Effect of Heat Treatment Process and Optimization of Its Parameters on Mechanical Properties and Microstructure of the AlSi11(Fe) Alloy
Abstract
:1. Introduction
- -
- -
- rapid cooling, i.e., cooling down to room temperature to obtain a supersaturated solid solution of dissolved atoms and vacancies,
- -
2. Materials and Methods
3. Results and Discussion
3.1. Ultimate Tensile Strength UTS
3.2. Unit Elongation E
3.3. Hardness HBS 10/1000/30
3.4. Impact Strength KC
3.5. Energy Dispersive X-ray Spectroscopy—EDS
3.6. Metallographic Analysis
4. Conclusions
- -
- tensile strength UTS reaches a maximum value (265 MPa) after the heat treatment performed for tp = 545 °C, τp = 4.5 h, ts = 165 °C, τs = 6 h, which gives an increase by 52% versus the initial value (174 MPa),
- -
- unit elongation E reaches a maximum value (4.2%) after the heat treatment performed for: tp = 545 °C, τp = 1 h, ts = 280 °C, τs = 6 h, which gives an increase by 56% versus the initial value (2.7%),
- -
- hardness HBS 10/1000/30 reaches a maximum value (104 HBS) after the heat treatment performed for: tp = 505 °C, τp = 2.5 h, ts = 165 °C, τs = 4 h and tp = 545 °C, τp = 1 h, ts = 165 °C, τs = 4 h, which gives an increase by 44% versus the initial value (72 HBS),
- -
- impact strength KC reaches a maximum value (10.7 J/cm2) after the heat treatment performed for tp = 545 °C, τp = 4.5 h, ts = 280 °C, τs = 1.5 h, which gives an increase by 88% versus the initial value (5.7 J/cm2).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Di Sabatino, M.; Arnberg, L. Castability of aluminium alloys. Trans. Indian Inst. Met. 2009, 62, 321–325. [Google Scholar] [CrossRef]
- Awano, Y.; Morimoto, K. Shrinkage morphology of Al–Si casting alloys. Int. J. Cast Met. Res. 2004, 17, 107–114. [Google Scholar] [CrossRef]
- Zolotorevsky, V.S.; Belov, N.A.; Glazoff, M.V. Casting Aluminum Alloys; Elsevier: Oxford, UK, 2007; pp. 327–376. [Google Scholar]
- Taylor, J.A. Iron-containing intermetallic phases in Al-Si based casting alloys. Procedia Mater. Sci. 2012, 1, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Mathew, J.; Remy, G.; Williams, M.A.; Tang, F.; Srirangam, P. Effect of Fe intermetallics on microstructure and properties of Al-7Si alloys. JOM 2019, 71, 4362–4369. [Google Scholar] [CrossRef] [Green Version]
- Williams, S.E.; Tien-Chien, J. Intermetallics formation and their effect on mechanical properties of Al-Si-X alloys. In Intermetallic Compounds—Formation and Applications; Aliofkhazraei, M., Ed.; IntechOpen: London, UK, 2018; pp. 21–41. [Google Scholar] [CrossRef] [Green Version]
- Suárez-Peña, B.; Asensio-Lozano, J. Influence of Sr modification and Ti grain refinement on the morphology of Fe-rich precipitates in eutectic Al–Si die cast alloys. Scr. Mater. 2006, 54, 1543–1548. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Doty, H.W.; Kaufman, M.J. The effects of Mn additions on the microstructure and mechanical properties of Al-Si-Cu casting alloys. Mater. Sci. Eng. A 2008, 488, 496–504. [Google Scholar] [CrossRef]
- Belmares-Perales, S.; Zaldívar-Cadena, A.A. Addition of iron for the removal of the β-AlFeSi intermetallic by refining of α-AlFeSi phase in an Al–7.5Si–3.6Cu alloy. Mater. Sci. Eng. B 2010, 174, 191–195. [Google Scholar] [CrossRef]
- Yi, J.Z.; Gao, Y.X.; Lee, P.D.; Lindley, T.C. Effect of Fe-content on fatigue crack initiation and propagation in a cast aluminum–silicon alloy (A356–T6). Mater. Sci. Eng. A 2004, 386, 396–407. [Google Scholar] [CrossRef]
- Taylor, J.A. The effect of iron in Al-Si casting alloys. Casting Concepts. In Proceedings of the 35th Australian Foundry Institute National Conference, Adelaide, Australia, 31 October–3 November 2004; pp. 148–157. [Google Scholar]
- Manasijevic, S.; Pavlovic-Acimovic, Z.; Raic, K.; Radisa, R.; Kvrgić, V. Optimisation of cast pistons made of Al–Si piston alloy. Int. J. Cast Met. Res. 2013, 26, 255–261. [Google Scholar] [CrossRef]
- Pezda, J. Effect of a Selected Heat Treatment Parameters on Technological Quality of a Silumin-Cast Machinery Components; ATH Scientific Publishing House: Bielsko-Biała, Poland, 2014; pp. 77–85. [Google Scholar]
- Javidani, M.; Larouche, D. Application of cast Al–Si alloys in internal combustion engine components. Int. Mater. Rev. 2014, 59, 132–158. [Google Scholar] [CrossRef]
- Oczoś, K.E.; Kawalec, A. Shaping of Light-Weight Metals; PWN: Warszawa, Poland, 2012; pp. 73–79. [Google Scholar]
- PN-EN 1706: Aluminium and Aluminium Alloys–Castings–Chemical Composition and Mechanical Properties; Standards Committee of Poland (PKN): Warsaw, Poland, 2011.
- Poloczek, Ł.; Kiełbus, A. Influence of technological factors on the quality of aluminum alloys castings. Enterp. Manag. 2016, 19, 14–19. [Google Scholar]
- Szymczak, T.; Gumienny, G.; Klimek, L.; Goły, M.; Szymszal, J.; Pacyniak, T. Characteristics of Al-Si Alloys with high melting point elements for high pressure die casting. Materials 2020, 13, 4861. [Google Scholar] [CrossRef]
- Hegde, S.; Prabhu, K.N. Modification of eutectic silicon in Al–Si alloys. J. Mater. Sci. 2008, 43, 3009–3027. [Google Scholar] [CrossRef]
- Chen, J.X.; Lu, M.J.; Wu, S.S.; Lü, S.L. Study on eutectic microstructure and modification mechanism of Al-Si alloys. Mater. Sci. Forum 2016, 877, 97–103. [Google Scholar] [CrossRef]
- Pezda, J.; Jezierski, J. Non-standard T6 Heat treatment of the casting of the combustion engine cylinder head. Materials 2020, 13, 4114. [Google Scholar] [CrossRef] [PubMed]
- Pezda, J. Effect of shortened heat treatment on change of the Rm tensile strength of the 320.0 aluminum alloy. Arch. Foundry Eng. 2015, 15, 75–78. [Google Scholar] [CrossRef]
- Mohamed, A.M.A.; Samuel, F.H. A review on the heat treatment of Al-Si-Cu/Mg casting alloys. In Heat Treatment. Conventional and Novel Applications; Czerwinski, F., Ed.; In Tech: London, UK, 2012; pp. 55–72. [Google Scholar] [CrossRef]
- Sjölander, E.; Seifeddine, S. The heat treatment of Al–Si–Cu–Mg casting alloys. J. Mater. Process. Technol. 2010, 210, 1249–1259. [Google Scholar] [CrossRef] [Green Version]
- Beroual, J.; Boumerzoug, S.; Paillard, Z.; Borjon-Piron, Y. Effects of heat treatment and addition of small amounts of Cu and Mg on the microstructure and mechanical properties of Al-Si-Cu and Al-Si-Mg cast alloys. J. Alloys Compd. 2019, 784, 1026–1035. [Google Scholar] [CrossRef]
- Furuta, S.; Kobayashi, M.; Uesugi, K.; Takeuchi, A.; Aoba, T.; Miura, H. Observation of morphology changes of fine eutectic si phase in Al-10%Si cast alloy during heat treatment by synchrotron radiation nanotomography. Materials 2018, 11, 1308. [Google Scholar] [CrossRef] [Green Version]
- Apelian, D.; Shivkumar, S.; Sigworth, G. Fundamental aspects of heat treatment of cast Al-Si-Mg alloys. AFS Trans. 1989, 97, 727–742. [Google Scholar]
- Izcara, X.L.; Blank, A.G.; Pyczak, F.; Staron, P.; Schumann, S.; Huber, N. Characterization and modeling of the influence of artificial aging on the microstructural evolution of age-hardenable AlSi10Mg(Cu) aluminum alloys. Mater. Sci. Eng. A 2014, 610, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.K.; Lloyd, D.J.; Court, S.A. Precipitation hardening in Al–Mg–Si alloys with and without excess Si. Mater. Sci. Eng. A 2001, 316, 11–17. [Google Scholar] [CrossRef]
- Edwards, G.A.; Stiller, K.; Dunlop, G.L.; Couper, M.J. The precipitation sequence in Al–Mg–Si alloys. Acta Mater. 1998, 46, 3893–3904. [Google Scholar] [CrossRef]
- Wang, G.Q.; Liu, Y.; Ren, G.C.; Zhao, Z.K. Analyzing Si Precipitation on Age Hardening of an Al-Si-Mg Cast Alloy. Adv. Mater. Res. 2010, 146–147, 1685–1689. [Google Scholar] [CrossRef]
- Colley, L.J.; Wells, M.A.; Poole, W.J. Microstructure–strength models for heat treatment of Al–Si–Mg casting alloys I: Microstructure evolution and precipitation kinetics. Can. Metall. Quart. 2014, 53, 125–137. [Google Scholar] [CrossRef]
- Shivkumar, S.; Keller, C.; Apelian, D. Ageing behavior in cast Al–Si–Mg alloys. AFS Trans. 1990, 98, 905–911. [Google Scholar]
- Maruyama, N.; Uemori, R.; Hashimoto, N.; Saga, M.; Kikuchi, M. Effect of silicon addition on the composition and structure of fine-scale precipitates in Al-Mg-Si alloys. Scripta Mater. 1997, 36, 89–93. [Google Scholar] [CrossRef]
- Kaczorowski, M.; Grabski, M.W.; Sawicki, J.; Murza-Mucha, P. A study of precipitation hardening of commercial Al-9 wt% Si alloy. J. Mater. Sci. 1979, 14, 2781–2786. [Google Scholar] [CrossRef]
- Zhang, D.L.; Zheng, L. The quench sensitivity of cast Al-7 wt pct Si-0.4 wt pct Mg alloy. Metall. Mater. Trans. A 1996, 27, 3983–3991. [Google Scholar] [CrossRef]
- Eskin, D.G. Decomposition of supersaturated solid solutions in Al–Cu–Mg–Si alloys. J. Mater. Sci. 2003, 38, 279–290. [Google Scholar] [CrossRef]
- Jiao, X.; Liu, C.; Guo, Z.; Tong, G.; Ma, S.; Bi, Y.; Zhang, Y.; Xiong, S. The characterization of Fe-rich phases in a high-pressure die cast hypoeutectic aluminum-silicon alloy. J. Mater. Sci. Technol. 2020, 51, 54–62. [Google Scholar] [CrossRef]
- Timelli, G.; Lohne, O.; Arnberg, L.; Laukli, H.I. Effect of solution heat treatments on the microstructure and mechanical properties of a die-cast AlSi7MgMn alloy. Metall. Mater. Trans. A 2008, 39A, 1747–1758. [Google Scholar] [CrossRef]
- Srivastava, M.C.; Lohne, O. Effects of heat treatment on the microstructure and mechanical properties of ductile AlSi9MgMn die castings. Int. J. Met. 2016, 10, 556–565. [Google Scholar] [CrossRef]
- Sjölander, E.; Seifeddine, S. Optimization of solution treatment of cast Al–Si–Cu alloys. Mater. Des. 2010, 31, 44–49. [Google Scholar] [CrossRef]
- Sjölander, E.; Seifeddine, S. Artificial ageing of Al–Si–Cu–Mg casting alloys. Mater. Sci. Eng. A 2011, 528, 7402–7409. [Google Scholar] [CrossRef]
- Pezda, J. Heat treatment of the EN AC-AlSi9Cu3(Fe) alloy. Arch. Foundry Eng. 2010, 10, 99–102. [Google Scholar]
- PN-EN ISO 6892-1:2010: Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature; Standards Committee of Poland (PKN): Warsaw, Poland, 2010.
- PN-EN ISO 6506-1:2008: Metallic Materials—Brinell Hardness Test—Part 1: Test Method; Standards Committee of Poland (PKN): Warsaw, Poland, 2008.
- PN-EN ISO 6506-4:2008: Metallic Materials—Brinell Hardness Test. Table of Hardness Values; Standards Committee of Poland (PKN): Warsaw, Poland, 2008.
- Poniewierski, Z. Crystallization, Structure and Mechanical Properties of Silumins; WNT: Warszawa, Poland, 1989; pp. 117–118. [Google Scholar]
- Syska, J. Modern Computer Aided Methods of Regression Analysis; Department of Physics, Silesian University: Katowice, Poland, 2014; pp. 13–26. [Google Scholar]
- Rabiej, M. Statistics from the Statistica Computer Program; Helion Publishing House: Gliwice, Poland, 2012; pp. 126–128. [Google Scholar]
- Vuksanović, D.; Asanović, V.; Šćepanović, J.; Radonjić, D. Effect of chemical composition and T6 heat treatment on the mechanical properties and fracture behaviour of Al-Si alloys for IC engine components. J. Min. Metall. Sect. B Metall. 2021, 14. [Google Scholar] [CrossRef]
- Pedersen, L.; Arnberg, L. The effect of solution heat treatment and quenching rates on mechanical properties and microstructures in AlSiMg foundry alloys. Metall. Mater Trans. A 2001, 32, 525–532. [Google Scholar] [CrossRef]
- Abdelaziz, M.H.; Samuel, A.M.; Doty, H.W.; Valtierra, S.; Samuel, F.H. Effect of additives on the microstructure and tensile properties of Al–Si alloys. J. Mater. Res. Technol. 2019, 8, 2255–2268. [Google Scholar] [CrossRef]
- Ammar, H.R.; Moreau, C.; Samuel, A.M.; Samuel, F.H.; Doty, H.W. Influences of alloying elements, solution treatment time and quenching media on quality indices of 413-type Al–Si casting alloys. Mater. Sci. Eng. A 2008, 489, 426–438. [Google Scholar] [CrossRef]
- Ammar, H.R.; Moreau, C.; Samuel, A.M.; Samuel, F.H.; Doty, H.W. Effects of aging parameters on the quality of 413-type commercial alloys. Mater. Des. 2009, 30, 1014–1025. [Google Scholar] [CrossRef]
- Wei, L.; Shuai, L.; Jie, L.; Ang, Z.; Yan, Z.; Qingsong, W.; Chunze, Y.; Yusheng, S. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism. Mater. Sci. Eng. A 2016, 663, 116–125. [Google Scholar] [CrossRef]
- Pio, L.Y. Effect of T6 heat treatment on the mechanical properties of gravity die cast A356 aluminium alloy. J. Appl. Sci. 2011, 11, 2048–2052. [Google Scholar] [CrossRef] [Green Version]
- Lech, Z.; Dudek, P.; Sęk-Sas, G. Instructions for Melting Non-Ferrous Metal Alloys; Instytut Odlewnictwa: Kraków, Poland, 1998; pp. 12–13. [Google Scholar]
- Dobrzański, L.A.; Reimann, Ł.; Krawczyk, G. Influence of the ageing on mechanical properties of the aluminium alloy AlSi9Mg. Arch. Mater. Sci. Eng. 2008, 31, 37–40. [Google Scholar]
- Ananthapadmanaban, D.; Kurien, G. Silumins: The automotive alloys. Adv. Mater. Process 2012, 170, 28–30. [Google Scholar]
- Pezda, J. Heat treatment of AlSi9Mg alloy. Arch. Foundry Eng. 2008, 8, 169–172. [Google Scholar]
- Hao, J.; Yu, B.; Bian, J.; Liu, J.; Sun, W.; Shi, Y.; Li, R. Adjusting the Si phase and forming nanoprecipitation to improve the mechanical properties of Al–Si–Cu–Mg alloy by heat treatment. Adv. Eng. Mater. 2021, 2021, 2001526. [Google Scholar] [CrossRef]
- Jarco, A. Improvement of plasticity of the AlSi11 alloy due to soft annealing treatment. Trans. Foundry Res. Inst. 2016, LVI, 261–266. [Google Scholar] [CrossRef]
- Peng, J.; Tang, X.; He, J.; Xu, D. Effect of heat treatment on microstructure and tensile properties of A356 alloys. Trans. Nonferrous Met. Soc. 2011, 21, 1950–1956. [Google Scholar] [CrossRef]
- Lu, S.-P.; Du, R.; Liu, J.-P.; Chen, L.-C.; Wu, S.-S. A new fast heat treatment process for cast A356 alloy motorcycle wheel hubs. China Foundry 2018, 15, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Wiecheć, J.; Uliasz, P.; Knych, T.; Piwowarska–Uliasz, M.; Jarosz, R. The influence of chemical composition and parameters of heat treatment on the mechanical properties and electrical conductivity in hypoeutectic aluminium silicon alloys. Arch. Foundry Eng. 2013, 13, 179–184. [Google Scholar]
- Yu, X.; Wang, L. T6 heat-treated AlSi10Mg alloys additive-manufactured by selective laser melting. Procedia Manuf. 2018, 15, 1701–1707. [Google Scholar] [CrossRef]
- Rometsch, P.A.; Schaffer, G.B. An age hardening model for Al–7Si–Mg casting alloys. Mater. Sci. Eng. A 2002, 325, 424–434. [Google Scholar] [CrossRef]
- Tash, M.; Samuel, F.H.; Mucciardi, F.; Dothy, H.W. Effect of metallurgical parameters on the hardness and microstructural characterization of as-cast and heat-treated 356 and 319 aluminum alloys. Mater. Sci. Eng. A 2007, 443, 185–201. [Google Scholar] [CrossRef]
- Ishak, M.; Amir, A.; Hadi, A. Effect of solution treatment temperature on microstructure and mechanical properties of A356 alloy. In Proceedings of the International Conference on Mechanical Engineering Research (ICMER 2013), Bukit Gambang Resort City, Kuantan, Pahang, Malaysia, 1–3 July 2013. [Google Scholar]
- Jarco, A. Effect of soft annealing treatment on impact strength and hardness of the EN AC-AlSi11 alloy. Arch. Foundry Eng. 2017, 17, 55–58. [Google Scholar]
- Pezda, J.; Jarco, A. Effect of T6 heat treatment parameters on technological quality of the AlSi7Mg alloy. Arch. Foundry Eng. 2016, 16, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Mbuya, T.O.; Odera, B.O.; Ng’ang’a, S.P. Influence of iron on castability and properties of aluminium silicon alloys: Literature review. Int. J. Cast Met. Res. 2003, 16, 451–465. [Google Scholar] [CrossRef]
- Pancho, A.; Diaz, C.; Sotomayor, O. Influence of Fe on the microstructure and mechanical properties of low Al-SI alloys. Int. J. Microstruct. Mater. Prop. 2018, 13, 317–330. [Google Scholar] [CrossRef]
- Závodská, D.; Tillová, E.; Švecová, I.; Chalupová, M.; Kuchariková, L.; Belan, J. The effect of iron content on microstructure and porosity of secondary AlSi7Mg0.3 cast alloy. Period. Polytech. Transp. Eng. 2019, 47, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Zedan, Y.; Samuel, F.H.; Samuel, A.M.; Doty, H.W. Effects of Fe intermetallics on the machinability of heat-treated Al–(7–11)% Si alloys. J. Mater. Process. Technol. 2010, 210, 245–257. [Google Scholar] [CrossRef]
- Warmuzek, M. Solidification path of the AlFeMnSi alloys in a stage of primary intermetallic phases precipitation. Trans. Foundry Res. Inst. 2015, 3, 51–60. [Google Scholar] [CrossRef]
- Warmuzek, M. Application of an X-ray EDS microanalysis in examination of metals alloy microstructure. J. Foundry Res. Inst. 2000, 3, 3–24. [Google Scholar]
- Moustafa, M.A. Effect of iron content on the formation of β-Al5FeSi and porosity in Al–Si eutectic alloys. J. Mater. Process. Technol. 2009, 209, 605–610. [Google Scholar] [CrossRef]
- Terzi, S.; Taylor, J.A.; Cho, Y.H.; Salvo, L.; Suéry, M.; Boller, E.; Dahle, A.K. Nucleation and growth dynamics of the α-Al/β-Al5FeSi eutectic in a complex Al-Si-Cu-Fe alloy. In Proceedings of the 12th International Conference on Aluminium Alloys, Yokohama, Japan, 5–9 September 2010; pp. 1273–1278. [Google Scholar]
- Bacaicoa, I.; Luetje, M.; Wicke, M.; Geisert, A.; Zeismann, F.; Fehlbier, M.; Brueckner-Foit, A. 3D morphology of Al5FeSi inclusions in high Fe-content Al-Si-Cu alloys. Procedia Struct. Integr. 2016, 2, 2269–2276. [Google Scholar] [CrossRef] [Green Version]
- Mikołajczak, P.; Ratke, L. Three dimensional morphology of β-Al5FeSi intermetallics in AlSi alloys. Arch. Foundry Eng. 2015, 15, 47–50. [Google Scholar] [CrossRef] [Green Version]
- Samuel, A.M.; Samuel, F.H.; Doty, H.W.; Valtierra, S. Beta Al5FeSi phase platelets-porosity formation relationship in A319.2 type alloys. Inter. Met. 2018, 12, 55–70. [Google Scholar] [CrossRef]
- Cao, X.; Campbell, J. Morphology of β-Al5FeSi phase in Al-Si cast alloys. Mater. Trans. JIM 2006, 47, 1303–1312. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Beausir, B.; Zhang, Y.; Gan, W.; Yuan, H.; Yu, F.; Esling, C.; Zhao, X.; Zuo, L. Heat-treatment induced defect formation in α-Al matrix in Sr-modified eutectic AleSi alloy. J. Alloys Compd. 2018, 730, 208–218. [Google Scholar] [CrossRef]
- Khalifa, W.; Samuel, A.M.; Samuel, F.H.; Doty, W.H.; Valtierra, S. Metallographic observations of β-AlFeSi phase and its role in porosity formation in Al–7%Si alloys. Int. J. Cast Met. Res. 2006, 19, 156–166. [Google Scholar] [CrossRef]
- Wang, M.; Xu, W.; Han, O. Study of refinement and morphology change of AlFeSi phase in A380 alloy due to addition of Ca, Sr/Ca, Mn and Mn, Sr. Mater. Trans. 2016, 57, 1509–1513. [Google Scholar] [CrossRef] [Green Version]
- Gao, T.; Wu, Y.; Li, C.; Liu, X. Morphologies and growth mechanisms of α-Al(FeMn)Si in Al–Si–Fe–Mn alloy. Mater. Lett. 2013, 110, 191–194. [Google Scholar] [CrossRef]
- Tunçay, T.; Bayoğlu, S. The Effect of Iron Content on Microstructure and Mechanical Properties of A356 Cast Alloy. Metall. Mater. Trans. B 2017, 48, 794–804. [Google Scholar] [CrossRef]
- Shabestari, S.G. The effect of iron and manganese on the formation of intermetallic compounds in aluminum-silicon alloys. Mater. Sci. Eng. A 2004, 383, 289–298. [Google Scholar] [CrossRef]
Si | Fe | Cu | Mn | Mg | Cr | Ni | Zn | Ti | Al |
---|---|---|---|---|---|---|---|---|---|
10.0 | 0.81 | 0.37 | 0.09 | 0.21 | 0.01 | 0.01 | 0.15 | 0.09 | balance |
Combination No. | Solution Treatment | Artificial Ageing | ||
---|---|---|---|---|
Temperature (tp), °C | Time (τp), h | Temperature (ts), °C | Time (τs), h | |
1 | 475 | 1 | 165 | 1.5 |
2 | 220 | 6 | ||
3 | 280 | 4 | ||
4 | 2.5 | 165 | 6 | |
5 | 220 | 4 | ||
6 | 280 | 1.5 | ||
7 | 4.5 | 165 | 4 | |
8 | 220 | 1.5 | ||
9 | 280 | 6 | ||
10 | 505 | 1 | 165 | 6 |
11 | 220 | 4 | ||
12 | 280 | 1.5 | ||
13 | 2.5 | 165 | 4 | |
14 | 220 | 1.5 | ||
15 | 280 | 6 | ||
16 | 4.5 | 165 | 1.5 | |
17 | 220 | 6 | ||
18 | 280 | 4 | ||
19 | 545 | 1 | 165 | 4 |
20 | 220 | 1.5 | ||
21 | 280 | 6 | ||
22 | 2.5 | 165 | 1.5 | |
23 | 220 | 6 | ||
24 | 280 | 4 | ||
25 | 4.5 | 165 | 6 | |
26 | 220 | 4 | ||
27 | 280 | 1.5 |
Micro-Area | Al, wt. %/at. % | Si, wt. %/at. % | Fe, wt. %/at. % | Phase |
---|---|---|---|---|
EDS Spot 1 | 74.25/81.75 | 8.65/9.15 | 17.11/9.10 | α(AlFeSi) |
EDS Spot 2 | 59.25/60.22 | 40.75/39.78 | - | α(Al)+β(Si) |
EDS Spot 3 | 64.24/70.71 | 19.54/20.67 | 16.21/8.62 | β(AlFeSi) |
EDS Spot 4 | 100 | - | - | α(Al) |
EDS Spot 5 | 100 | - | - | α(Al) |
EDS Spot 6 | 65.42/71.73 | 19.02/20.03 | 15.56/8.24 | β(AlFeSi) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarco, A.; Pezda, J. Effect of Heat Treatment Process and Optimization of Its Parameters on Mechanical Properties and Microstructure of the AlSi11(Fe) Alloy. Materials 2021, 14, 2391. https://doi.org/10.3390/ma14092391
Jarco A, Pezda J. Effect of Heat Treatment Process and Optimization of Its Parameters on Mechanical Properties and Microstructure of the AlSi11(Fe) Alloy. Materials. 2021; 14(9):2391. https://doi.org/10.3390/ma14092391
Chicago/Turabian StyleJarco, Aleksandra, and Jacek Pezda. 2021. "Effect of Heat Treatment Process and Optimization of Its Parameters on Mechanical Properties and Microstructure of the AlSi11(Fe) Alloy" Materials 14, no. 9: 2391. https://doi.org/10.3390/ma14092391
APA StyleJarco, A., & Pezda, J. (2021). Effect of Heat Treatment Process and Optimization of Its Parameters on Mechanical Properties and Microstructure of the AlSi11(Fe) Alloy. Materials, 14(9), 2391. https://doi.org/10.3390/ma14092391