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Abstract: In-situ synthesis, microstructure, and mechanical properties of four TiB2-Reinforced Fe-Cr-
Mn-Al Steel Matrix Composites have been researched in this work. The microstructure and phases
of the prepared specimens have been characterized by using scanning electron microscopy (SEM),
X-ray diffraction technique, and transmission electron microscopy (TEM). The sintered specimens
consisted of Fe2AlCr, CrFeB-type boride, and TiB2. The mechanical properties, such as hardness and
compression strength at room temperature (RT) and at elevated temperatures (600 ◦C and 800 ◦C)
have been evaluated. The compressive strength and Vickers hardness of the sintered specimens
increase with the volume fraction of TiB2 in the matrix, which are all much higher than those of the
ex-situ TiB2/Fe-15Cr-20Mn-8Al composites and the reported TiB2/Fe-Cr composites with the same
volume fraction of TiB2. The highest Vickers hardness and compressive strength at room temperature
are 1213 ± 35 HV and 3500 ± 20 MPa, respectively. As the testing temperature increases to 600 ◦C,
or even 800 ◦C, these composites still show relatively high compressive strength. Precipitation
strengthening of CrFeB and in-situ synthesis of TiB2 as well as nanocrystalline microstructure
produced by the combination of mechanical alloying (MA) and spark plasma sintering (SPS) can
account for the high Vickers hardness and compressive strength.

Keywords: in-situ synthesis; Fe-Cr-Mn-Al; TiB2; composites; spark plasma sintering

1. Introduction

The ever-growing demand for lightweight materials represents one main challenge
for structural materials design in current transportation systems and machine parts. High-
strength structural steel is one of the lightweight selections for automobiles. These steels
with high-strength-to-weight ratio are provided as thinner gauge sheet steel in order to
decrease the weight of car and modify crash worthiness [1,2]. It is well known that the
reduction of vehicle weight is mainly achieved by reducing the thickness of steel plate
when high strength steel is used. However, reducing the thickness of the material to a
certain extent will meet the bottleneck of stiffness. Therefore, directly reducing the material
density is another way to further reduce the weight of components effectively, based on
high strength.

At present, Fe-Mn-Al-C steels with lower density than the traditional high strength
steels are getting great interest in potential applications for automotive structural parts
because of their special feature of increase of the tensile or yield strength and the ductility
at the same time. However, high amounts of Al and Mn will reduce these steels’ Young
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modulus and further deteriorate the component stiffness, which are the main problems
that prevent applying Fe-Mn-Al-C steel in automotive lightweight fields.

It is well known that Metal Matrix Composites (MMCs) are being used increasingly in
the automotive industry [3], cutting tools [4–6], and aerospace [7], due to their strength,
quality, and light weight. Ceramic particle reinforced metal matrix composites are com-
posed of ductile metal matrix and ceramic particle reinforced matrix, which have good
plastic toughness and high strength stiffness. Desired enhancement of elastic modulus
and decrease of thickness could be accomplished by introducing of appropriate ceramic
particles into steels. Since TiB2 with high melting temperature (2980 ◦C) has high modulus
of elasticity, high hardness, good chemical inertness, and corrosion resistance, it is the
best reinforced selection for steel matrix, compared with various ceramic particulates.
Guo [8] studied iron-based composites reinforced with different volume fraction of 15%,
20%, and 25% of TiB2 obtained by in-situ synthesis method and showed that the modulus
and hardness of Fe-TiB2 increased with TiB2 content. Kulikowski et al. [9] showed that
additions of TiB2 resulted in reduced density, increased stiffness and specific stiffness in
the composite compared with the matrix when studying mechanical properties of TiB2
reinforced Fe and 316 L stainless steel composites. However, the addition of such in-
herently brittle ceramic particles significantly deteriorates the materials’ toughness and
ductility [10,11]. To optimize the particle’s size, morphology, and dispersion combined
with the matrix microstructure modifications by adapted alloying additions is one typical
strategy. Among the many elements that are currently available, Mn is considered to be
most appropriate to adjust the matrix’ microstructure and improve the co-deformation
procedures between particle and matrix, and has only small positive effects on the TiB2
microstructure [12]. It has been demonstrated that Al can enhance the stacking fault energy
of austenite and facilitate the austenite to decompose into ferrite structure [13], which will
affect the mechanical properties. Young pointed that the addition of Cr enhanced the den-
sification of TiB2, resulted in more narrow grain size distribution of TiB2 and suppressed
the coarsening of TiB2 grains [14], which is beneficial to the mechanical properties. There-
fore, TiB2/Fe-Mn-Al-Cr(-C) composite is expected to be a new generation of automotive
lightweight composites with high specific strength and high specific stiffness.

Our previous studies showed that TiB2/Fe-Cr-20Mn-8Al composites fabricated by
ex-situ synthesis from TiB2, Cr, Fe, Mn, and Al by MA and SPS consisted of Fe2AlCr, CrFeB,
Mn2B, and TiB2, and demonstrated high compressive strength and good hardness [15].
However, it is well known that the properties of composites are related to the matrix
constitutions, which are not only related to the chemical composition but also related to the
preparation process. Studies [16,17] indicated that different Mn and Al contents resulted in
different matrix constitutions and mechanical properties. In addition to this, the ceramic
metal interface is an important factor which influences the composite’s structure and
properties. Lately, in-situ technique has been applied to synthesize metal matrices with
ceramic particulates. In-situ process is advantageous because the chemical reaction to
form the dispersed ceramic phase occurs between elements of their compounds, resulting
that the new-formed particles are located in the metal matrix and the interfaces have
higher interfacial strength, better improved wettability, and more excellent particle-size
distribution due to its clean, non-oxidized particle-matrix. Therefore, Mn and Al contents
and processing route different from our previous studies are used in this work, aiming to
fabricate TiB2-reinforced Fe-Cr-Mn-Al matrix composite with better mechanical properties.

2. Materials and Methods
2.1. Material Preparation

Commercial Cr, Fe, Mn, Al, Ti (the purity is 99.9% in weight and particles size is
below 45 µm), and B (the purity is 99.9% in weight and particles size is below 5 µm) were
exactly weighed and physically mixed according to the designed nominal compositions of
15, 10, 25, and 30 vol.%TiB2-reinforced Fe-15Cr-10Mn-5Al steel matrix composites using
a Turbula Mixer (Zibo Qixing New Material Corp. Ltd, Zibo, China). 5 h of mixing later,
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100 g mixed elemental powders were mechanically milled in a ball mill with high energy
planetary (QM-3SP4) (Nanjing NanDa Instrument Corp, Nanjing, China). The milling
of powders was carried out at 300 rpm for 60 h with 304 stainless-steel vials and balls
with three diameters of 6 mm, 10 mm, and 20 mm. The ratio of ball to powder was
set to 10:1, by weight. After being purged several times, the vials were fed with pure
argon gas under 0.4 MPa. The process control agent (PCA) [18] used in this work was
Cyclohexane. After being milled for 60 h, the powders were dried and place in a cylindrical
die made from graphite whose inside diameter is 20.2 mm, then synthesized by Dr. Sinter
825 SPS. The experimental samples were firstly heated at the rate of 100 ◦C per min to
600 ◦C, and then to 1000 ◦C, while at the rate of 50 ◦C per min from 1000 ◦C to 1100 ◦C.
The sintering pressure is 50 MPa, while the holding time is 10 min. During the SPS process,
the residual cell pressure of oven chamber is below 8 Pa.

2.2. Microstructure and Mechanical Properties Analysis

In order to research the powder phase composition for various milling times and
as-sintered bulk specimens, X-ray diffraction patterns were recorded by an X-ray diffrac-
tometer (Bruker D8) (Bruker Corp, Billerica, MA, USA) with a 0.1542 nm source (Cu Kα).
In order to determine the microstructure of the powders for various milling times, back scat-
tered electron images (BSE) were obtained by using the Phenom proX SEM (scanning elec-
tron microscopy) (Phenom world Corp, Eindhoven, Netherlands). In order to determine
the microstructure and distribution of the specimens sintered, SEM images and maps were
accomplished by using a Zeiss Sigma 500 (Carl Zeiss, Oberkochen, Germany). In addi-
tion, the bright field images and SAED (corresponding selected area electron diffraction)
patterns were achieved by using a TECNAI G2 S-TWIN F20 TEM (transmission electron
microscopy) (FEI, Hillsboro, OR, USA).

The dimension of compression test specimen is Ø4 mm × 6 mm. According to [19],
compression tests at room temperature were accomplished by an INSTRON 5569 testing
system, while compression tests at elevated temperature were accomplished by a GLEE-
BLE 3800 testing machine (DSI Corp, Poestenkill, NY, USA). The strain rate used was
1 × 10−3 per second. The hardness of the specimens was determined by an HVS-1000
Vickers hardness instrument (Jinan Liling testing machine Corp., Ltd, Jinan, China) with a
300 g load holding about 10 s. A total of 10 locations of each sample were randomly selected
to test hardness, and their arithmetic average value was calculated. Finally, each hardness
is averaged from samples no less than three.

3. Results and Discussion
3.1. Powder Characterization

The morphology of the original powders and powder mixture at different stages of
high-energy milling of 25 vol.%TiB2/Fe-15Cr-10Mn-5Al composite is shown in Figure 1.
The 0 h milled powder displays a variety of shapes and sizes in Figure 1a. After milling for
5 h (Figure 1b), rough particles or agglomerates appear, suggesting fracturing and welding
for the composite. The critical balance of fracturing and cold welding determines the effect
of mechanical alloying [20]. During mechanical alloying, excessive cold welding of soft
metallic materials, such as Al, can be restrained by the process control agents used in this
work. Further milling to 10 h results in work-hardening, which makes the powder brittle
and results in fracture and production of some big particles or agglomerates, as shown in
Figure 1c. The shape of these particles becomes irregular again. With continuing milling,
the shapes of particles tend to be spherical, and this size range becomes narrow evidently,
shown in Figure 1d. After 40 h high-energy milling (Figure 1e), the shape of particles
is spherical, and their size tends to decrease to less than 3 µm mostly. Milling for 60 h
later, the size distribution is more uniform, and no big agglomerates exists (Figure 1f).
Thus, powders become round and uniform, while the average particle size decreases
with increasing milling time. Similar results are also observed in mechanical alloying of
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the other three compositions. The phenomenon mentioned above was also observed in
other study [21].
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Figure 1. SEM images of 25 vol.%TiB2/Fe-15Cr-10Mn-5Al composite powder after (a) 0 h, (b) 5 h,
(c) 10 h, (d) 20 h, (e) 40 h, and (f) 60 h of ball milling.

Figure 2 illustrates the XRD patterns at different milling times, which is of the mixed
and MAed 25 vol.%TiB2/Fe-15Cr-10Mn-5Al powders. As for the mixed powder, peaks of
Fe, Cr, Mn, Al, and Ti are observed, while the structure of the former three elements is BCC
(body cubic centered), Al is FCC, (face cubic centered) and Ti is hexagonal. Fe powders
wrap a lot of B powders during blending, which diminishes the content of B outside Fe
powders, causing that diffraction peaks of B were very weak and cannot be detected.
Peaks of Cr disappear after milling for 5 h, and diffraction peaks corresponding to Mn,
Al, and Ti element drastically reduce, indicating that these elements might have entered
into Fe lattice with BCC structure little by little, forming the solid solution phase of α-Fe
(Cr, Mn, Al, Ti). Based on Chen et al. [22], Al was rapidly disappeared because its melting
temperature is low. Nevertheless, Cr atoms and Mn atoms are easy to embed into Fe lattice
structure and generate new solid solution since their atomic radius is similar to Fe atom
radius, resulting in their early disappearance. Moreover, as the milling time increases,
the regions of grain boundary get dominated increasingly, resulting in finely distribution
of Cr and Mn on or in the grain boundaries [23]. It is observed that the peak intensity of
Al disappears after 10 h milling, and diffraction peaks of Ti further decreases. As the time
of milling prolongs to 20 h, the diffraction peak of Mn element cannot be observed and
those of Ti element can hardly be found. After 40 h milling, all the elemental diffraction
peaks completely disappear. When the time of milling increases to 60 h, there is no evident
change of the diffraction peaks. So, we can say that the final product is a metastable BCC
Fe-based α-Fe (Cr, Mn, Al, Ti, B) solid solution.

3.2. Phase and Microstructure Identification

Figures 3–6 illustrate the SEM images of the four TiB2/Fe-15Cr-10Mn-5Al composites
sintered and related elemental distribution diagrams. Obviously, four microstructures
consist two different phases: Cr-Mn-rich and Al-Ti-lean phase (Figure 3b,e, Figure 4b,e,
Figure 5b,e, as well as Figure 6b,e), Ti-Al-rich phase (Figure 3d,f, Figure 4d,f, Figure 5d,f,
as well as Figure 6d,f).
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X-ray diffraction pattern for 25 vol.%TiB2/Fe-15Cr-10Mn-5Al composite is shown in
Figure 7. CrFeB with orthorhombic crystal structure (a is 1.4534 nm, b is 0.7302 nm, and c is
0.4215 nm), Fe2AlCr with cubic crystal structure (a is 0.2894 nm), and TiB2 with hexagonal
crystal structure (a is 0.3036 nm and c is 0.3238 nm) are identified in the composite according
to the XRD result. Combined with the SEM result, it is concluded that the Cr-Mn-rich
region is complex borides CrFeB, and the Ti-Al-rich region consists of TiB2 and Fe2AlCr.
The main matrix elements are Cr and Fe grouping together in the periodic table, while
their properties and parameters of lattice are similar. In addition, Fe2AlCr and CrFeB are
all intermetallics, which have no precise chemical composition. Hence, to measure the
phase composition of these composites precisely just by diffraction analysis with X-ray is
quite difficult.

Figure 8 illustrates the TEM bright field image 25 vol.%TiB2/Fe-15Cr-10Mn-5Al com-
posite and corresponding SAED (selected area electron diffraction) pattern of the two
intermetallic phases found in 25 vol.%TiB2/Fe-15Cr-10Mn-5Al composite. The related
SAED pattern (Figure 8b) suggests that the grain2 has a CrFeB-type structure (a is 1.4534 nm,
b is 0.7302 nm, and c is 0.4215 nm) and belongs to Fddd space group. The correspond-
ing SAED pattern (Figure 8c) suggests that the grain 3 has a Fe2AlCr-type structure (a is
0.2894 nm) and vests in Im-3 m space group.
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3.3. Mechanical Properties 
Figure 9 illustrates the variation of Vickers hardness of TiB2/Fe-15Cr-10Mn-5Al com-

posites synthesized at 1100 °C for 10 min as a function of TiB2 content. The Vickers hard-
ness were depicted with the arithmetic average of at least three samples and the error bars 
were depicted by standard deviation. It was observed that TiB2 content promotes the in-
crease of Vickers hardness, which might result from the hardness difference between TiB2 
(25~35GPa) [31] and CrFeB (22.15 GPa), as well as Fe2AlCr (8.04 GPa) [27]. 

Figure 8. (a) TEM bright field image of 25 vol.%TiB2/Fe-15Cr-10Mn-5Al composite and three
intermetallic grains 1, 2 and 3; (b) corresponding SAED demonstrating grain 2 in (a) corresponding
to CrFeB with orthorhombic crystal symmetry along

[
044

]
zone axis; (c) corresponding SAED

demonstrating grain 3 in (a) corresponding to Fe2AlCr with BCC crystal symmetry along [111]
zone axis.

Solution-precipitation can account for the generation of TiB2, CrFeB, and Fe2AlCr in
this material. During SPS, some of B powders wrapped by Fe powders during blending
react with Ti to form TiB2 by solid diffusion process, and the other B elements without
enough time to diffuse form Fe2B boride by reacting with Fe. Subsequently, part of Fe atoms



Materials 2021, 14, 2346 8 of 12

in the Fe2B were replaced by Cr and Mn resulting in forming of CrFeB. Such phenomenon
has also been found in other works [24–28]. EDS/TEM as shown in Table 1 indicates that
CrFeB is rich in Cr and B, and lack in Al compared with that in the 50 h as-milled powders,
which suggests that the neighboring areas around the CrFeB borides would be enriched
in Al and their compositions would be turbulent. Therefore, the unstable α phase near to
the CrFeB borides changed into the D03-ordered Fe3Al in case of 25 vol.%TiB2/Fe-15Cr-
10Mn-5Al, according to Refs. [29,30]. Part of Fe was replaced subsequently by Cr and Mn,
resulting in transformation from phase Fe3Al to phase Fe2CrAl.

Table 1. Average composition of the phases in 25 vol.%TiB2/Fe-15Cr-10Mn-5Al composite (wt.%).

Regions Phases Fe Cr Mn Al B Ti

Nominal
composition - 57.88 12.40 8.27 4.13 5.40 11.91

1, 2
3

CrFeB
Fe2AlCr

37.56
79.17

24.64
6.19

9.19
10.48

0
3.91

28.59
0.22

0
0

3.3. Mechanical Properties

Figure 9 illustrates the variation of Vickers hardness of TiB2/Fe-15Cr-10Mn-5Al com-
posites synthesized at 1100 ◦C for 10 min as a function of TiB2 content. The Vickers
hardness were depicted with the arithmetic average of at least three samples and the error
bars were depicted by standard deviation. It was observed that TiB2 content promotes the
increase of Vickers hardness, which might result from the hardness difference between
TiB2 (25~35 GPa) [31] and CrFeB (22.15 GPa), as well as Fe2AlCr (8.04 GPa) [27].
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Figure 10 illustrates the compression testing results of the four SPS sintered TiB2/Fe-
15Cr-10Mn-5Al composites, which was tested at room and elevated temperatures. In all
the composites, high compressive strengths within the ranges of 2877–3500 MPa at ambient
temperature (Figure 10a) were gotten. The high compressive strength is obtained by intro-
ducing Fe2AlCr and CrFeB precipitates with high strength and hardness to the matrix [32],
and then by either preventing further grains growth or by refining grains of the matrix or by
impeding dislocation migration through TiB2 [33]. Additionally, the original compressive
stress, which appeared during compression, helps to close the cavity of sintered product,
resulting in the delayed initiation of cracks, which lie at the interface of reinforcement and
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matrix [34]. Detailed results analysis illustrates that the increasing TiB2 content of the steel
matrix has led the composite compressive strength to increase gradually, which was also
observed in test at elevated temperatures, as shown in Figure 10b,c. The reason might be
the growing number of interfaces formed in the composite with higher content of TiB2
between the composite matrix and the reinforced particles.
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Figure 11 illustrates the strength values (in compression tests), which were plotted
based on the temperature. Applied temperature has leaded to a gradual reduction of
the strengths of the examined samples. The curves had a steep decrease to a level of
327–636 MPa, when the temperature was increased to 800 ◦C. The SPS sintered steel-TiB2
composites had a similar trend [24]. The chief phase of these TiB2/Fe-15Cr-10Mn-5Al
composites as-sintered by SPS is Fe2AlCr with BCC structure, which softens fast at higher
temperatures because of the power law creeps after dislocation glide and dislocation
climb [35], and thus, the compressive strength at elevated temperatures reduced greatly.

The hardness and compressive strength of the TiB2/Fe-15Cr-10Mn-5Al composites
researched in this work were compared with the those of ex-situ TiB2/Fe-15Cr-20Mn-8Al
composite we previously researched [15], and two TiB2/ Fe-Cr composites researched
by else scholars [36,37], having the same volume fraction of TiB2, as shown in Table 2,
which were all produced by powder metallurgy. Comparative result shows that TiB2/Fe-
15Cr-10Mn-5Al composite represents hardness and strength at room temperature much
higher than compared with all the other TiB2/Fe-Cr composites. On the one hand, there is
more hard phases Fe2AlCr inTiB2/Fe-15Cr-10Mn-5Al composites than in the other TiB2/
Fe-Cr composites, as shown in Table 2, which can account for the difference of hardness.
On the other hand, according to [38,39], the surface of the reinforcement phases TiB2
synthesized directly within the Fe-15Cr-10Mn-5Al matrix by chemical reactions between Ti
and B elements during SPS is cleaner and hence the bond between the reinforcing phases
and the matrix is stronger compared with the conventional ex-situ methods, which is the
other reason for the above-mentioned difference of compressive strength.
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Table 2. The hardness and compressive strength of several TiB2/Fe-Cr composites.

Alloys Process Hardness (HV) Compressive
Strength (MPa) Refs

20 vol.%TiB2//Fe-15Cr-10Mn-5Al MA + SPS 895 ± 35 3100 ± 20 (RT) This work
20 vol.%TiB2//Fe-15Cr-20Mn-8Al MA + SPS 670 ± 15 2420 ± 21 (RT) [15]

20 vol.%TiB2/AISI 316L HT-HP 460 1350(RT) [36]
20 vol.%TiB2/AISI 304 HIP 265 * - [37]

* Indicates that value was re-estimated according to the corresponding curve [15].

4. Conclusions

(1) Bulk in-situ TiB2 particulate reinforced Fe-15Cr-10Mn-5Al steel matrix composites
were successfully synthesized by MA and SPS technique using Fe, Cr, Mn, Al, Ti, and B
element powders as original materials.

(2) Phase and microstructure analysis show that the synthesized composites consisted
of Fe2AlCr, CrFeB-type boride, and TiB2.

(3) The hardness and compressive strength of the in-situ TiB2/Fe-15Cr-10Mn-5Al
composite is higher than those of the ex-situ TiB2/Fe-15Cr-20Mn-8Al composite and the
reported TiB2/Fe-Cr composites with the same volume fraction of TiB2.

(4) The hardness and compressive strength of the in-situ TiB2/Fe-15Cr-10Mn-5Al
composites increase with the TiB2 content increasing in the Fe-Cr-Mn-Al matrix from 15 to
30 vol.%, and the highest hardness and compressive strength values equal to 1213 ± 35 HV
and 3500 ± 20 MPa.

(5) The compression test temperature has a significant impact on the strength of the
sintered composites, resulting in sharply decreasing strength, especially at a temperature
of 800 ◦C.
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