5

)0.0147 (11)

Huang and Xiao [17]
DIF =

0.002ε + 1
−0.000103ε2 + 0.02222ε + 0.4859

1.70

ε ≤ 30s−1

30 < ε ≤ 106s−1

ε > 106s−1

(12)
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Figure 6. Experimental data in the present study and equations in the literature.

The DIF profiles of steel fiber-incorporated concrete under different corrosion dura-
tions are included in Figure 7. For plain concrete (Figure 7a), the DIF profile is independent
of the corrosion duration since plain samples had been cured in water for 28 days, the
cement had been well hydrated and the immersion in NaCl solution did not increase
their dynamic resistance. The DIF profile of steel fiber-incorporated concrete decreased
with the increasing of corrosion duration (Figure 7b–d) since the NaCl solution penetrated
into the concrete through the micropore structures and induced corrosion of the steel
fiber. The longer corrosion duration resulted in a higher corrosion degree, so the dynamic
compression resistance decreased.

A series of linear relationships can be observed in Figure 7, and the fitting parameters
R2 are all higher than 0.98, which implies that for steel fiber-incorporated concrete, in the
20 to 100 s−1 strain rate range, a linear relationship can be used to characterize the DIF
profile well.

For steel fiber-incorporated concrete, the slopes (k) and intercepts in Figure 7b–d linear
fitting results are included in Table 4. The intercept values in Table 4 are independent of
any parameter, and the average value of the intercept is 0.0063. The values of slope (k)
show linear relationships with fiber content under different corrosion durations, as shown
in Figure 8. The higher fiber content shows a higher slope value, which indicates that
the higher dosage of steel fiber in concrete can contribute more dynamic resistance. The
slope values in Table 4 represent the influence of fiber content on the strain rate increasing
effect on the DIF profile. The strain rate increasing effect on the DIF profile is the same
for concrete samples with the same fiber content. When the fiber content increases, the
stain rate increasing effect on the DIF profile is increased due to the excellent dynamic
mechanical properties of steel fiber. The linear fitting slope in Figure 8 was fixed at 0.05
for different corrosion durations. The linear fitting intercept (m) in Figure 8 shows a clear
relationship with corrosion duration, as presented in Figure 9.
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Figure 7. Cont.
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Figure 7. DIF profiles of steel fiber-incorporated concrete under different corrosion durations, (a) fiber
content = 0%, (b) fiber content = 0.5%, (c) fiber content = 1%, (d) fiber content = 2%.

Table 4. Linear fitting parameters.

Sample Slope (k) Intercept

SC-05-00 0.9971 0.0066
SC-05-30 1.0947 0.0065
SC-05-60 1.1710 0.0060
SC-05-90 1.1985 0.0061
SC-10-00 1.0526 0.0066
SC-10-30 1.1088 0.0066
SC-10-60 1.2135 0.0061
SC-10-90 1.2595 0.0059
SC-20-00 1.0902 0.0069
SC-10-30 1.1900 0.0061
SC-10-60 1.2401 0.0061
SC-10-90 1.2895 0.0063

Figure 8. Slope values in terms of fiber content and corrosion duration.
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Figure 9. Fitting intercepts (m) in terms of corrosion duration (days).

Thus, the combination of the fitting results in Figures 7–9, the DIF profile for plain
concrete (Equation (13)) and steel fiber-incorporated concrete with different fiber dosages
under different corrosion durations (Equation (14)) can be depicted as:

DIF = 0.9045ε + 0.0082 (13)

and
DIF = (0.05x + 0.0023d + 0.9978)ε + 0.0063 (14)

where x denotes the fiber dosage (%), d represents the corrosion duration.
It is worth noting that Equations (13) and (14) are proposed based on the experimental

data in this work. For plain concrete, the application of Equation (13) is independent of
sample age. For steel fiber-incorporated concrete, the application of Equation (14) should
take the sample’s curing conditions into consideration where, in this case, the sample is
immersed in water at 23 ± 2 ◦C for 28 days. The strain rate range in this work is limited to
20 to 100 s−1, other strain rates out of this range need to be studied further.

4. Conclusions

In this work, the dynamic compression performance of SFRC under different corrosion
durations was studied by a 37 mm diameter split Hopkinson pressure bar (SHPB) system
with various strain rates. The main conclusions can be drawn as follows:

1. The general failure mode of the SFRC under a high strain rate is fragmentation. The
longer corrosion duration decreased the dynamic resistance of the SFRC. SFRC has a
higher dynamic compression performance than plain concrete.

2. The longer corrosion duration results in a decreased dynamic strength and corre-
sponding strain, and the higher fiber content results in a higher dynamic strength and
corresponding strain. When the strain rate increases from 20 to 100 s−1, the resulting
strength increased, but the corresponding strain decreased.

3. The previously proposed equations in the literature cannot precisely characterize the
DIF profile for corroded SFRC. Two equations for plain concrete (Equation (13)) and
corroded SFRC (Equation (14)) were proposed based on the experimental data in this
work. The equations can be used to evaluate the plain and corroded SFRC dynamic
compression resistance in the 20 to 100 s−1 strain rate range.
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