Effect of Polymer Additives on the Microstructure and Mechanical Properties of Self-Leveling Rubberised Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Workability
2.4. Scanning Electron Microscopy
2.5. Density and Porosity of the Studied Materials
- (a)
- Particle density
- ms—the mass of the dry powdered sample, [g]
- ma—the mass of the alcohol-filled pycnometer, [g]
- mp—the mass of the pycnometer filled with sample and alcohol, [g]
- ƍa—alcohol density [g/cm3]
- (b)
- Bulk density
- m1—the mass of dried sample in air, [g]
- m2—the mass of sample in water, [g]
- m3—the mass of the water-saturated sample weighed in air, [g]
- ƍw—water density at 23 °C [g/cm3]
- (c)
- Total Porosity
- ƍb—bulk density of the sample, [g/cm3]
- ƍr —particle density of sample [g/cm3]
- (d)
- Open pores volume
- m2—the mass of sample in water, [g]
- m3—the mass of the water-saturated sample weighed in air, [g]
- ƍw—water density at 23 °C [g/cm3]
- (e)
- Open porosity
- m1—the mass of dried sample in air, [g]
- m2—the mass of sample in water, [g]
- m3—the mass of the water-saturated sample weighed in air, [g]
2.6. Mechanical Properties
3. Results and Discussion
3.1. Workability
3.2. Microstructure of Obtained Materials
3.3. Density and Porosity of the Studied Materials
3.4. Compressive Strength
3.5. Flexural Strength
4. Conclusions
- -
- An aqueous dispersion of a styrene-acrylic ester copolymer (silanised);
- -
- Water dispersion of styrene-acrylic copolymer;
- -
- Anionic copolymer of acrylic acid ester and styrene in form of powder;
- -
- Water polymer dispersion produced from the monomers vinyl acetate and ethylene;
- -
- Copolymer powder of vinyl acetate and ethylene.
- -
- Introduction of polymer additives in the form of an aqueous dispersion as well as in the form of redispersive powders into the self-leveling rubberised concrete significantly influences the microstructure of the obtained materials. However, it should be stressed that silanisation of styrene-acrylic ester copolymer dispersion allows to obtain composites characterised by the lowest values of porosity and the highest values of compressive as well as flexural strength. In the case of other studied addtives there is no simple correlation between porosity and mechanical properties of the obtained concrete-based composites.
- -
- Modification of the self-leveling rubberised concrete by means of 1% and 5% of redispersible powders increases the workability of the obtained composites, while the introduction of 10%wt. of polymeric additive leads to a reduction of studied parameter. The reduction of workability is a result of water adsorption caused by the higher amount of used redispersible powders.
- -
- The addition of 1% aqueous polymer dispersions improved the flexural strength of the studied materials, while the admixtures in the form of powder caused the value of the studied property to decrease. The additives selected for the tests reduce the flexural strength value, with a notable exception of AS, in a larger amount (5 and 10%).
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thomas, B.S.; Gupta, R.C.; Panicker, V.J. Recycling of waste tire rubber as aggregate in concrete: Durability-related performance. J. Clean. Prod. 2016, 112, 504–513. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, S.; Wang, R.; Dang, F. Potential use of waste tire rubber as aggregate in cement concrete—A comprehensive review. Constr. Build. Mater. 2019, 225, 1183–1201. [Google Scholar] [CrossRef]
- Park, Y.; Abolmaali, A.; Mohammadagha, M.; Lee, S. Structural performance of dry-cast rubberized concrete pipes with steel and synthetic fibers. Constr. Build. Mater. 2015, 77, 218–226. [Google Scholar] [CrossRef]
- Siddika, A.; Mamun, M.A.; Alyousef, R.; Amran, Y.H.M.; Aslani, F.; Alabduljabbar, H. Properties and utilizations of waste tire rubber in concrete: A review. Constr. Build. Mater. 2019, 224, 711–731. [Google Scholar] [CrossRef]
- Gesoglu, M.; Güneyisi, E.; Hansu, O.; Ipek, S.; Asaad, D.S. Influence of waste rubber utilization on the fracture and steel-concrete bond strength properties of concrete. Constr. Build. Mater. 2015, 101, 1113–1121. [Google Scholar] [CrossRef]
- Raffoul, S.; Garcia, R.; Escolano-Margarit, D.; Guadagnini, M.; Hajirasouliha, I.; Pilakoutas, K. Behaviour of unconfined and FRP-confined rubberised concrete in axial compression. Constr. Build. Mater. 2017, 147, 388–397. [Google Scholar] [CrossRef]
- Angelin, A.F.; Miranda, E.J.P.; Santos, J.M.C.D.; Lintz, R.C.C.; Gachet-Barbosa, L.A. Rubberized mortar: The influence of aggregate granulometry in mechanical resistances and acoustic behavior. Constr. Build. Mater. 2019, 200, 248–254. [Google Scholar] [CrossRef]
- Kashani, A.; Ngo, T.D.; Hemachandra, P.; Hajimohammadi, A. Effects of surface treatments of recycled tyre crumb on cement-rubber bonding in concrete composite foam. Constr. Build. Mater. 2018, 171, 467–473. [Google Scholar] [CrossRef]
- Sengul, O. Mechanical behavior of concretes containing waste steel fibers recovered from scrap tires. Constr. Build. Mater. 2016, 122, 649–658. [Google Scholar] [CrossRef]
- Tagba, M.; Li, S.; Jiang, M.; Gao, X.; Benmalek, M.L.; Boukour, S.; Liu, C. Performance Evaluation of Cementitious Composites Containing Granulated Rubber Wastes, Silica Fume, and Blast Furnace Slag. Crystals 2021, 11, 632. [Google Scholar] [CrossRef]
- Jan Kole, P.; Löhr, A.J.; Van Belleghem, F.G.A.J.; Ragas, A.M.J. Wear and tear of tyres: A stealthy source of microplastics in the environment. Int. J. Environ. Res. Public Health 2017, 14, 1265. [Google Scholar] [CrossRef]
- Gonen, T. Freezing-thawing and impact resistance of concretes containing waste crumb rubbers. Constr. Build. Mater. 2018, 177, 436–442. [Google Scholar] [CrossRef]
- Loganathan, R.; Mohammed, B.S. Properties of rubberized engineered cementitious composites containing nano-silica. Materials 2021, 14, 3765. [Google Scholar] [CrossRef]
- Aslani, F. Mechanical Properties of Waste Tire Rubber Concrete. J. Mater. Civ. Eng. 2016, 28, 04015152. [Google Scholar] [CrossRef]
- Alaloul, W.S.; Musarat, M.A.; Haruna, S.; Law, K.; Tayeh, B.A.; Rafiq, W.; Ayub, S. Mechanical properties of silica fume modified high-volume fly ash rubberized self-compacting concrete. Sustainability 2021, 13, 5571. [Google Scholar] [CrossRef]
- Rashad, A.M. A comprehensive overview about recycling rubber as fine aggregate replacement in traditional cementitious materials. Int. J. Sustain. Built Environ. 2016, 5, 46–82. [Google Scholar] [CrossRef] [Green Version]
- Pham, N.P.; Toumi, A.; Turatsinze, A. Rubber aggregate-cement matrix bond enhancement: Microstructural analysis, effect on transfer properties and on mechanical behaviours of the composite. Cem. Concr. Compos. 2018, 94, 1–12. [Google Scholar] [CrossRef]
- Gupta, T.; Chaudhary, S.; Sharma, R.K. Assessment of mechanical and durability properties of concrete containing waste rubber tire as fine aggregate. Constr. Build. Mater. 2014, 73, 562–574. [Google Scholar] [CrossRef]
- Sukontasukkul, P.; Tiamlom, K. Expansion under water and drying shrinkage of rubberized concrete mixed with crumb rubber with different size. Constr. Build. Mater. 2012, 29, 520–526. [Google Scholar] [CrossRef]
- Grinys, A.; Balamurugan, M.; Augonis, A.; Ivanauskas, E. Mechanical properties and durability of rubberized and glass powder modified rubberized concrete for whitetopping structures. Materials 2021, 14, 2321. [Google Scholar] [CrossRef]
- Han, Q.; Yang, Y.; Zhang, J.; Yu, J.; Hou, D.; Dong, B.; Ma, H. Insights into the interfacial strengthening mechanism of waste rubber/cement paste using polyvinyl alcohol: Experimental and molecular dynamics study. Cem. Concr. Compos. 2020, 114, 103791. [Google Scholar] [CrossRef]
- Mohammadi, I.; Khabbaz, H.; Vessalas, K. Enhancing mechanical performance of rubberised concrete pavements with sodium hydroxide treatment. Mater. Struct. Constr. 2016, 49, 813–827. [Google Scholar] [CrossRef]
- Muñoz-Sánchez, B.; Arévalo-Caballero, M.J.; Pacheco-Menor, M.C. Influence of acetic acid and calcium hydroxide treatments of rubber waste on the properties of rubberized mortars. Mater. Struct. Constr. 2017, 50, 1–16. [Google Scholar] [CrossRef]
- He, L.; Ma, Y.; Liu, Q.; Mu, Y. Surface modification of crumb rubber and its influence on the mechanical properties of rubber-cement concrete. Constr. Build. Mater. 2016, 120, 403–407. [Google Scholar] [CrossRef]
- Roychand, R.; Gravina, R.J.; Zhuge, Y.; Ma, X.; Youssf, O.; Mills, J.E. A comprehensive review on the mechanical properties of waste tire rubber concrete. Constr. Build. Mater. 2020, 237, 117651. [Google Scholar] [CrossRef]
- Dong, Q.; Huang, B.; Shu, X. Rubber modified concrete improved by chemically active coating and silane coupling agent. Constr. Build. Mater. 2013, 48, 116–123. [Google Scholar] [CrossRef]
- Nisticò, R.; Lavagna, L.; Boot, E.A.; Ivanchenko, P.; Lorusso, M.; Bosia, F.; Pugno, N.M.; D’Angelo, D.; Pavese, M. Improving rubber concrete strength and toughness by plasma-induced end-of-life tire rubber surface modification. Plasma Process. Polym. 2021, 18, 2100081. [Google Scholar] [CrossRef]
- Onuaguluchi, O.; Panesar, D.K. Hardened properties of concrete mixtures containing pre-coated crumb rubber and silica fume. J. Clean. Prod. 2014, 82, 125–131. [Google Scholar] [CrossRef]
- Grinys, A.; Augonis, A.; Daukšys, M.; Pupeikis, D. Mechanical properties and durability of rubberized and SBR latex modified rubberized concrete. Constr. Build. Mater. 2020, 248, 118584. [Google Scholar] [CrossRef]
- Lavagna, L.; Nisticò, R.; Sarasso, M.; Pavese, M. An analytical mini-review on the compression strength of rubberized concrete as a function of the amount of recycled tires crumb rubber. Materials 2020, 13, 1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, H.; Yang, J.; Ghataora, G.S.; Dirar, S. Surface modified used rubber tyre aggregates: Effect on recycled concrete performance. Mag. Concr. Res. 2015, 67, 680–691. [Google Scholar] [CrossRef] [Green Version]
- Youssf, O.; Hassanli, R.; Mills, J.E.; Skinner, W.; Ma, X.; Zhuge, Y.; Roychand, R.; Gravina, R. Influence of mixing procedures, rubber treatment, and fibre additives on rubcrete performance. J. Compos. Sci. 2019, 3, 41. [Google Scholar] [CrossRef] [Green Version]
- Pczieczek, A.; Schackow, A.; Effting, C.; Dias, T.F.; Gomes, I.R. Properties of mortars containing tire rubber waste and expanded polystyrene (EPS). J. Urban Environ. Eng. 2018, 11, 219–225. [Google Scholar] [CrossRef]
- Rivas-Vázquez, L.P.; Suárez-Orduña, R.; Hernández-Torres, J.; Aquino-Bolaños, E. Effect of the surface treatment of recycled rubber on the mechanical strength of composite concrete/rubber. Mater. Struct. Constr. 2015, 48, 2809–2814. [Google Scholar] [CrossRef]
- Zhang, H.; Gou, M.; Liu, X.; Guan, X. Effect of rubber particle modification on properties of rubberized concrete. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2014, 29, 763–768. [Google Scholar] [CrossRef]
- Betioli, A.M.; Hoppe Filho, J.; Cincotto, M.A.; Gleize, P.J.P.; Pileggi, R.G. Chemical interaction between EVA and Portland cement hydration at early-age. Constr. Build. Mater. 2009, 23, 3332–3336. [Google Scholar] [CrossRef]
- Wang, R.; Yao, L.; Wang, P. Mechanism analysis and effect of styrene-acrylate copolymer powder on cement hydrates. Constr. Build. Mater. 2013, 41, 538–544. [Google Scholar] [CrossRef]
- Sang, G.; Zhu, Y.; Yang, G. Mechanical properties of high porosity cement-based foam materials modified by EVA. Constr. Build. Mater. 2016, 112, 648–653. [Google Scholar] [CrossRef]
- Azadmanesh, H.; Hashemi, S.A.H.; Ghasemi, S.H. The effect of styrene-butadiene rubber and ethylene vinyl acetate polymers on the mechanical properties of Engineered Cementitious Composites. Compos. Commun. 2021, 24, 100656. [Google Scholar] [CrossRef]
- Yang, X.; Liu, J.; Li, H.; Ren, Q. Performance and ITZ of pervious concrete modified by vinyl acetate and ethylene copolymer dispersible powder. Constr. Build. Mater. 2020, 235, 117532. [Google Scholar] [CrossRef]
- Shi, C.; Zou, X.; Wang, P. Influences of EVA and methylcellulose on mechanical properties of Portland cement-calcium aluminate cement-gypsum ternary repair mortar. Constr. Build. Mater. 2020, 241, 118035. [Google Scholar] [CrossRef]
- Shi, C.; Wang, P.; Ma, C.; Zou, X.; Yang, L. Effects of SAE and SBR on properties of rapid hardening repair mortar. J. Build. Eng. 2021, 35, 102000. [Google Scholar] [CrossRef]
- PN-EN 1936:2010; Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International: West Conshohocken, PA, USA, 2010.
- Schulze, J.; Killermann, O. Long-term performance of redispersible powders in mortars. Cem. Concr. Res. 2001, 31, 357–362. [Google Scholar] [CrossRef]
- Çolak, A. Properties of plain and latex modified Portland cement pastes and concretes with and without superplasticizer. Cem. Concr. Res. 2005, 35, 1510–1521. [Google Scholar] [CrossRef]
- Czarnecki, L. Polymer-cement concretes. Cem. Wapno Bet. 2010, 5, 243–258. [Google Scholar]
- Silva, D.A.; John, V.M.; Ribeiro, J.L.D.; Roman, H.R. Pore size distribution of hydrated cement pastes modified with polymers. Cem. Concr. Res. 2001, 31, 1177–1184. [Google Scholar] [CrossRef]
- Weng, T.L.; Lin, W.T.; Li, C.H. Properties evaluation of repair mortars containing EVA and VA/VeoVa polymer powders. Polym. Polym. Compos. 2017, 25, 77–86. [Google Scholar] [CrossRef]
- Buczyński, P.; Iwański, M.; Mazurek, G.; Krasowski, J.; Krasowski, M. Effects of portland cement and polymer powder on the properties of cement-bound road base mixtures. Materials 2020, 13, 4253. [Google Scholar] [CrossRef] [PubMed]
- Buczyński, P.; Iwański, M. The influence of a polymer powder on the properties of a cold-recycled mixture with foamed bitumen. Materials 2019, 12, 4244. [Google Scholar] [CrossRef] [Green Version]
- Kujawa, W.; Olewnik-Kruszkowska, E.; Nowaczyk, J. Concrete Strengthening by Introducing Polymer-Based Additives into the Cement Matrix—A Mini Review. Materials 2021, 14, 6071. [Google Scholar] [CrossRef]
- Medeiros, M.H.F.; Helene, P.; Selmo, S. Influence of EVA and acrylate polymers on some mechanical properties of cementitious repair mortars. Constr. Build. Mater. 2009, 23, 2527–2533. [Google Scholar] [CrossRef]
- Sakai, E.; Sugita, J. Composite mechanism of polymer modified cement. Cem. Concr. Res. 1995, 25, 127–135. [Google Scholar] [CrossRef]
- Silva, D.A.; Roman, H.R.; Gleize, P.J.P. Evidences of chemical interaction between EVA and hydrating Portland cement. Cem. Concr. Res. 2002, 32, 1383–1390. [Google Scholar] [CrossRef]
- Zalegowski, K.; Piotrowski, T.; Garbacz, A. Influence of polymer modification on the microstructure of shielding concrete. Materials 2020, 13, 498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janotka, J.; Madejova, J.; Stevula, L.; Frtalova, D. Behavoiur of CaOH2 in the presence of the set styrene-acrylate dispersion. Cem. Concr. Res. 1996, 26, 1727–1735. [Google Scholar] [CrossRef]
- Li, L.; Wang, R.; Lu, Q. Influence of polymer latex on the setting time, mechanical properties and durability of calcium sulfoaluminate cement mortar. Constr. Build. Mater. 2018, 169, 911–922. [Google Scholar] [CrossRef]
- Iffat, S. Relation Between Density and Compressive Strength of Hardened Concrete Relation Between Density and Compressive Strength of Hardened Concrete. Concr. Res. Lett. 2015, 6, 182–189. [Google Scholar]
- Konkol, J.; Tomasik, A. Porowatość betonu wyznaczona metodami stereologicznymi oraz jej wpływ na właściwości mechaniczne betonu. XI Int. Sci. Conf. Lviv-Koszyce-Rzeszów Current Issues Civ. Environ. Eng. 2007, 107, 456–462. [Google Scholar]
- Kim, Y.Y.; Lee, K.M.; Bang, J.W.; Kwon, S.J. Effect of W/C ratio on durability and porosity in cement mortar with constant cement amount. Adv. Mater. Sci. Eng. 2014, 2014, 273460. [Google Scholar] [CrossRef] [Green Version]
- Shabbar, R.; Nedwell, P.; Wu, Z. Porosity and Water Absorption of Aerated Concrete with Varying Aluminium Powder Content. Int. J. Eng. Technol. 2018, 10, 234–238. [Google Scholar] [CrossRef] [Green Version]
- Hall, C.; Hamilton, A. Porosities of building limestones: Using the solid density to assess data quality. Mater. Struct. Constr. 2016, 49, 3969–3979. [Google Scholar] [CrossRef] [Green Version]
- Diamond, S. Mercury porosimetry. An inappropriate method for the measurement of pore size distributions in cement-based materials. Cem. Concr. Res. 2000, 30, 1517–1525. [Google Scholar] [CrossRef]
- Xu, F.; Peng, C.; Zhu, J.; Chen, J. Design and evaluation of polyester fiber and SBR latex compound-modified perlite mortar with rubber powder. Constr. Build. Mater. 2016, 127, 751–761. [Google Scholar] [CrossRef]
- Gwon, S.; Jang, S.Y.; Shin, M. Microstructure evolution and strength development of ultra rapid hardening cement modified with redispersible polymer powder. Constr. Build. Mater. 2018, 192, 715–730. [Google Scholar] [CrossRef]
- Barluenga, G.; Hernández-Olivares, F. SBR latex modified mortar rheology and mechanical behaviour. Cem. Concr. Res. 2004, 34, 527–535. [Google Scholar] [CrossRef]
- Łukowski, P.; Debska, D. Effect of polymer addition on performance of portland cement mortar exposed to sulphate attack. Materials 2020, 13, 71. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, J.L.; Werner-Zwanziger, U.; Chen, B.; Zwanziger, J.W.; Forgeron, D. A 43Ca and 13C NMR study of the chemical interaction between poly(ethylenevinyl acetate) and white cement during hydration. Solid State Nucl. Magn. Reson. 2011, 40, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Li, J.; Zhang, T.; Czarnecki, L. Chemical interaction between polymer and cement in polymer-cement concrete. Bull. Polish Acad. Sci. Tech. Sci. 2016, 64, 785–792. [Google Scholar] [CrossRef] [Green Version]
- Baueregger, S.; Perello, M.; Plank, J. Influence of carboxylated styrene-butadiene latex copolymer on Portland cement hydration. Cem. Concr. Compos. 2015, 63, 42–50. [Google Scholar] [CrossRef]
- Kong, X.; Emmerling, S.; Pakusch, J.; Rueckel, M.; Nieberle, J. Retardation effect of styrene-acrylate copolymer latexes on cement hydration. Cem. Concr. Res. 2015, 75, 23–41. [Google Scholar] [CrossRef]
- Su, Z.; Bijen, J.M.J.M.; Larbi, J.A. Influence of polymer modification on the hydration of portland cement. Cem. Concr. Res. 1991, 21, 535–544. [Google Scholar] [CrossRef]
- Larbi, J.A.; Bijen, J.M.J.M. Interaction of polymers with portland cement during hydration. A study. Cem. Concr. Res. 1990, 20, 139–147. [Google Scholar] [CrossRef]
- Baueregger, S.; Perello, M.; Plank, J. Role of PVOH and kaolin on colloidal stability of liquid and powder EVA and SB latexes in cement pore solution. Colloids Surf. A Physicochem. Eng. Asp. 2013, 434, 145–153. [Google Scholar] [CrossRef]
- Jiang, L.; Guan, Y. Pore structure and its effect on strength of high-volume fly ash paste. Cem. Concr. Res. 1999, 29, 631–633. [Google Scholar] [CrossRef]
Aggregate Properties | Size (mm) | Water Absorption (%) | Specific Gravity (g/dm3) |
---|---|---|---|
Sand | 0.1–0.5 | <0.1 | 1550 |
Limestone | <0.1 | <2.0 | 900–1100 |
Rubber aggregates | <0.1 | - | 1.58 |
Physical Properties | OPC | CAC |
---|---|---|
Initial setting (min): | ||
Start | 181 | 230 |
End | 218 | 270 |
Specific Gravity (g/cm3) | 3.1 | 3.0 |
Blaine Fineness (cm2/g) | 4301 | 3680 |
Compressive Strength (MPa): | ||
2 days | 35.0 | >50.0 |
28 days | 65.3 | >50.0 |
Properties | Acronal S 813 (ASS) | Osakryl OSA A (AS) | Acronal P 5033 (AS.RDP) | Vinnapas EP 17 (EVA) | Vinnapas 5044N (EVA.RDP) |
---|---|---|---|---|---|
Appearance | Aqueous dispersion | Aqueous dispersion | White powder | Aqueous dispersion | White powder |
Polymer Type | styrene-acrylic ester copolymer (silanised) | styrene-acrylic acid ester copolymer | copolymer of acrylic acid ester and styrene | Ethylene-vinyl acetate | Ethylene-vinyl acetate |
Viscosity (RVT 10 rpm 20 °C) [mPa·s] | 100–250 | 1000–2000 | - | 2800–4800 | - |
Solid content [%] | 49–51 | 48–50 | >99 | 59–61 | >98 |
pH | 7.6–8.2 | 4.0–6.0 | 6.5–8.5 | 4.0–5.0 | 6.5–8.5 |
Tg [°C] | 30.0 | −2.8 | −15.0 | 2.8 | −7.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kujawa, W.; Tarach, I.; Olewnik-Kruszkowska, E.; Rudawska, A. Effect of Polymer Additives on the Microstructure and Mechanical Properties of Self-Leveling Rubberised Concrete. Materials 2022, 15, 249. https://doi.org/10.3390/ma15010249
Kujawa W, Tarach I, Olewnik-Kruszkowska E, Rudawska A. Effect of Polymer Additives on the Microstructure and Mechanical Properties of Self-Leveling Rubberised Concrete. Materials. 2022; 15(1):249. https://doi.org/10.3390/ma15010249
Chicago/Turabian StyleKujawa, Weronika, Iwona Tarach, Ewa Olewnik-Kruszkowska, and Anna Rudawska. 2022. "Effect of Polymer Additives on the Microstructure and Mechanical Properties of Self-Leveling Rubberised Concrete" Materials 15, no. 1: 249. https://doi.org/10.3390/ma15010249
APA StyleKujawa, W., Tarach, I., Olewnik-Kruszkowska, E., & Rudawska, A. (2022). Effect of Polymer Additives on the Microstructure and Mechanical Properties of Self-Leveling Rubberised Concrete. Materials, 15(1), 249. https://doi.org/10.3390/ma15010249