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Abstract: Coherence is a major caveat in quantum computing. While phonons and electrons are
weakly coupled in a glass, topological insulators strongly depend on the electron-phonon coupling.
Knowledge of the electron−phonon interaction at conducting surfaces is relevant from a funda-
mental point of view as well as for various applications, such as two-dimensional and quasi-1D
superconductivity in nanotechnology. Similarly, the electron−phonon interaction plays a relevant
role in other transport properties e.g., thermoelectricity, low-dimensional systems as layered Bi and
Sb chalcogenides, and quasi-crystalline materials. Glass-electrolyte ferroelectric energy storage cells
exhibit self-charge and self-cycling related to topological superconductivity and electron-phonon
coupling; phonon coherence is therefore important. By recurring to ab initio molecular dynamics,
it was demonstrated the tendency of the Li3ClO, Li2.92Ba0.04ClO, Na3ClO, and Na2.92Ba0.04ClO
ferroelectric-electrolytes to keep phonon oscillation coherence for a short lapse of time in ps. Double-
well energy potentials were obtained while the electrolyte systems were thermostatted in a heat
bath at a constant temperature. The latter occurrences indicate ferroelectric type behavior but do
not justify the coherent self-oscillations observed in all types of cells containing these families of
electrolytes and, therefore, an emergent type phenomenon where the full cell works as a feedback
system allowing oscillations coherence must be realized. A comparison with amorphous SiO2 was
performed and the specific heats for the various species were calculated.

Keywords: decoherence; ferroelectrics; energy storage; electrolytes; van der Pol oscillators; Duffing
oscillators; Poincaré maps; FitzHugh-Nagumo model; Hodgkin-Huxley model; Rabi oscillations

1. Introduction

Statistical physics relates the average behavior of a physical system with its micro-
scopic constituents and their interactions. Under certain conditions, the equilibrium
probability of a microscopic configuration x (e.g., all spin configurations, positions of all
atoms, molecules, ions, etc.) is proportional to e−E(x), the Boltzmann distribution. The
dimensionless energy E(x) contains the potential energy of the system, the temperature
(thermal energy kT, where T{\displaystyle T} is temperature, and k{\displaystyle k} is the
Boltzmann constant), and other thermodynamic quantities [1].

Quantum mechanics offers an accurate description of a broad variety of physical
systems. Nonetheless, a demonstration that quantum mechanics applies equally to macro-
scopic mechanical systems has been a long-abiding challenge [2].

Quantum Ising models (Figure 1a–c) are canonical models for the study of quan-
tum phase transitions [3] and are the basic concept for many analog quantum computing
and quantum annealing ideas [4]. Recent experiments with cold atoms have reached the
interaction-dominated regime in quantum Ising magnets via optical coupling of trapped
neutral atoms to Rydberg states [5]. Rydberg atoms have several unique properties includ-
ing an overemphasized response to electric and magnetic fields. With the application of
an external electric field, Rydberg atoms might develop exceptionally large electric dipole
moments making them very susceptible to perturbation by the field [6]. Strong correlations
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in quantum Ising models have been observed in several experiments, starting from a single
excitation in the superatom regime up to the point of crystallization. Rapid developments
in this field make spin systems based on Rydberg atoms a promising platform to quantum
simulation because of the unmatched flexibility and strength of interactions combined with
high control and good isolation from the environment [7].

Spin Hamiltonians are repeatedly introduced as compliant simplifications of realistic
condensed matter Hamiltonians and have been hugely successful in describing many
materials [4,6–8]. Recently, they have attracted interest because they are a well-suited base
for analog quantum computation (Figure 1c) [9–13].

Decoherence has been utilized to understand the collapse of the wave function in
quantum mechanics. Specifically, components of the wave function are decoupled from
a coherent system and acquire phases from their immediate surroundings. A total super-
position of the global or universal wave function still exists (and remains coherent at the
global level), but its fate remains an interpretational issue. Decoherence does not attempt
to explain the measurement problem. Rather, decoherence explains the transition of the
system to a mixture of states that seem to correspond to those states observers perceive.
Decoherence embodies a challenge for the realization of quantum computers since such
machines are expected to rely on the undisturbed evolution of quantum coherences. Simply
stated, they require that the coherence of states be maintained and that decoherence is
managed, to perform quantum computation. The preservation of coherence, and mitigation
of decoherence effects, are therefore linked to the concept of quantum error correction [13].

Rabi oscillations arise when a few-level quantum system is exposed to a periodically
time-varying field Figure 1d [14]. These oscillations are pervasive in many areas of physics,
from atomic [15,16] and condensed-matter physics to quantum information science, having
been reported for Rydberg atoms [17], nuclear spin states of different exchange symme-
try [18], cavity polaritons [19–21], impurity states in insulators [22], excitons [23], and spin
states in quantum dots [24,25] as well as Josephson junctions [26]. Floquet states (Figure 1d)
are stationary solutions of a quantum system in the subjected to a periodic time-dependent
perturbation. Such states have enticed considerable attention recently, arising primarily
from the possibility that new phases with interesting topological properties may emerge
under high-intensity excitation [26–32].

If a system’s parameter is gradually varied, it produces gradual variations in the state
of the system itself. There can be circumstances, however, in which gradual variations of
a parameter cause sudden or catastrophic changes of state. A system of this kind shows
bifurcations [10] (Figure 1e). Bifurcation theory has been implemented to correlate quantum
systems to the dynamics of their classical analogs in atomic systems [33–38], molecular
systems [39], and resonant tunneling diodes [40]. Bifurcation theory has also been applied
to the study of laser dynamics [41], and many theoretical examples, which are hard to reach
experimentally such as the kicked top [42] and coupled quantum wells [43]. The leading
reason for the link between quantum systems and bifurcations in the classical equations
of motion is that at bifurcations, the mark of classical orbits becomes large [44,45]. Many
kinds of bifurcations have been studied with respect to the associations between classical
and quantum dynamics including saddle node bifurcations, Hopf bifurcations, umbilic
bifurcations, period doubling bifurcations, reconnection bifurcations, tangent bifurcations,
and cusp bifurcations [45].



Materials 2021, 14, 2398 3 of 16Materials 2021, 14, x 3 of 16 
 

 

  
(a) (b) 

   
(c) (d) (e) 

  
(f) 

 
(g) 

Figure 1. Ferroelectric, ferromagnetic, qubit, Ising model, Rabi oscillation, bifurcation, and damped-forced oscillator. (a) 
Landau–Ginzburg–Devonshire model for a ferroelectric. Left, the double-well free energy F in a ferroelectric as a function 
of the electric polarization P. Red shading denotes regions of negative capacitance (C < 0). Right, ferroelectric polarization–
electric field / potential difference dependence obtained from the free energy F. The ‘S’-shaped P vs EField curve displays a 
region of negative capacitance related to the energy barrier of F. Arrows indicate ferroelectric polarization directions; (b) 
Double-well potential energy diagram and the lowest quantum energy levels corresponding to the qubit. States |↑ > and 
|↓ > are the lowest two levels, respectively. The intra-well energy spacing ωp. The measurement detects magnetization 
and does not distinguish between, |↑ > and excited states within the right-hand well. These excitations are exceedingly 
improbable at the time the state is measured [10]. (c) Minimal superatom with three spins. The configurations are coupled 
by spin-flips with coupling Ω (grey arrows). The interaction energy of each state is indicated by the brightness of the grey 
background. When selecting states with a minimal distance between spin ↑, all states in the red shaded area are neglected. 
While the coupling from the ground state ∣↓↓↓ > to the states with n↑ = 1 is spatially homogeneous, the coupling of the 
singly excited states to the state with n↑ = 2 is spatially inhomogeneous [6]; (d) Fouquet states; model of a harmonically 

Figure 1. Ferroelectric, ferromagnetic, qubit, Ising model, Rabi oscillation, bifurcation, and damped-forced oscillator.
(a) Landau–Ginzburg–Devonshire model for a ferroelectric. Left, the double-well free energy F in a ferroelectric as a
function of the electric polarization P. Red shading denotes regions of negative capacitance (C < 0). Right, ferroelectric
polarization–electric field/potential difference dependence obtained from the free energy F. The ‘S’-shaped P vs EField

curve displays a region of negative capacitance related to the energy barrier of F. Arrows indicate ferroelectric polarization
directions; (b) Double-well potential energy diagram and the lowest quantum energy levels corresponding to the qubit.
States |↑ > and |↓ > are the lowest two levels, respectively. The intra-well energy spacingωp. The measurement detects
magnetization and does not distinguish between, |↑ > and excited states within the right-hand well. These excitations are
exceedingly improbable at the time the state is measured [10]. (c) Minimal superatom with three spins. The configurations
are coupled by spin-flips with coupling Ω (grey arrows). The interaction energy of each state is indicated by the brightness
of the grey background. When selecting states with a minimal distance between spin ↑, all states in the red shaded area
are neglected. While the coupling from the ground state |↓↓↓> to the states with n↑ = 1 is spatially homogeneous, the
coupling of the singly excited states to the state with n↑ = 2 is spatially inhomogeneous [6]; (d) Fouquet states; model of
a harmonically time-varying classical field of amplitude |F0| that couples the ground state |g> to the excited state |e>
of a two-level system, which itself is coupled to a continuum of states |χE > [14]; (e) Bifurcation diagram for yn [33]; (f)
Duffing oscillator; displacement vs time and velocity vs displacement (phase portrait) [34]; (g) Frequency response z/A as a
function of ω/

√
α for the Duffing equation, with α = A = 1 and damping δ = 0.1 (Equation (1)). The dashed parts of the

frequency response are unstable [35]. All the graphs cited were adapted from the reference.
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One of the dynamical systems exhibiting chaos is the non-linear forced oscillator:

..
x + δ

.
x + αx + βx3 = A cosωt (1)

where x is an extensive variable such as the displacement or the charge, δ is the damping
parameter, α controls the linear stiffness, β controls the amount of non-linearity in the
restoring force; if β = 0, the Duffing equation describes a damped and driven simple
harmonic oscillator, and f = A cosωt is the driving term, A is the amplitude of the periodic
driving force and ω the angular frequency. If β 6= 0, the oscillator is a forced-damped
Duffing oscillator (e.g., Figure 1f,g) [46,47].

Nonlinearity does not always act as a vehicle of disorder or chaos. In fact, it can
have exactly the opposite effect; an example of that, are van der Pol’s self-oscillations with
limit cycles.

The relaxation oscillations have become the foundation of geometric singular perturba-
tion theory and play a significant role in the analysis presented here. The circuit showing
relaxation oscillations consists of a feedback loop containing a switching device such as
a transistor, comparator, relay [48], or a negative resistance device like a tunnel diode,
that repetitively charges a capacitor or an inductor through a resistance until it reaches a
threshold level and then discharges again [49,50]. The period of the oscillator depends on
the time constant of the capacitor and/or inductor circuit [51]. The active device switches
abruptly between charging and discharging modes and thus produces a discontinuously
changing repetitive waveform [49,51,52].

Van der Pol proposed a version of a relaxation oscillations circuit that includes a
periodic forcing term (Figure 2):

..
x + ε

(
x2 − 1

) .
x + x = A sin ωt (2)

Equation (2) can be written as:{ .
x = y

.
y = −x + ε

(
1− x2)y + A cos(ωt + ϕ)

(3)

In equations such as Equations (2) and (3), van der Pol and van der Mark [53]
noted the existence of two stable periodic solutions with different periods for a particular
value of the parameters and observed noisy behavior in an electrical circuit described
by Equation (2) [53]. In their investigations of the oscillator behavior in the relaxation
oscillations regime, they found that the subharmonic oscillations could be observed during
changes in the natural frequency of the system [52]. Moreover, the authors noted “irregular
noise” before the transition from one subharmonic regime to another. Their paper is per-
haps one of the first experimental reports of chaos-which they did not engage in in more
detail [52,53].

Since its introduction in the 1920s, the van der Pol equation has been studied for
systems with self-excited limit cycle oscillations. The classical experimental setup of the
system is the oscillator with a vacuum triode. The equation has been studied over wide
parameter regimes, from perturbations of harmonic motion to relaxation oscillations. The
Van der Pol equation is now used as a basic model for oscillatory processes in physics,
electronics, biology, neurology, sociology, and economics [54–59]. Van der Pol himself built
some electronic circuit models of the human heart to study the range of stability of heart
dynamics. His investigations with adding an external driving signal were like the situation
in which a real heart is driven by a pacemaker. Van der Pol was interested in finding out
how to stabilize a heart’s irregular beating or “arrhythmias”. Since then, his equivalent
circuit has been used by scientists to model a variety of physical and biological phenomena.
For instance, in biology, the van der Pol equation has been used as the basis of a model of
a couple of neurons in the gastric mill circuit of the stomatogastric ganglion [60,61]. The
Hodgkin-Huxley and FitzHugh-Nagumo equation is a planar vector field that extends
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the van der Pol equation as a model for action potentials of neurons (Figure 2f,g). In
seismology, the van der Pol equation has been utilized in the development of the model of
the interaction of two plates in a geological fault [62].
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using wxMaxima 20.06.6 and the Runge-Kutta method, supplementary information) - Poincaré map adapted from [52]; (e) partition-
ing of the state space and the Poincaré maps [48]; (f) noisy Hodgkin-Huxley model; time evolution of the three ion channel variables 
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electrochemical/electrostatic energy harvesting and storage cells [65–71]. We have studied 

Figure 2. Van der Pol oscillator; (a) electrical circuit of a van der Pol oscillator with a tunnel diode showing negative
resistance; (b) I vs V characteristic I = f (V) of the tunnel diode (curve 1) and load line I = (E0–V)/R for a constant current
(line 2). These two lines intersect at the operation point V = V0, I = I0; (c) equivalent circuit of the tunnel-diode oscillator for
alternating current with a negative resistor –R-(adapted from [63]); (d) the x vs time series of Equations (2) and (3), Poincaré
map, and phase portrait (projection of the extended 3D portrait) for values A =−50, ε = 5 and ω = 7, corresponding to almost
periodic orbit (obtained in this study using wxMaxima 20.06.6 and the Runge-Kutta method, supplementary information) -
Poincaré map adapted from [52]; (e) partitioning of the state space and the Poincaré maps [48]; (f) noisy Hodgkin-Huxley
model; time evolution of the three ion channel variables n, m, and h [64]; (g) time evolution of the membrane potential and
the adaptation variable in the noisy FitzHugh-Nagumo model (V—voltage, w—current). (f,g) adapted from [64].

2. Contextualizing to the Ferroelectric Glass-Electrolyte Cells

In recent years, we have been observing different manifestations of the van der Pol-
Duffing Hodgkin-Huxley and FitzHugh-Nagumo oscillators, in different architectures of
electrochemical/electrostatic energy harvesting and storage cells [65–71]. We have studied
what seems to be analogous to Rabi’s oscillations arising from Floquet states, namely,
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stationary solutions of a quantum system in the presence of a periodic time-dependent
perturbation [70].

The self-charge, leading to an increase in potential difference and current [70–74],
while imparting energy to an electrical load resulting in an mA discharge current, is novel
in the energy storage world.

The only way the voltage of an electrochemical cell can increase is if the chemical po-
tential µ of the negative electrode increases, the positive decreases, or both (µvaccum = 0 eV).
A cell’s voltage upsurge is only accomplished if electrons are conducted from the pos-
itive electrode to the negative electrode, which is the charging direction. As the cell is
discharging, the charging current is internal to the cell completing the feedback, as in
the Poincaré maps of Figure 2d,e. Since the electrolyte is an insulator and the electrical
double-layer capacitors at the interfaces are maintained, the current seems to be topological
and the alkali mobile ions in the bulk electrolyte do not cease to move towards the positive
electrode while discharging. Surface electrons tunnel from the electrolyte to the negative
electrode completing the Poincaré maps. At the negative electrode, Rabi oscillations like
those shown in Figure 1d take place.

We concluded that a topologic supercurrent can be feedback in a ferroelectric-electrolyte
cell; self-charging materializes by the tunneling of electrons from the electrolytes’ surface to
the negative electrode while the cell is discharging with an external load (such as material
resistors or LEDs) [70–74]. The negative electrode/ferroelectric electrolyte/positive elec-
trode cells are then able to maintain self-sustained oscillations above a certain voltage for
days, like those described by the van der Pol and Fitz Hugh-Nagumo models [70,71]. Phe-
nomena observed in these ferroelectric-electrolyte cells are similar to those in Figure 2f,g
and the physical feedback occurring in the cells can be described as the Poincaré maps of
Figure 2e; a trajectory that has at least a finite number of switchings. Let ξk be the point
on the trajectory where it switches to M+ i.e., ξk ∈ S+. Suppose that after time tk, the
trajectory hits S− at ηk and switches to M−. Let τk, be the time taken for the trajectory to
hit S+ again at ξk+1. Suppose that the trajectory is transversal to the switching surfaces
at ξk and ηk. Two Poincaré maps ηk = P+(ξk) and ξk+1 = P−(ηk) are then defined. The
composition P = P− ◦ P+, which maps S+ to itself, defines a Poincaré return map for the
feedback system. Similarly P̃ = P+ ◦ P−, which maps S− to itself, is also a Poincaré return
map (Figure 2e). The fixed points and periodic points of a return map correspond to the
periodic orbits of the feedback system [48].

In the material ferroelectric-electrolyte cells, the S− Poincaré section is the negative
electrode and the S+ is the positive electrode. ξk is the point on the trajectory where an
electron tunnels from the positive electrode to the surface of the ferroelectric-electrolyte M+

where it is freely conducted (as in a topological superconductor) reaching S− after tunneling
from the surface of the electrolyte at ηk, after tk. The trajectory of the electron then switches
to M− which is the external circuit during discharge; for example, a circuit constituted by a
load resistor which is connected to the ferroelectric-electrolyte cell where the electron is
conducted back to S+ at ξk+1. Then the electron tunnels back to M+ where it is conducted
through the surface of the ferroelectric to tunnel back to ηk+1 at S− (the negative electrode)
a Poincaré return map for the feedback cell corresponding to the experimental phenomena
occurring in Figures 3 and 4 [70,71].

In our previous studies, it was demonstrated that coherence might be observed
while discharging electrostatic/electrochemical cells with a load [65–74]. In other words,
the cells of the type conductor1/ferroelectric-electrolyte/conductor2 with collective elec-
trical self-charge and self-cycling phenomena look like a single macroscopic quantum
object while discharging with a load, as observed in Figures 3 and 4. The ferroelectric-
electrolytes (Na2.99Ba0.005ClO and Li2.99Ba0.005ClO) and their polymer composites have
huge dielectric constants such as those observed in Figure 4e–h; the conductor-electrodes
in conductor1/ferroelectric-electrolyte/conductor2 do not contain sodium or lithium, in
any form, when the cells are assembled. Experiments show that even when discharge is set
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at relatively high currents such as 0.4–0.2 mA cm−2, coherent self-charge and self-cycling
can be observed, especially above 35 ◦C [70–74].
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Figure 3. Conductor1/ferroelectric-electrolyte/conductor2 cells showing self-charging and self-cycling while the cell is
set to discharge. (a) Zn/ferroelectric-electrolyte (Na2.99Ba0.005ClO)/C + Cu cell showing bifurcations corresponding to
self-cycling while discharging with a resistor of 1000 Ω at 60 ◦C as in Figure 1e (adapted from [70]); (b) Cu/ferroelectric-
electrolyte (Na2.99Ba0.005ClO)/Cu cell after quick charge followed by discharge at open-circuit voltage to 1.1–1.3 V, for then
self-charging to 2.3–2.4 V after 6 or 8 h up to approximately 9 or 5 V, respectively (adapted from [65]).

As in the Poincaré maps where a periodic solution of the feedback system is attained
(Figure 2d,e), it is possible to achieve a periodic self-charge/discharge in cells of the type
conductor1/ferroelectric-electrolyte/conductor2, as shown in Figures 3 and 4a–d [65–74].
Results obtained with Na2.99Ba0.005ClO and Li2.99Ba0.005ClO ferroelectric-based cells show
that self-charge and self-cycles may be described with van der Pol’s model (Figures 3 and 4).
In certain circumstances, the voltage of our cells can be described by Duffing oscillators as,
for example, in Figure 4e–h similar to Figure 1g.

This study aimed to observe the relationship between the microscopic and macroscopic
properties of the amorphous simulated Li3ClO, Na3ClO, Li2.92Ba0.04ClO, Na2.92Ba0.04ClO
electrolytes, and to compare them with the amorphous SiO2. Understanding if the latter
may withstand decoherence, or if full-cell emergent phenomena are necessary to observe
coherence, was an additional goal. It is noteworthy that the features obtained hereafter
in this study for the latter ferroelectric-electrolytes are related to phonons, not with the
electrons. These behaviors are nonetheless linked. As in superconducting topological
behavior, the electron-phonon coupling is observed.

To what extent are the configurations of the ferroelectric-electrolyte cells propitiating
coherent self-oscillations (such as those in Figures 3 and 4)? Is it a ferroelectric-electrolyte
solely driven phenomenon? Or it requires a certain cell architecture? What is the role
of the electrolytes’ Barium in decoherence? The goal of this study is to shed light on
these questions.
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Figure 4. Conductor1/ferroelectric-electrolyte/conductor2 cells showing self-charging and self-
cycling while set to discharge and amplitude jumps (discontinuities) related frequency response
in a Duffing oscillator as shown in Figure 1g; (a) self-charge and self-oscillations observed with an
Al/90 wt. % Li-glass (Li2.99Ba0.005ClO) + 10 wt. % Li2S/Cu cell while set to discharge at a constant
current of−1 µA (adapted from [70]); (b) inset of (a) showing small oscillations like n in Figure 2f and
w (current) in Figure 2g; (c,d) phase portraits of the voltage and current oscillations shown in (a,b)
which clearly show limit cycles; (e,f) relative real and imaginary permittivities for Na2.99Ba0.005ClO
for different times at 25 ◦C showing jumps in the amplitude of the forced oscillations imposed
by the electrical impedance spectroscopy (EIS) measurement (adapted from [66]); (g) relative real
and imaginary permittivities ratio for Li2.99Ba0.005ClO, at different temperatures, showing jumps
in the amplitude of the forced oscillations imposed by the electrical impedance spectroscopy (EIS)
measurement driving forces; (h) imaginary vs real impedances for Li2.99Ba0.005ClO, at different
temperatures, showing jumps in the amplitude of the forced oscillations imposed by the electrical
impedance spectroscopy (EIS) (adapted from [64]). Note: EIS is an AC technique, therefore, a
frequency response as shown in Figure 1g for a Duffing oscillator is expected. The voltage amplitude
was 10 mV.
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3. Theoretical Methods

The relationship between microscopic and macroscopic properties is not intuitive,
because fluctuations of properties are significant in microscopic systems. It is required,
therefore, to collect multiple snapshots of a microscopic system to compute a meaningful
average property. This collection of snapshots is a statistical ensemble.

The molecular dynamics (MD) method enables one to build of a model in which
the molecules are continuously moving. It simulates the behavior of a limited number
of molecules, confined to a given volume and interacting with one another through a
given pair potential [75]. The molecules are endowed with more or less ordered position
coordinates at the start, so that none overlap, but with random coordinates of velocity.
Their trajectories will then be followed, by a detailed solution of Newton’s laws of motion.

In an ab-initio molecular dynamics (AMD) run the forces calculated in a given ge-
ometry step are used to update the atomic positions. The system dynamics, i.e., the ionic
movements, are subject to Newton mechanics while the forces acting on the ions are calcu-
lated from ab initio using a self-consistent electronic density (Hellmann-Feynman forces)
as implemented in Vienna Ab Initio Software Package (VASP) [76].

Periodic boundary conditions are assumed and allow that a molecule, which leaves
the volume across one face, re-enters across the opposite phase.

In the statistical ensemble, the various states of the system differ in positions and ve-
locities of the component’s particles. The space of all possible system states is of dimension
6N for N particles and is termed the phase space.

A system at imposed volume V’, and temperature T, is represented by a statistical
ensemble, which is called the canonical ensemble or NV′T ensemble.

The number of molecules and the global volume are identical for all system states
belonging to the ensemble, but they differ in total energy, which is a fluctuating variable in
this ensemble. Each state j of the canonical ensemble occurs with a probability proportional
to e−Ej/kBT where kB is the Boltzmann and Ej is the total energy (kinetic + potential) of the
system in state j. Here we use the symbol E for total energy (kinetic and potential) and U
for the potential energy. The Boltzmann factor e−Ej/kBT expresses that low energy states
are favored when compared to high-energy states. Increasing temperature broadens the
energy distribution in the ensemble and, as a consequence, the average energy is increased.

Ab initio molecular dynamics (AMD) as implemented by VASP [76] was used to
simulate a closed system thermostatted in a heat bath at a constant temperature as in
an NV′T ensemble. The studied systems were Li81Cl27O27, Li79BaCl27O27, Na81Cl27O27,
Na79BaCl27O27, Si3O6, and Si108O216 where the compositions of the compounds contain-
ing barium, were the most approximate to A2.99Ba0.005ClO (A = Li or Na), while still
maintaining a feasible simulating computing time.

The initial structures were optimized at the correspondent temperatures after per-
forming microcanonical simulation NV’E and isothermal-isobaric simulations NP’T on the
crystalline optimized structure to set the volumes at the correspondent temperatures. The
temperatures were chosen to assure that the system is in the amorphous state, immediately
above the transition to amorphous.

Projector augmented wave (PAW) potentials [77] in the generalized gradient approx-
imation (GGA) [78] were used. Electronic structure calculations were conducted with
cut-off energies of 500 eV. The AMD simulations were performed with 4 fs time-steps to a
maximum of 8 ps; velocities were rescaled to maintain a constant temperature using the
Nosé’s thermostat [79] with a mass chosen such that temperature fluctuates with a period
of 40 time-steps. Each NV’T ensemble was allowed to relax at least until decoherence was
noticeably observed. Results are shown in Figures 5–8.

A finite collection of system states, which is representative of the NV′T statistical
ensemble, average properties was obtained by simple arithmetic averaging over the n
states composing the collection. For instance, the average energy is 〈E〉 = 1

n ∑n
i=1 Ei. The

heat capacity at constant volume is CV′ =
(

∂E
∂T

)
V′

= 1
kBT2

(〈
E2〉− 〈E〉2).
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The pair distribution functions g(r) versus the interatomic distances r were also
calculated for controlling the non-periodic character of the amorphous structures. An
example of the latter is shown for Li2.92Ba0.04ClO in Figure 5b.

It is important highlighting that if a manifestation is observed during the AMD
relaxation, the correspondent event should be witnessed in Nature. Nonetheless, processes
with slow dynamics will not be observed in AMD, even if occurring in Nature.

The x vs time series and the phase portrait (projection of the extended 3D portrait) for
values A =−50, ε = 5, andω = 7, corresponding to almost periodic orbit in Figure 2d were ob-
tained using wxMaxima 20.06.6 and the Runge-Kutta method in supplementary information.
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Figure 5. Ab Initio Molecular Dynamics for Li-glass ferroelectric-electrolytes; (a) potential energy vs time for Li2.92Ba0.04ClO
and Li3ClO. The upper envelope energy for Li2.92Ba0.04ClO at 363 K before decoherence: −2085 + 41.94e−t/5.634 kJ/
molformula unit corresponding to a damping oscillator; decoherence is observed above 1.2 ps; the calculated specific heat is Cv’

= 0.193 kJ/kg K; the upper envelope energy for Li3ClO at 473 K before decoherence:−2085+ 30.23e−t/2.012 kJ/molformula unit

corresponding to a damping oscillator; decoherence is observed above 7 ps; the calculated specific heat is Cv’ = 0.465 kJ/kg K;
(b) pair correlation function for Li2.92Ba0.04ClO, at 363 K, showing first and second neighbors at fixed distances corresponding
to sharp peaks and broad peaks for third and above neighbors’ distances indicating structural disorder, often associated
with an amorphous character, as expected from experimental results; (c) phase portrait for power vs. energy for Li3ClO at
473 K corresponding to a damped coherent oscillator that becomes decoherent; the relaxation of the focus (equilibrium
energy) corresponds to a variation of 0.3% from the initial focus energy; ∆Umax = Umax − Umin ≈ 0.46 eV; (d) phase portrait
for power vs energy for Li2.92Ba0.04ClO, at 363 K, corresponding to a damped coherent oscillator that becomes decoherent;
the relaxation of the focus corresponds to a variation of 0.2% of the initial energy; ∆Umax ≈ 0.32 eV. Note: both (b) and (c)
are similar to the Duffing oscillator model in Figure 1f.
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Figure 6. Ab Initio Molecular Dynamics for Li-glass ferroelectric-electrolytes showing decoherence;
(a) inset of the phase portrait of Li3ClO showing a double-well potential; (b) schematic representation
of energy vs position, showing that thermal excitation allows a molecule to hop back and forth
between the wells; (c,d) insets of the phase portrait of Li2.92Ba0.04ClO showing back and forth paths
between the wells described by a van der Pol-Duffing oscillator model as the one in Figures 1f and 2d.
Note: Potential energy is dU = −F.dr and power is dP = F.dv where F is an applied force, r atom
displacement, and v atom velocity.
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Figure 7. Ab Initio Molecular Dynamics for Na-glass ferroelectric-electrolyte showing decoher-
ence; (a) potential energy vs time for Na2.92Ba0.04ClO at 310 K; the calculated specific heat is
Cv’ = 0.442 kJ/kg K and potential energy vs time for Na3ClO at 310 K; the calculated specific heat
is Cv’ = 0.457 kJ/kg K; (b) phase portrait of Na2.92Ba0.04ClO for power vs potential energy showing
back and forth between two double-wells described by a van der Pol-Duffing oscillator model as the
one in Figure 1f.
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Figure 8. Ab Initio Molecular Dynamics for the amorphous Si3O6 showing noise and a quasi-periodic
structure; (a) total energy vs time for SiO2 at 1600 K; the calculated specific heat is Cv’ = 0.826 kJ/kg K;
no damping is observed; (b) phase portrait of SiO2 for power vs potential energy showing one energy
well and almost no anharmonicity. The difference between the two energy states is ∆U ≈ 0.62 eV
and kBT = 0.129 eV. Almost no focus (equilibrium energy) displacement is observed. Note that
simulations not shown here demonstrate that for a larger box such as that containing Si108O216,
decoherence is achieved immediately even at room temperature.

4. Results and Discussion

The results obtained for the ferroelectric amorphous-electrolytes have been demon-
strated to be very different from those obtained for the amorphous SiO2 that was used as a
control, as its heat capacity is well known (Figures 5–8).

While Li3ClO phonons’ oscillations corresponded to a strong environmental coupling
between 0 and 7.0 ps, Li2.92Ba0.04ClO phonon oscillations were only strongly coupled up to
1.2 ps (Figure 5). Conversely, Si3O6 shows an almost periodic orbit (Figure 2d) where noise
is observed since t = 0 ps. As expected, Na3ClO maintains a certain coherence during the
first ps, while Na2.92Ba0.04ClO phonon oscillations show decoherence almost immediately
(Figure 7).

Whereas Li3ClO and Li2.92Ba0.04ClO show single-well oscillations in the first ps
(Figures 5 and 6), Na3ClO and Na2.92Ba0.04ClO show almost instantaneous decoherence
while their energy oscillates in a double-well (Figure 7). Si3O6 energy oscillates in a single
well and shows noise since the first time-steps (Figure 8). Control simulations performed
with Si108O216 show that SiO2 phonon oscillations are immediately decoherent (not show-
ing any periodicity), even at room temperature, which indicates that if the simulation
box contains enough atoms, the decoherence is obtained faster. It is not trivial to obtain a
canonical ensemble distribution of conformations and velocities as they depend on system
size, thermostat, and time step.

Although decoherence is no doubtfully more prominent at elevated temperatures
due to its very nature, in this study it was observed that the substitution of two Lithium
atoms by a heavy Barium atom and a vacancy is more important, surpassing the effect of
temperature as observed in Figure 5; Li3ClO keeps its coherence for a much longer period
than Li2.92Ba0.04ClO, even if its temperature is 110 K higher. The same applies to the Na-
based ferroelectric electrolyte as shown later. We had previously observed experimentally
that the introduction of a small amount of Ba in Li2.99Ba0.005ClO reduces the glass transition
temperature of Li3ClO.

Two very distinctive features are found when comparing the amorphous ferroelectric
electrolytes and the amorphous Si3O6 AMD relaxation oscillations; while the first is dissi-
pative and anharmonic (Figure 5), in the second the dissipation is not observed and the
system keeps its focal energy point fairly well; no exponential dissipation envelop-type
could be observed in Figure 8 for SiO2 at 1600 K. This phenomenon does not seem to be
directly related with the temperature difference as simulations for the latter at 298 K show
comparable results.
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The upper envelope of the potential energy for Li2.92Ba0.04ClO, at 363 K, before deco-
herence, is −2085 + 41.94e-t/5.634 kJ/molformula unit corresponding to a damping oscillator.
Decoherence is observed above 1.2 ps; the calculated specific heat at constant volume is
Cv’ = 0.193 kJ/kg K. The upper envelope energy for Li3ClO at 473 K before decoherence is
−2085 + 30.23e-t/2.012 kJ/molformula unit corresponding to a damping oscillator; decoherence
is observed above 7.0 ps (Figure 5). The calculated specific heat at constant volume is
Cv’ = 0.465 kJ/kg K. The difference between envelope curves should be essentially related
to Ba doping.

The total energy vs time for Na2.92Ba0.04ClO, at 310 K, shows almost instantaneous de-
coherence; the calculated specific heat at constant volume is Cv’ = 0.442 kJ/kg K (Figure 7).
For Na3ClO at 310 K the decoherence occurs at approximately 1 ps and the calculated
specific heat at constant volume is Cv’ = 0.457 kJ/kg K (Figure 7). For SiO2 at 1600 K, the
calculated specific heat at constant volume is Cv’ = 0.826 kJ/kg K (Figure 8).

5. Conclusions

The ab initio molecular dynamics canonical ensemble was used to describe the ther-
modynamics of five different amorphous systems (Li3ClO, Li3−2 × 0.04Ba0.04ClO, Na3ClO,
Na3-2 × 0.04Ba0.04ClO, and SiO2) as the systems were thermostatted in a heat bath at a
constant temperature. This procedure allowed calculating the potential energy and the
average of the total energy of each system, as well as, the specific heat at constant volume.
The results for Li3ClO, Li3−2 × 0.04Ba0.04ClO, Na3ClO, and Na3−2 × 0.04Ba0.04ClO specific
heat at constant volume are in agreement with the experimental results of the end binaries;
for SiO2 the calculated specific heat is within the experimental error of data found in
the literature.

The ferroelectric nature of the Li3ClO, Li3−2 × 0.04Ba0.04ClO, Na3ClO, and
Na3−2 × 0.04Ba0.04ClO was observed as the potential energy relaxed to two energy minima
accessible by thermal energy, kBT, corresponding to symmetric configurations of dipoles or
dipoles coalescences as in an Ising model. These systems tend to be described by van der
Pol– Duffing oscillators.

In this study, it was observed that the substitution of two lithium or sodium atoms by a
heavy barium and a vacancy is more important than the effect of temperature in decoherence.

Although the ferroelectric character of the electrolytes, the van der Pol–Duffing
relaxation-oscillator models and a certain coherence are undoubtedly observed for the sim-
ulated electrolytes, at the temperatures at which the conductor1/ferroelectric-electrolyte/
conductor2 cells were observed to self-charge and self-cycle; the time-scales for coherence
observation are much smaller. Therefore, it is likely that a cell containing two electrodes
with different electrochemical potentials and the electrolyte is needed to have relaxation
oscillations in a timescale of hours or days confirming the phenomenon as emergent.
The external circuit discharge with the internal self-charge feedback enabled by the cou-
pled electron-phonon surface conduction of the ferroelectric-electrolyte constitutes two
Poincaré maps. This latter feedback described by equivalent circuits such as van der Pol
and Hodgkin-Huxley FitzHugh-Nagumo is likely to constitute a necessary condition to
achieve coherence in a ferroelectric-electrolyte cell.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma14092398/s1.
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